On Calibration of Modern Neural Networks: Temperature Scaling

Paper Authors: Chuan Guo, Geoff Pleiss, Yu Sun Kilian, Q. Weinberger

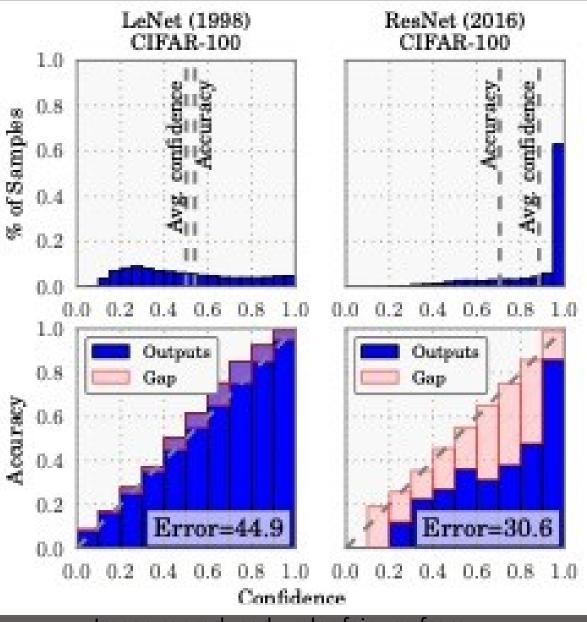


Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Overview

- Calibration: Predict probability representative of correctness likelihood
- Modern neural networks are poorly calibrated
 - unlike those from a decade ago
- Calibration influenced by
 - depth, width
 - weight decay, and
 - Batch Normalization
- Evaluate post-processing calibration on state-of- the-art architectures
- Temperature scaling is surprisingly effective at calibration
 - single- parameter variant of Platt Scaling

Motivation - I

- neural networks produced wellcalibrated probabilities on binary classification tasks
 - Niculescu-Mizil & Caruana (2005)
- Comparison
 - 5-layer LeNet (LeCun et al., 1998)
 - 110-layer ResNet (He et al., 2016)
 - CIFAR-100

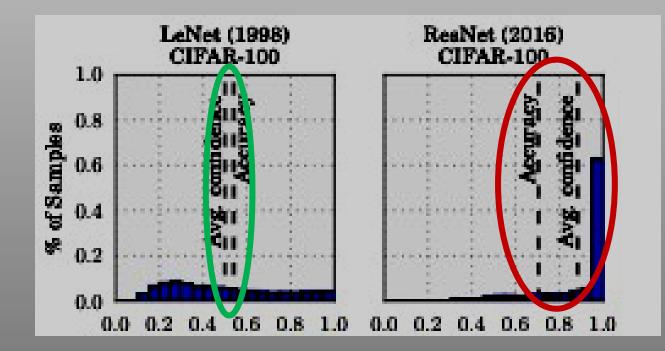


Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Motivation - II

- neural networks produced wellcalibrated probabilities on binary classification tasks
 - Niculescu-Mizil & Caruana (2005)
- Comparison
 - 5-layer LeNet (LeCun et al., 1998)
 - 110-layer ResNet (He et al., 2016)
 - CIFAR-100
- Reliability Diagram

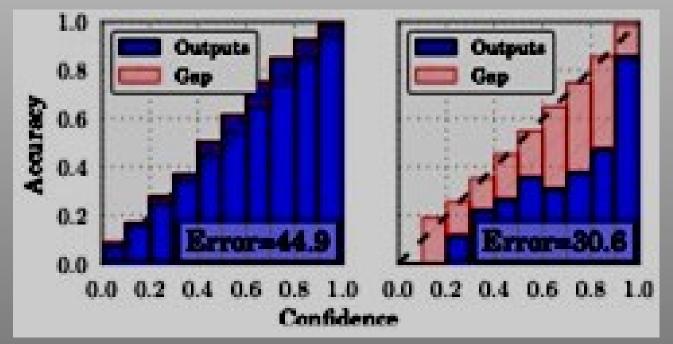


Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Calibration Definition

- Let *h* be a neural network with $h(X) = (\hat{Y}, \hat{P})$
 - \hat{Y} is a class prediction
 - \hat{P} is its associated confidence, i.e. probability of correctness.
- Expect confidence estimate \hat{P} to be calibrated

$$\mathbb{P}\left(\hat{Y} = Y \mid \hat{P} = p\right) = p, \quad \forall p \in [0, 1]$$

