Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods

Paper Authors: John C Platt

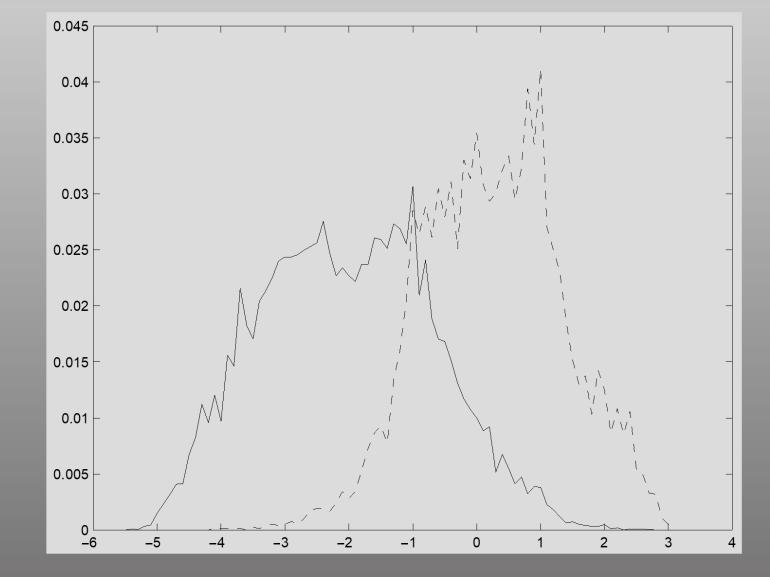


Image reproduced under fair use from

<u>ttps://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4</u>

Overview

- Desirable output of a classifier is a calibrated posterior probability
 - Facilitates post-processing.
- Standard SVMs do not provide such probabilities.
- Create probabilities by training a kernel classifier with
 - logit link function and
 - a regularized maximum likelihood score.
- Training with a maximum likelihood score produces non-sparse kernels.
- Instead,
 - train an SVM,
 - train the parameters of a sigmoid function that
 - maps the SVM outputs into probabilities.
- The SVM + sigmoid comparable to the regularized maximum likelihood kernel
 - Retains the sparseness of the SVM.

Introduction

- Construct a classifier to produce a posterior probability P(class I input)
 - Allows decisions that use a utility model
 - Important when a classifier is making a small part of an overall decision
 - Combine different classifier outputs
 - Viterbi search or HMM: results from phoneme recognizers into word recognition.
 - Multi-label classifier:
 - label with maximal posterior probability is Bayes optimal for equal loss case
- SVMs produce an uncalibrated value that is not a probability
- The unthresholded output of an SVM: f(x) = h(x) + b, where

$$h(\mathbf{x}) = \sum y_i \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

• Training minimizes

$$C\sum_{i}(1-y_if_i)_{+}+\frac{1}{2}||h||_{\mathcal{F}},$$

Related Work - I

• Logistic link function by Wahba

$$P(\text{class}|\text{input}) = P(y = 1|\mathbf{x}) = p(\mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))},$$

- Minimize a negative log multinomial likelihood
 - plus a term that penalizes the norm

$$-\frac{1}{m}\sum_{i} \left(\frac{y_{i}+1}{2}\log(p_{i}) + \frac{1-y_{i}}{2}\log(1-p_{i})\right) + \lambda ||h||_{\mathcal{F}}^{2}$$

Wahba G. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Advances in Kernel Methods-Support Vector Learning. 1999 Feb

8;6:69-87.

$$C\sum_{i=1}^{n}(1-y_{i}f_{i})_{+}+\frac{1}{2}||h||_{\mathcal{F}_{i}}$$

Related Work - II

• Logistic Link by Wahba

$$P(\text{class}|\text{input}) = P(y = 1|\mathbf{x}) = p(\mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))},$$

- Output p(x) of such a machine is a posterior probability.
- Minimizing this error function will not directly produce a sparse SVM

$$-\frac{1}{m}\sum_{i} \left(\frac{y_{i}+1}{2}\log(p_{i}) + \frac{1-y_{i}}{2}\log(1-p_{i})\right) + \lambda ||h||_{\mathcal{F}_{i}}^{2}$$

• But a modification can produce sparse kernel machines

Wahba G, Lin X, Gao F, Xiang D, Klein R, Klein B. The bias-variance tradeoff and the randomized GACV. Advances in Neural Information Processing Systems. 1998;11.

