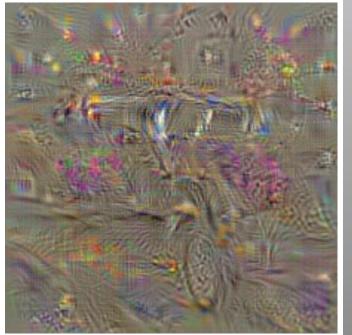
Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps



limousine

Both images reproduced under fair use from https://arxiv.org/pdf/1312.6034.pdf

Paper Authors: Karen SimonyanAndreaVedaldiAndrew Zisserman

Overview

- Visualization of image classification models
 - convolutional neural nets (CNN)
- Focus on gradient of the output w.r.t the input.
- 2 Ideas:
 - Generate an image maximizing the output
 - Computes a saliency map
 - specific to a given image and label
 - using a single backward pass
- Lateral outcome: object segmentation
 - Weakly supervised

Problem Definition

- CNNs are the de facto architecture for image classification
- How do we understand
 - the aspects of visual appearance captured inside a deep model ?
- Earlier approach solved this
 - Found an input image which maximizes the output
 - using gradient search
 - in the image space.

Focus on CNNs for ImageNet

• A single "deep" CNN

- The ImageNet dataset
 - 1.2M training images
 - 1000 classes
- Data Augmentation
 - zeroing-out random parts of an image
- Top-1/top-5 classification error of 39.7%/17.7%

Model Visualization

- Given
 - a CNN
 - and a label c of interest,
- visualization generates an image numerically
 - Representing label c as learned by the CNN

Model Visualization - II

- Formally,
- Given input I and class label c,
- let $F_c(I)$ be the output F of the CNN for the label c
- Find an image such that the output $F_c(I)$ is high

```
arg max F_c(I)
I
```

• How do you solve it? Your favorite optimizer for a local optima.

Model Visualization - III

- Formally,
- Given input I and class label c,
- let $F_c(I)$ be the output F of the CNN for the label c
- Find an image such that the output logit $F_c(I)$ is high

$$arg \max F_c(I) - \lambda \parallel I \parallel_2^2$$

$$I$$

• How do you solve it?

Model Visualization - IV

- Formally,
- Given input I and class label c,
- let $F_c(I)$ be the output F of the CNN for the label c
- Find an image such that the output logit $F_c(I)$ is high

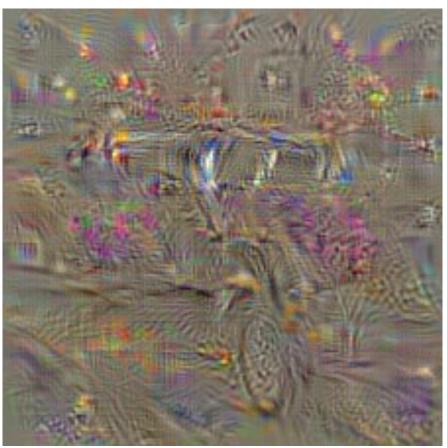
$$arg \max F_c(I) - \lambda \parallel I \parallel_2^2$$

$$I$$

• How do you solve it? Fix the model weights; vary the input

More on optimization

- Backpropagation finds an ${\it I}$
 - Locally optimal
- Similar to model training
 - Optimizes model weights.
- In model visualization
 - Weights are fixed
 - Optimizes the input
- Implementation details:
 - Initialize with 0 image
 - Add training set mean to result.



limousine

Reproduced under fair use from <u>https://arxiv.o</u> rg/pdf/1312.6 034.pdf

Why not use class posteriors?

- Uses output F_c and not class posteriors (soft-max): $P_c = \frac{\exp F_c}{\sum_c \exp F_c}$
- Posterior can be maximized by minimizing scores of other classes
 Helpful?
- Maximizing F_c ensures focus on the label of interest class c.

Image-Specific Class Saliency Map

- Goal: Query CNN about spatial support of a label in a given image.
 - Attribution analysis
- Given
 - an image I_0 ,
 - a label of class c, and
 - a CNN with the output function $F_c(I)$,
- Rank the pixels of I_0 based on their *influence* on the score $S_c(I_0)$.

Saliency Map - II

• Motivating example: a linear score model for the label c:

$$F_c(I) = w_c^T I + b_c,$$

• Here,

- the image I is represented as a vector
- w_c is the weight vector,
- and b_c is the bias vector.
- Intuitively,
 - elements in w_c define the *influence* of corresponding pixels
 - So, w_c is an attribution vector!