- For example,
 - given 100 predictions,
 - each with confidence of 0.8,
 - expect that 80 should be correctly classified.

Reliability Diagram

- Visual representation of model calibration
- Plot accuracy vs. confidence
- Deviation from diagonal represents miscalibration
- Let B_m be the set of indices of samples

 - whose confidence falls into interval $I_m = (\frac{m-1}{M}, \frac{m}{M})$. The accuracy of B_m is $\operatorname{acc}(B_m) = \frac{1}{|B_m|} \sum_{i \in B} \mathbf{1}(\hat{y}_i = y_i)$.
- Define the average confidence within bin B_m as

$$\operatorname{conf}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i,$$

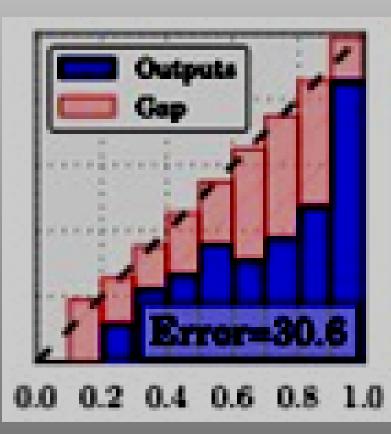


Image reproduced under fair use from

Expected Calibration Error (ECE)

- Visual vs. Numeric
 - while reliability diagrams are useful visual tools,
 - it is more convenient to have a scalar summary statistic of calibration.
- Statistics comparing two distributions cannot be comprehensive(?)
- ECE: difference in expectation between confidence and accuracy

$$\mathbb{E}_{\hat{P}}\left[\left|\mathbb{P}\left(\hat{Y}=Y \mid \hat{P}=p\right) - p\right|\right]$$

• ECE approximation:

: ECE =
$$\sum_{m=1}^{M} \frac{|B_m|}{n} |\operatorname{acc}(B_m) - \operatorname{conf}(B_m)|$$

Maximum Calibration Error (MCE)

- high-risk applications
 - reliable confidence measures are absolutely necessary
- Minimize the worst-case deviation between confidence and accuracy

$$\max_{p \in [0,1]} \left| \mathbb{P} \left(\hat{Y} = Y \mid \hat{P} = p \right) - p \right|$$

• Approximation involves binning (similar to ECE)

$$MCE = \max_{m \in \{1,...,M\}} |\operatorname{acc}(B_m) - \operatorname{conf}(B_m)|$$

Negative Log Likelihood (NLL)

- Negative log likelihood
 - a standard measure of a probabilistic model's quality
 - Friedman et al., 2001
- Also known as cross entropy loss
 - Bengio et al., 2015
- Given a probabilistic model $\frac{1}{2}(Y|X)$, and n samples, NLL is defined as

$$\mathcal{L} = -\sum_{i=1}^n \log(\hat{\pi}(y_i | \mathbf{x}_i))$$

• In expectation, NLL is minimized if and only if $\frac{1}{\pi}(Y|X)$ recovers the ground truth conditional distribution $\frac{1}{\pi}(Y|X)$.