Related Work - III

- Map SVM output to probabilities by decomposing feature space ${\mathcal F}$
 - a direction orthogonal to the separating hyperplane,
 - and all of the N 1 other dimensions of the feature space.
- The orthogonal direction is parameterized by t
 - A scaled version of f(x)

Vapnik V. The nature of statistical learning theory. Springer science & business media; 1999 Nov 19.

- All other directions parameterized by a vector **u**.
- In general, the posterior depends on both t and u: P(y = 1 | t, u).
 - Vapnik fits this probability with a sum of cosine terms with strong results

$$P(y = 1|t, \mathbf{u}) = a_0(\mathbf{u}) + \sum_{n=1}^N a_n(\mathbf{u}) \cos(nt).$$

- Requires a solution of a linear system for every evaluation of the SVM.
 - The Platt scaling approach avoids it.
 - The dependencies of P(y = 1|f) on u cannot be modeled.

Related Work - IV

- Fit Gaussians to the class-conditional densities of the SVM outputs
 - p(f|y = 1) and
 - p(f|y = -1)
- A single tied variance is estimated for both Gaussians.
- The posterior probability rule P(y = 1|f) is thus a sigmoid
 - slope determined by the variance.
- Adjust the bias of the sigmoid
 - such that the point P(y = 1|f) = 0.5 occurs at f = 0.
- The single parameter may not model the true posterior probability.

Hastie T, Tibshirani R. Classification by pairwise coupling. Advances in neural information processing systems. 1997;10.

Related Work - V

- Employ a more flexible version of the Gaussian fit to $p(f | y = \pm 1)$
- Mean and variance for each Gaussian is determined from a data set
- Bayes' rule

$$P(y = 1|f) = \frac{p(f|y = 1)P(y = 1)}{\sum_{i=-1,1} p(f|y = i)P(y = i)},$$

• P(y = i): prior probabilities computed from the training set

- This model for SVM output probabilities independently proposed
 - Used for speaker identification by C. J. C. Burges at 1998 NIPS SVM workshop
- The posterior is an analytic function of *f* with form:

$$P(y = 1|f) = \frac{1}{1 + \exp(af^2 + bf + c)}$$

Related Work - VI

- Two issues with this approach:
 - the assumption of Gaussian classconditional densities is often violated
 - the posterior estimate derived from the two-Gaussian approximation is non-monotonic

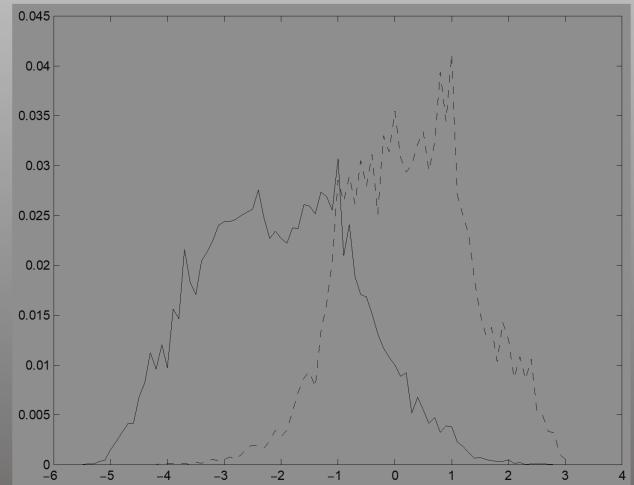


Image reproduced under fair use from https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4 1.1639

The Platt Scaling Approach

- Use a parametric model to fit the posterior P(y = 1 | f) directly
 - instead of estimating the classconditional densities p(f|y)
- The parameters can be adapted to give the best probability outputs
- The form of the parametric model inspired by empirical data
 - Far away from Gaussian