Saliency Map - III

• Motivating example: a linear score model for the label c:

$$F_{c(I)} = b_c + w_c^T I$$

- Intuitively,
 - elements in w_c define the *influence* of corresponding pixels
 - So, *w_c* is an attribution vector!
- Now, consider a CNN with output $F_c(I)$
- Use Taylor expansion around an input image I
 - and drop second as well as higher order terms:

•
$$F_c(I) \approx F_c(0) + \frac{\partial F_c}{\partial I} I$$

Saliency Map - IV

• Motivating example: a linear score model for the label c:

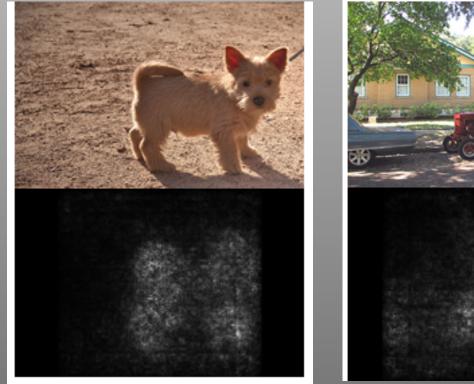
 $F_{c(I)} = b_c + w_c^T I$

- Intuitively,
 - elements in w_c define the *influence* of corresponding pixels
 - So, *w_c* is an attribution vector!
- Now, consider a CNN with output $F_c(I)$
- Use Taylor expansion around an input image *I*
 - and drop second as well as higher order terms:
 - $F_c(I) \approx F_c(0) + \frac{\partial F_c}{\partial I} I$

Influence of pixels on output or attributions

The derivative shows which pixels have the most influence on the output

Saliency Map Results



Both images reproduced under fair use from https://arxiv.org/pdf/1312.6034.pdf

Implementation Details

- No additional annotation beyond labels
- Single backpropagation
- Color images:
 - Maximum across all channels
- Used 10 cropped and reflected images
 - Took average of all of them

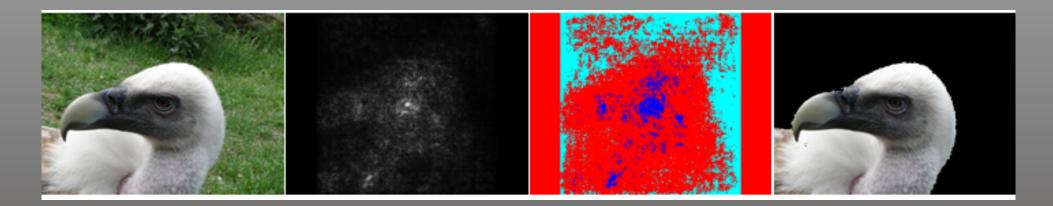
Object Localization using Saliency Maps

- Given an image and its saliency map,
- the object segmentation mask computed using the GraphCut colour segmentation.
- Simple saliency thresholding may not highlight the whole object
 - Hence, use colour continuity cues
- GMMs for foreground and background color models
 - pixels with the saliency higher than 95% quantile => foreground
 - pixels with the saliency smaller than the 30% quantile => background
- Object segmentation = largest connected component of foreground
- 46.4% top-5 error on ImageNet localization challenge

GraphCut is discussed in Boykov YY, Jolly MP. Interactive graph cuts for optimal boundary and region segmentation of objects in N-d images. In *Proc. ICCV*, volume 2, pages 105–112, 2001.

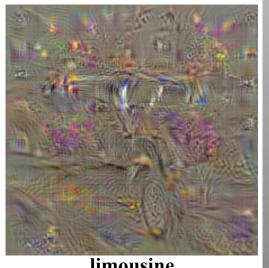
Object Localization using Saliency Maps - II

- Given an image and its saliency map,
- the object segmentation mask computed using the GraphCut colour segmentation.
- Object segmentation = largest connected component of foreground
- 46.4% top-5 error on ImageNet localization challenge



Conclusions

- 2 visualization techniques for deep CNNs
- Synthesize an image of a given class from a trained deep CNN.
- Computes the saliency map for a given image and a given label.
- Employ in GraphCut based object segmentation.
- Future Work:
 - "Incorporate image- specific saliency maps into learning formulations in a more principled manner"



limousine

Both images reproduced under fair use from https://arxiv.org/pdf/1312.6034.pdf