Observing Miscalibration - I

- Model capacity
- model capacity increased at a fast pace over the past decade.
- 100-1000 layers
 - (He et al., 2016; Huang et al., 2016)
- 100s of convolutional filters per layer
 - (Zagoruyko & Komodakis, 2016)
- increasing depth and width may reduce classification error
- Such increases negatively affect model calibration
 - ResNet on CIFAR-100

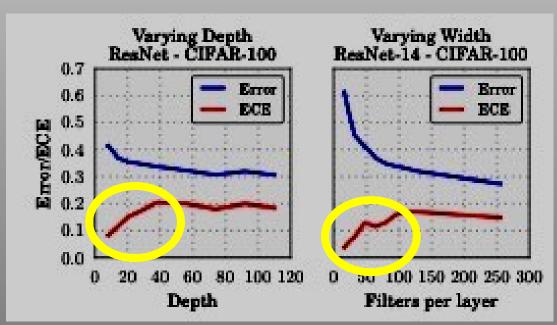


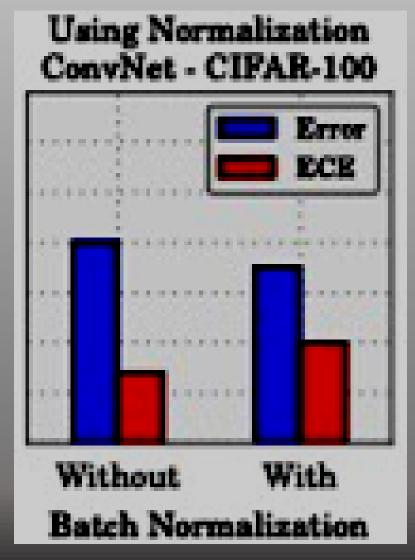
Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Observing Miscalibration - II

Batch Normalization

- (loffe & Szegedy, 2015)
- minimizes distribution shifts in activations
- improves training time
- reduces the need for more regularization
- May improve accuracy
- Enable the development of very deep architectures
- Creates more miscalibrated models
 - regardless of hyperparameters



Observing Miscalibration - III

- Weight decay
 - used to be a predominant regularization mechanism for neural networks
 - Learning Theory Vapnik, 1998
 - regularization prevents overfitting
 - Ioffe & Szegedy, 2015
 - models with less L2 regularization generalizes better
 - Now common to train models with little weight decay, if any at all.
- more regularization improves calibration
 - well after optimal accuracy.

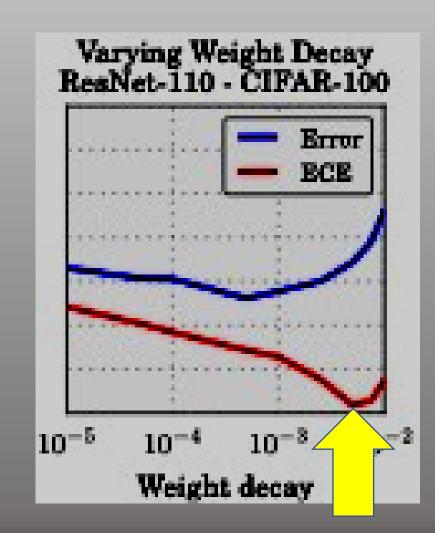


Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Observing Miscalibration - IV

- NLL indirectly measures model calibration.
- In practice, we observe a disconnect between NLL and accuracy
- Neural networks can overfit to NLL without overfitting to the 0/1 loss.
- Both error and NLL drop at epoch 250
 - when the learning rate is dropped
 - however, NLL overfits during the remainder of training.

