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Abstract—Artificial intelligence and machine learning (AI/ML)
techniques are fueling a revolution in how scientific experiments
are designed, implemented and automated. Specifically, increas-
ing high-bandwidth instruments coupled to new hardware and
software systems can significantly improve the throughput of ex-
perimental results, while AI/ML techniques can provide insights
into novel science and theories that were hitherto inaccessible. De-
spite recent progress in such “self-driving labs”, these automated
platforms are susceptible to adversarial attacks as well as more
traditional cybersecurity attacks. Using a motivating example of
an automated approach to design anti-microbial peptides (AMP),
our position paper seeks to demonstrate how a lack of adversarial
robustness of AI systems such as protein folding networks may
affect the execution of such experimental workflows. We highlight
important problems in adversarial robustness that may need to
be resolved in order to establish a trustworthy and safe AI-driven
AMP synthesis system.

Index Terms—AMP synthesis, adversarial attacks, protein
folding networks, safety and trustworthy

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) tech-
niques are promising to revolutionize how experiments are
designed, implemented and executed [1]. Already several ex-
amples of automated platforms for scientific experiments exist,
where robotic instrumentation and AI/ML techniques have
successfully executed end-to-end scientific workflows [2]–[6].
While such examples have proliferated materials science [7]–
[9], synthetic biology [10], [11] and chemistry/drug-discovery
applications [12], widespread deployment of such AI-enabled
automated platforms remains quite challenging [13]. These
challenges can be largely attributed to: (1) diversity in the
deployment of robotic instrumentation platforms across the
scientific enterprise; (2) lack of well defined standards for
development and exchange of experimental protocols and data;
(3) intrinsic difficulty in connecting diverse instruments with
heterogeneous computing infrastructures and (4) emerging
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Fig. 1. Robotic manipulation for automating the synthesis of antimicrobial
peptides (AMPs) using AI/ML approaches.

adversarial robustness [14]–[16] and cybersecurity concerns
in coupling physical instruments with AI/ML approaches.

The primary focus of our position paper is in outlining some
of the cybersecurity and adversarial robustness concerns when
deploying automated experimental platforms. We focus on an
illustrative workflow involving the design of small peptides
exhibiting antimicrobial activity against environmental Es-
cherichia coli (E. coli) samples. However, these observations
can be generalized to other large-scale experimental design
workflows where artificial intelligence or machine learning
techniques interact with and potentially ‘execute’ experimental
commands through such robotic instruments. We briefly recall
recent results in adversarial robustness of protein folding net-
works and illustrate adversarial attacks on the RoseTTAFold
network [17] using naturally occurring proteins as well as anti-
microbial peptides.



(i) RMSD=34.162Å (ii) RMSD=0.119Å
Fig. 2. Adversarial attacks against the RoseTTAFold network obtained from our earlier work [18]. The predicted structure for the original (shown in blue)
and the adversarial (shown in red) protein sequences for the SFP1 interferon stimulator (left) and 2QJF 1 human bifunctional 3’-phosphoadenosine 5’-
phosphosulfate synthetase 1 (right) as predicted by RoseTTAFold and aligned using PyMOL. RMSD is the Root Mean Square Distance, typically measured
in Å (10−10m). The predicted structure on the right is robust to biologically small perturbations, while the one on the left is too sensitive even to biologically
small changes.

II. AI-DRIVEN DESIGN OF PROTEIN/PEPTIDES WITH
ANTIMICROBIAL ACTIVITY

Anti-Microbial Peptides (AMP) provide a new frontier in
defending our health and well-being against pathogens such
as bacteria and viruses. AMPs can influence cellular mem-
branes [19] and then affect cellular processes. Recently, AI-
methods have been used in designing novel AMPs targeting
various bacterial species [20].

An automated pipeline to facilitate the screening of AMPs
for pathogen activity is based on a 4 step process. First, we
employ protein language models and generative models to
explore the space of possible AMP designs. Popular language
models like BERT [21] have been fine-tuned on protein
sequences and the resulting ProBERT model can be used to
generate candidate AMP sequences. Such models are usually
easier to train but can still be used to predict antimicrobial
behavior using experimental feedback. Generative models such
as variational encoders [22] and Wasserstein encoders [20]
can also be used to embed the space of AMPs into a latent
space, and then sample from this latent space to create novel
AMPs. Features such as length and charge distribution of
AMPs can be sampled from the latent space and correlated
with experimental observations [20].