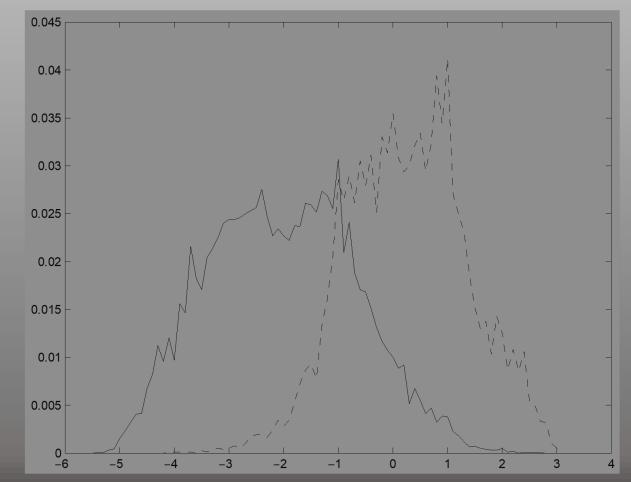


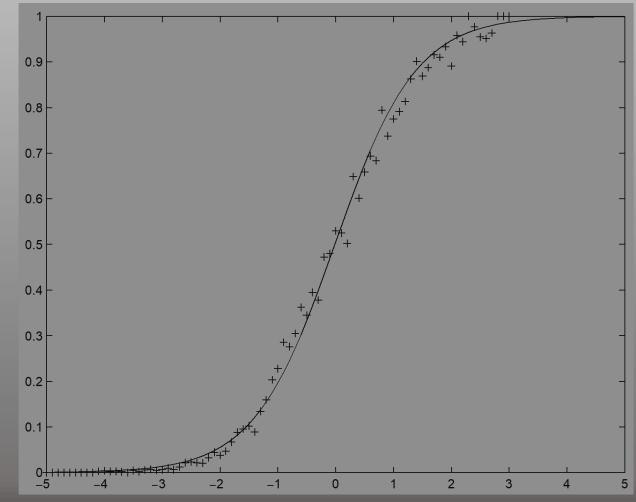
Image reproduced under fair use from tps://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4 1.1639

Approach - II

- The class-conditional densities apparently exponential.
- Bayes' rule on two exponentials suggests using a parametric form of a sigmoid:

$$P(y = 1 \ f) = \frac{1}{1 + \exp(Af + B)}.$$

• Equivalent to assuming that SVM output proportional to log odds of a positive example.



11

Image reproduced under fair use from tps://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4 1.1639

Approach - III

$$P(y = 1 f) = \frac{1}{1 + \exp(Af + B)}.$$

- Parameters A and B fitted using maximum likelihood estimation
- Training set (f_i, y_i)
- Step 1: Define a new training set (f_i, t_i) where t_i are target probabilities:

$$t_i = \frac{y_i + 1}{2}.$$

• Minimize the negative log likelihood or cross-entropy of the training data:

$$\min - \sum_{i} t_i \log(p_i) + (1 - t_i) \log(1 - p_i),$$

Approach - IV

- Two practical challenges
 - How to obtain training data t_i ?
 - How to avoid overfitting?
- Using all of the training data is not a good idea
 - At the margins, $f(x_i) = 1$
 - Not likely to be true of any test data
 - So, test data will certainly become OOD.
- Solutions:
 - Estimate $f(x_i)$ by performing leave-one-out estimation
 - Expensive

Approach - V

- Using all of the training data is not a good idea
 - test data will certainly become OOD.
- Solutions:
 - Estimate $f(x_i)$ by performing leave-one-out estimation
 - Hold-out set
 - Do not use 30% of data to train the SVM
 - Use this data to train the sigmoid
 - Needs more data
 - Cross-validation
 - Split data into three parts
 - Train on permutation of 2 and fit the sigmoid on the third
 - Can be extended to n-fold cross validation

Results - I

Experiment 1

- Assuming equal loss for Type I/II errors,
- Optimal threshold for SVM+sigmoid is
 - P(y = 1 | f) = 0.5
- Optimal threshold for SVM is

• f = 0

• Achieved. f = -0.17 in experiments.

Experiment 2

- Compare SVM+sigmoid to an explicit approach
 - that maximizes log multinomial likelihood

Results - II

Task	Raw SVM	SVM +	Regularized	SVM +	Regularized
		Sigmoid	Likelihood	Sigmoid	Likelihood
	Number of	Number of	Number of	$-\log(p)$	$-\log(p)$
	Errors	Errors	Errors	Score	Score
Reuters Linear	1043	<u>963</u>	1060	3249	3301
Adult Linear	2441	2442	2434	5323	5288
Adult Quadratic	2626	2554	2610	5772	5827
Web Linear	260	265	248	1121	958
Web Quadratic	444	<u>452</u>	507	1767	2163

- Adding a Sigmoid often helps the SVM!
- Neither approach (Sigmoid or regularized likelihood) is better.
- Adding sigmoid produces probabilities comparable to regularized likelihood.

Image reproduced under fair use from https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639

Conclusions

- Method for extracting probabilities P(class | input) from SVM outputs
- Does not alter the training of the SVM
 - No regularization term
- Trainable post-processing step with a binomial maximum likelihood
- Two-parameter sigmoid used for post-processing
 - As it is observed empirically
- SVM + sigmoid comparable in accuracy to SVMs
 - Or better
- SVM + sigmoid preserves sparseness of kernels
- SVM + sigmoid produces probabilities comparable to regularization.