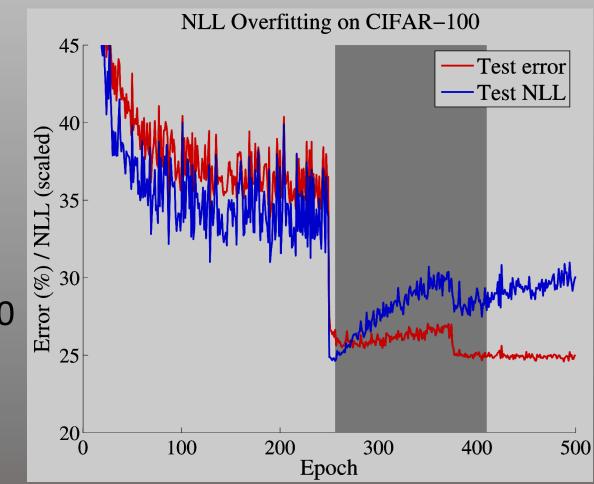


Image reproduced under fair use from https://arxiv.org/abs/1706.04599

Calibration Methods – I

- Histogram binning is a simple non-parametric calibration method
- all uncalibrated predictions \hat{p}_i are divided into mutually exclusive bins B_1, \ldots, BM .
- Each bin is assigned a calibrated score $\theta_{
 m m}$; if $\,\hat{p}_{i}$ is assigned to bin ${
 m B}_{
 m m}$, then $\hat{q}_{i}= heta_{m}$.
- For a fixed M, we define bin boundaries

 $0 = a_1 \leq a_2 \leq \ldots \leq a_{M+1} = 1,$

• The predictions θ_i are chosen to minimize the bin-wise squared loss:

$$\min_{\theta_1,...,\theta_M} \sum_{m=1}^M \sum_{i=1}^n \mathbf{1} (a_m \le \hat{p}_i < a_{m+1}) (\theta_m - y_i)^2$$

- The solution results in θ_m that correspond to the average number of positive-class samples in bin $B_m.$

Calibration Methods – II

Isotonic regression

- learns a piecewise constant function f to transform uncalibrated outputs $\hat{q}_i = f(\hat{p}_i)$.
- Generalizes histogram binning
 - bin boundaries and bin predictions are jointly optimized.
- Produces f to minimize the square loss $\sum_{i=1}^{n} (f(\hat{p}_i) y_i)^2$.
- Optimization problem

$$\min_{\substack{M \\ \theta_1, \dots, \theta_M \\ 1, \dots, a_{M+1}}} \sum_{m=1}^M \sum_{i=1}^n \mathbf{1} (a_m \le \hat{p}_i < a_{m+1}) (\theta_m - y_i)^2$$

subject to
$$0 = a_1 \le a_2 \le \ldots \le a_{M+1} = 1$$
,
 $\theta_1 \le \theta_2 \le \ldots \le \theta_M$.

- M is the number of intervals
- a_1, \ldots, a_{M+1} are the interval boundaries
- and $\theta_1, \ldots, \theta_M$ are the function values

Calibration Methods – III

- Bayesian Binning into Quantiles (BBQ)
- Naeini et al., 2015
- an extension of histogram binning using Bayes model averaging
- BBQ marginalizes out all possible *binning schemes*
- The parameters of a binning scheme are $\theta_1, \ldots, \theta_M$
- Under this framework,
 - histogram binning and isotonic regression both produce a single binning scheme,
 - where BBQ considers a space S of all possible binning schemes for the validation data set D
- BBQ performs Bayesian averaging of the probabilities produced by each scheme

Calibration Methods – IV

- Platt scaling (Platt et al., 1999) is a parametric approach to calibration
- The non-probabilistic classifier predictions are used for logistic regression
 - trained on the validation set to return probabilities
- Platt scaling learns scalar parameters $\ a,b\in\mathbb{R}$ and
- outputs $\hat{q}_i = \sigma(az_i + b)$ as the calibrated probability.
- Parameters a and b optimized using NLL loss over validation set
- Neural network's parameters are fixed during this stage

Calibration – V

- Extension to Multiclass Models
- network outputs a class prediction \hat{y}_i and confidence score \hat{p}_i for each input \mathbf{x}_i .
- In this case, the network logits \mathbf{Z}_i are vectors, where $\hat{y}_i = rgmax_k z_i^{(k)}$,
- \hat{p}_i is typically derived using the softmax function

$$\sigma_{\mathrm{SM}}(\mathbf{z}_i)^{(k)} = \frac{\exp(z_i^{(k)})}{\sum_{j=1}^K \exp(z_i^{(j)})}, \quad \hat{p}_i = \max_k \ \sigma_{\mathrm{SM}}(\mathbf{z}_i)^{(k)}$$

• Goal: produce a calibrated confidence and class prediction based on the above.