Second, we investigate the impact of candidate AMPs on
membranes using molecular dynamics simulations and employ
AI/ML methods to predict protein-membrane interactions. A
machine learning library for analyzing molecular dynamics
simulations, such as mdlearn [23] is then used to predict
MD outcomes. Figure 3 shows snapshots of an AMP protein
interaction with a membrane.

Third, we automate the physical testing of the designed
AMP using an experimental assay that quantifies the effective
killing of the bacterial population based on the concentration
of the peptide. This requires the ability to program robotic

Fig. 3. Molecular dynamics simulations of an anti-microbial protein (AMP)
interacting with the cell membrane. End-to-end differentiable AI/ML models
for predicting such dynamics may be susceptible to adversarial attacks.

manipulators that can move liquids around and read plates
for absorbance. The automated observation of the experiments
also requires the design of customized vision models in visible
and possibly other spectra.

Fourth, we will use artificial intelligence methods to infer
activity of designed AMPs against different microbial strains
and predict which residues should be modified for the next
round of experimental investigations. Each of the steps are
susceptible to cybersecurity attacks as well as a lack of
adversarial robustness, which we describe below.

III. ADVERSARIAL ROBUSTNESS

Besides traditional cybersecurity attacks, AI-driven design
of proteins/peptides can also be subjected to adversarial attacks
either due to lack of robustness of models or due to models
with Trojans injected into them. We briefly survey a few
different kinds of models employed in AI-driven design of
AMPs and the need for adversarial robustness in these models.

1) Attacks on BERT and ProteinBERT models: Adversar-
ial attacks on two fundamental natural language tasks, text
classification and textual entailment, has been successfully



illustrated on the powerful pre-trained BERT model using the
TEXTFOOLER [16] system. It has been shown that the BERT
model is not even adversarially robust to misspellings [24].

ProteinBERT is a fine-tuned variant of BERT that can
predict protein structures, biophysical attributes and post-
translational modifications from protein sequences using rel-
atively small amounts of training data. ProteinBERT may
be susceptible to the same sort of adversarial attacks that
fool traditional BERT systems. This poses a challenge for
protein synthesis because predictions from ProteinBERT may
be susceptible to small perturbations in the input.

2) Attacks on Protein AutoEncoders: Adversarial attacks
on autoencoders have been illustrated on images and on
machine communications. Attacks on variational autoencoders
and conditional variational autoencoders have been demon-
strated on multiple image data sets, including MNIST, SVHN
and CelebA [25]. Adversarial attacks on physical wireless
signals for machine to machine communication has been
shown to be more damaging than merely jamming the wireless
transmission [26].

It is not known if latent space representations of proteins
are robust to adversarial perturbations. Protein autoencoders
are likely to be susceptible to adversarial attacks, and small
perturbations in the input may lead to different predictions.

3) Attacks on Protein Folding Neural Networks: Protein
folding neural networks like AlphaFold and RoseTTAFold per-
form very well in performing three-dimensional structures of
protein from their amino acid sequences. However, it has been
recently shown that RoseTTAFold is susceptible to adversarial
attacks [18]. It is likely that the current generation of protein
folding neural networks are all susceptible to adversarial
examples to varying degrees. The creation of adversarially
robust protein folding neural networks remains a challenge.

Recent work [18] has demonstrated the susceptibility of
RoseTTAFold to adversarial attacks [27] by generating sev-
eral examples where protein sequences that vary only in
five residues result in very different three-dimensional pro-
tein structures. The approach employs sequence alignment
scores [28] such as those derived from Block Substitution
Matrices (BLOSUM62) to identify a space of biologically
similar protein sequences used in constructing adversarial
perturbations. Computational experimental studies show that
different input protein sequences have very different adver-
sarial robustness. In this study, the RMSD in the protein
structure predicted by RoseTTAFold [17] ranges from 0.119Å
to 34.162Å when the adversarial perturbations are bounded by
20 units in the BLOSUM62 distance.