Calibration - VI

- Extension of binning methods.
 - Extend binary calibration methods to the multiclass setting
 - by treating the problem as K one-versus-all problems
- Matrix and vector scaling: multi-class extensions of Platt scaling.
- Let Z_i be the *logits vector* for input X_i .
- Matrix scaling applies a linear transformation WZ_i + b to the logits $\hat{q}_i = \max_k \sigma_{SM} (Wz_i + b)^{(k)},$

 $\hat{y}'_i = \operatorname{argmax}_i (\mathbf{W}\mathbf{z}_i + \mathbf{b})^{(k)}.$

- The parameters W and b are optimized with respect to NLL on the validation set.
- # parameters for matrix grows quadratically with number of classes K
- Define vector scaling: W is restricted to be a diagonal matrix

Temperature Scaling

- Commonly used in other settings
 - knowledge distillation (Hinton et al., 2015)
 - statistical mechanics (Jaynes, 1957)
- Temperature scaling uses a single scalar parameter T > 0 for all classes
 - the simplest extension of Platt scaling
- Given the logit vector Z_i , the new confidence prediction is $\hat{q}_i = \max_{k} \sigma_{SM} (\mathbf{z}_i/T)^{(k)}$
- T is called the temperature
- It "softens" the softmax with T > 1.
- As $T \rightarrow \infty$, the probability $\hat{q_i}$ approaches 1/K
 - which represents maximum uncertainty.
- *T* is optimized with respect to NLL on the validation set.
- Because the parameter T does not change the maximum of the softmax function,
- the class prediction remains unchanged.
- In other words, temperature scaling does not affect the model's accuracy.

Results – I

6 data sets for image classification

- 1. Caltech-UCSD Birds (Welinder et al., 2010): 200 bird species.
- 2. Stanford Cars (Krause et al., 2013): 196 classes of cars by make, model, and year.
- 3. ImageNet 2012 (Deng et al., 2009): Natural scene images from 1000 classes.
- 4. CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009): Color images (32 × 32) from 10/100 classes.
- Street View House Numbers (SVHN) (Netzer et al., 2011): 32 × 32 colored images of cropped out house numbers from Google Street View.

Results – II

4 data sets for document classification

- 1. 20 News: News articles, partitioned into 20 categories by content.
- 2. Reuters: News articles, partitioned into 8 categories by topic.
- 3. Stanford Sentiment Treebank (SST) (Socher et al., 2013): Movie reviews, represented as sentence parse trees that are annotated by sentiment.
 - Each sample includes a coarse binary label and a fine grained 5-class label.

Results – III

CIFAR-100

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
CIFAR-100	ResNet 110	16.53%	2.66%	4.99%	5.46%	1.26%	1.32%	25.49%
CIFAR-100	ResNet 110 (SD)	12.67%	2.46%	4.16%	3.58%	0.96%	0.9%	20.09%
CIFAR-100	Wide ResNet 32	15.0%	3.01%	5.85%	5.77%	2.32%	2.57%	24.44%
CIFAR-100	DenseNet 40	10.37%	2.68%	4.51%	3.59%	1.18%	1.09%	21.87%
CIFAR-100	LeNet 5	4.85%	6.48%	2.35%	3.77%	2.02%	2.09%	13.24%

Results – IV

CIFAR-10

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
CIFAR-10	ResNet 110	4.6%	0.58%	0.81%	0.54%	0.83%	0.88%	1.0%
CIFAR-10	ResNet 110 (SD)	4.12%	0.67%	1.11%	0.9%	0.6%	0.64%	0.72%
CIFAR-10	Wide ResNet 32	4.52%	0.72%	1.08%	0.74%	0.54%	0.6%	0.72%
CIFAR-10	DenseNet 40	3.28%	0.44%	0.61%	0.81%	0.33%	0.41%	0.41%
CIFAR-10	LeNet 5	3.02%	1.56%	1.85%	1.59%	0.93%	1.15%	1.16%

Results – V

ImageNet/SVHN

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
ImageNet	DenseNet 161	6.28%	4.52%	5.18%	3.51%	1.99%	2.24%	-
ImageNet	ResNet 152	5.48%	4.36%	4.77%	3.56%	1.86%	2.23%	-
SVHN	ResNet 152 (SD)	0.44%	0.14%	0.28%	0.22%	0.17%	0.27%	0.17%

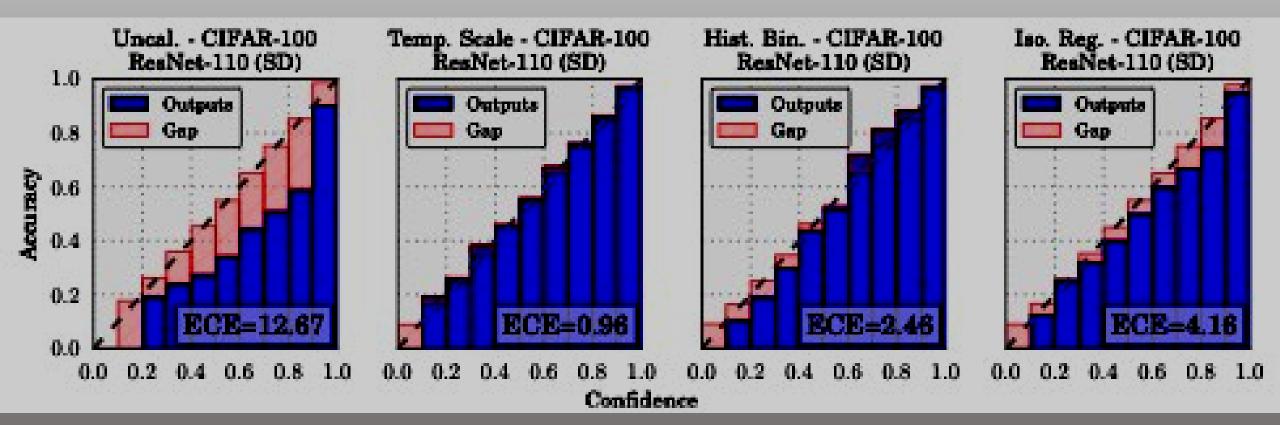
Results – VI

NLP

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
20 News	DAN 3	8.02%	3.6%	5.52%	4.98%	4.11%	4.61%	9.1%
Reuters	DAN 3	0.85%	1.75%	1.15%	0.97%	0.91%	0.66%	1.58%
SST Binary	TreeLSTM	6.63%	1.93%	1.65%	2.27%	1.84%	1.84%	1.84%
SST Fine Grained	TreeLSTM	6.71%	2.09%	1.65%	2.61%	2.56%	2.98%	2.39%

Results – VII

ResNet on CIFAR-100



Theoretical Result

Claim 1. Given n samples' logit vectors z_1, \ldots, z_n and class labels y_1, \ldots, y_n , temperature scaling is the unique solution q to the following entropy maximization problem:

 $\max_{q} - \sum_{i=1}^{n} \sum_{k=1}^{n} q(\mathbf{z}_{i})^{(k)} \log q(\mathbf{z}_{i})^{(k)}$ subject to $q(\mathbf{z}_i)^{(k)} \ge 0 \qquad \forall i, k$ $\sum_{i=1}^{K} q(\mathbf{z}_i)^{(k)} = 1 \quad \forall i$ k=1 $\sum_{i=1}^{n} z_{i}^{(y_{i})} = \sum_{i=1}^{n} \sum_{i=1}^{K} z_{i}^{(k)} q(\mathbf{z}_{i})^{(k)}.$ i=1 k=1