4) Attacks on Vision Models: Manipulation of fluids by
experimental robots need to be observed by computer vision
algorithms and may be used to drive end-to-end deep learning
algorithms for control. Figure 4 shows an example of a rather
intricate vision classification challenge posed by the peptide
synthesis process. The robotic manipulation of the synthesized
peptide depends on the type of the synthesized protein –
soluble, pellets or hairgel.

Fig. 4. Different forms of proteins such as soluble, pellets and hairgel obtained
during synthesis of peptides.

Fig. 5. Illustration of a
patch attack on an image.

Adversarial examples in com-
puter vision have been known for
both neural networks [14], [15] and
traditional machine learning meth-
ods such as support vector ma-
chines [29]. Figure 5 shows an ex-
ample of a patch attack on an image;
a small patch causes the image to
be labeled as a hook instead of a
brambling bird. Hence, it is likely
that vision algorithms used in end-
to-end control of protein synthesis robots may suffer from
similar adversarial patch attacks that may not be prevented
by traditional cybersecurity protections.

Several approaches for building robustness in neural net-
works have been investigated. For example, it has recently
been shown that attributions of neural SDE models are more
robust [30] than those obtained from traditional residual net-
work models. See Fig. 6 for an illustration of explanations
obtained using this method. Other approaches including ad-
versarial training have also been used to train robust neural
networks.

Fig. 6. Visualization of the attribution obtained by a non-robust model (center)
and a robust model (right) on the input image (left).

Several challenges remain in the application of adversarial
robustness to proteins. First, the distance measures between
the input sequences and the metrics for specifying robustness
of predicted outputs have not been well-studied for adversar-
ial attacks on proteins. Second, robustness of ProteinBERT
and related models need to be biologically inspired so that
biologically significant changes lead to substantial changes in
predictions. Third, image recognition tasks in the wet lab are
more subtle that the challenging ImageNet benchmark; hence,
robustness and attribution analysis for such lab-based vision
benchmarks need to be investigated.



(a) 6NT5 1 (b) 60EU 1 (c) NP 010457.3

(d) 2BBJ 1 (e) 2ROP 1 (f) 6NT3 1
Fig. 7. Adversarial attacks against the RoseTTAFold network obtained from our earlier work [18]. The predicted structure of protein sequences (blue) and
the structures of their adversarial perturbations (red) produced using RoseTTAFold and aligned using PyMOL.

IV. EXPERIMENTAL RESULTS

We briefly survey results from our recent work on adver-
sarial robustness for protein folding networks [18] and present
new results on the robustness of anti-microbial peptides.

A. Adversarial Robustness for Naturally Occurring Proteins

We recall the results of adversarial attacks on 6 naturally
occurring proteins shown in Fig. 7. The adversarial sequences
and the original sequences differed in BLOSUM62 distance
of at most 20, and are thus biologically close to each other.

1) 6NT5 1: Stimulator of interferon protein in human be-
ings: As shown in Fig. 7(a), the alignment involving all
residues has a RMSD score of 5.026Å showing that the
adversarial structure is quite different.

2) 6OEU 1: Protein patched homolog 1 : Figure 7(b)
shows the aligned structures for the sequence and its adver-
sarial perturbation. The two sequences were aligned using
PyMOL and achieved a RMSD of 34.162Å.

3) NP 010457.3: Yeast translation termination factor GT-
Pase eRF3: Figure 7(c) shows the structure of the original
sequence and the structure of the adversarial sequence aligned
together with a high RMSD of 6.870Å.

4) 2BBJ 1: Eubacteria CorA Mg2+ transporter: Fig-
ure 7(d) shows the structures for the original and adversarial
sequences with a high RMSD score of 6.76Å.

5) 2ROP 1: Human Copper-transporting ATPase 2: As
illustrated in Figure 7(e), the alignment between the structure
corresponding to this sequence and its adversarial perturbation
has a high RMSD score of 8.495.

B. Adversarial Robustness for Anti-Microbial Peptides

We investigate the robustness of RoseTTAFold protein
structure predictions to adversarial attacks on 5 different AMP
sequences to understand how small changes in the AMP
sequence can cause changes in the structure of the molecules.