Proof $L = -\sum_{i=1}^{n} \sum_{j=1}^{K} q(\mathbf{z}_{i})^{(k)} \log q(\mathbf{z}_{i})^{(k)}$ $i=1 \ k=1$ + $\lambda \sum_{i=1}^{n} \left[\sum_{k=1}^{K} z_i^{(k)} q(\mathbf{z}_i)^{(k)} - z_i^{(y_i)} \right]$ $+\sum_{i=1}^{n} \beta_i \sum_{i=1}^{K} (q(\mathbf{z}_i)^{(k)} - 1).$ $\overline{i=1}$ $\overline{k=1}$

Lagrangian

Proof $L = -\sum_{i=1}^{n} \sum_{j=1}^{K} q(\mathbf{z}_{i})^{(k)} \log q(\mathbf{z}_{i})^{(k)}$ $i=1 \ k=1$ $+\lambda \sum_{i=1}^{n} \left[\sum_{k=1}^{K} z_i^{(k)} q(\mathbf{z}_i)^{(k)} - z_i^{(y_i)} \right] \longrightarrow \frac{\partial}{\partial q(\mathbf{z}_i)^{(k)}} L = -nK - \log q(\mathbf{z}_i)^{(k)} + \lambda z_i^{(k)} + \beta_i.$ $+\sum \beta_i \sum (q(\mathbf{z}_i)^{(k)} - 1).$ i=1 k=1

Lagrangian

Proof $L = -\sum_{i=1}^{n} \sum_{j=1}^{K} q(\mathbf{z}_{i})^{(k)} \log q(\mathbf{z}_{i})^{(k)}$ $i=1 \ k=1$ $+\lambda \sum_{i=1}^{n} \left[\sum_{k=1}^{K} z_i^{(k)} q(\mathbf{z}_i)^{(k)} - z_i^{(y_i)} \right] \longrightarrow \frac{\partial}{\partial q(\mathbf{z}_i)^{(k)}} L = -nK - \log q(\mathbf{z}_i)^{(k)} + \lambda z_i^{(k)} + \beta_i.$ Setting derivative to 0, $q(\mathbf{z}_i)^{(k)} = e^{\lambda z_i^{(k)} + \beta_i - nK}$ + $\sum_{i=1}^{n} \beta_i \sum_{i=1}^{K} (q(\mathbf{z}_i)^{(k)} - 1)$. Setting $\overline{i=1}$ $\overline{k=1}$

Lagrangian

Proof $L = -\sum_{i=1}^{n} \sum_{j=1}^{K} q(\mathbf{z}_{i})^{(k)} \log q(\mathbf{z}_{i})^{(k)}$ i=1 k=1 $+\lambda \sum_{i=1}^{n} \left[\sum_{k=1}^{K} z_i^{(k)} q(\mathbf{z}_i)^{(k)} - z_i^{(y_i)} \right] \longrightarrow \frac{\partial}{\partial q(\mathbf{z}_i)^{(k)}} L = -nK - \log q(\mathbf{z}_i)^{(k)} + \lambda z_i^{(k)} + \beta_i.$ derivative to 0, $q(\mathbf{z}_i)^{(k)} = e^{\lambda z_i^{(k)} + \beta_i - nK}$ $+\sum \beta_i \sum (q(\mathbf{z}_i)^{(k)} - 1).$ Setting i=1 k=1 $q(\mathbf{z}_i)^{(k)} = \frac{e^{\lambda z_i^{(k)}}}{\sum_{j=1}^{K} e^{\lambda z_i^{(j)}}}$ Lagrangian Since probabilities sum to 1,

Conclusions

- Probabilistic error and miscalibration worsen for modern neural nets
 - Even when classification error is reduced.
- Recent advances worsen network calibration
 - model capacity,
 - normalization,
 - regularization
- Future work:

Understand why these trends affect calibration while improving accuracy

- Temperature scaling is effective in calibrating models
 - simplest,
 - fastest, and
 - most straightforward