Figure 8 shows the structure of the original sequence in
blue and the adversarial sequence in red aligned together using
PyMOL. The adversarial sequence is obtained by changing
only 2 amino acids in the sequence of the protein and attacking
the end-to-end neural network of RoseTTAFold.

The existence of such adversarial sequences whose struc-
tures are different from the input sequence despite the se-
quence similarity leads to two interesting possibilities: (i)
The neural network may not be robust and may produce
different outcomes even on proteins where we do not anticipate
structural changes. (ii) The protein structures for these AMPs
may be inherently fragile and small changes may lead to great
structural diversity in AMPs. Further experimental evaluation
of the adversarial structures may resolve which of these
possibilities is true in practice.



(a) VIVNAVVVKVKVKL (b) RKEKFKFKKKKKKKK

(c) KKQQQQQQQQEEQYQY (d) SGGGGGGNSGVGNV

(e) FLLLLPVLVLPLPFLV (f) RRKKKPKKLLTLTIYL

Fig. 8. Adversarial examples for AMPs using RoseTTAFold.

V. CONCLUSIONS

Our position paper highlights the emerging cybersecurity
and adversarial robustness concerns of using AI-driven exper-
imental loops. Unlike traditional cybersecurity attacks, AI/ML
methods can be challenged by seemingly innocuous objects
like well-designed patches printed on lab equipment. Such
patch attacks may not be prevented by traditional security or
cybersecurity methodologies and may require new innovative
protection protocols. Possibilities including the design of deep
neural network models that can scan the environment and
detect suspicious patches in a laboratory setup.

The injection of Trojans during the training of protein
folding networks can lead to scenarios where a protein folding
network that perform well on naturally occurring proteins but
deliberately make incorrect predictions on a subset of anti-
microbial proteins (AMPs). Such incorrect predictions can pre-
vent the discovery of clinically significant peptides without the
end user realizing the deliberate sabotage introduced into the
model. Such Trojans could be injected into the AI/ML models
by suitably modifying public databases usually employed by
scientists. Trojan models may also be created by launching
a cybersecurity attack that does not cause any other easily
perceptible effects.

Our analysis of the robustness of protein folding neural

networks has only focused on change in predictions under
biologically small perturbations. In future efforts, we seek to
validate these against ground truth predictions.

The ubiquitous and often seamless continuity between sci-
entific instruments and high performance computing infras-
tructure means that there is a tremendous opportunity to unveil
new scientific theories and benefit mankind in multitude of
ways. However such gains need to be balanced with a critical
view of the intrinsic cyber-vulnerability of these systems. With
internet of things (IoT) and the development of advanced
sensor networks, the intrinsic vulnerabilities of such connected
systems poses immense cybersecurity challenges that are yet
to be fully understood [31].

An attack on a closed-loop AI-driven workflow is likely to
be more obstructive and harder to detect than the influence
of the Stuxnet worm on the operation of Iranian nuclear
reactors [32]. As shown in our adversarial attack examples in
Sec. IV, a cyberattack that carefully changes a couple of amino
acids during synthesis of peptides would produce structurally
different proteins. Subsequent experimental evaluation of these
perturbed peptides and their inclusion in the design of exper-
iments would lead to severe system degradation and probably
a complete failure of the AI-driven peptide design without any
significant visibility of the attack to human scientists. Thus,
novel approaches for detecting such cyberattacks on AI-driven
design systems need to be investigated.

Robustness of neural networks have been widely investi-
gated over the last decade [14], [33]–[35]. However, AI-driven
experiment design creates novel challenges for robustness in
artificial intelligence. As shown in Fig. 4, neural networks that
monitor experimental setups for rare unforeseen outcomes and
actively seek human intervention may need to be developed.
Robust detection of out-of-distribution (OOD) data [36] and
experimental setups would be crucial in ensuring continuous
and smooth functioning of AI-driven workflows.

The communication between AI and human experts is also
crucial to enhance the synergy between man and machine. In
particular, interpretation methods that explain neural network
decisions to end users would be crucial in understanding, diag-
nosing and repairing end-to-end AI driven design workflows
in cases of failure. While interpretation methods for image
classification tasks have been substantially developed [30], AI
explanation methods for time-series data and language-like
models are less understood.
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