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Overview

• Calibration: Predict probability representative of correctness likelihood

• Modern neural networks are poorly calibrated
• unlike those from a decade ago

• Calibration influenced by
• depth, width

• weight decay, and 

• Batch Normalization

• Evaluate post-processing calibration on state-of- the-art architectures

• Temperature scaling is surprisingly effective at calibration
• single- parameter variant of Platt Scaling
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Motivation - I

• neural networks produced well-
calibrated probabilities on 
binary classification tasks
• Niculescu-Mizil & Caruana (2005)

• Comparison
• 5-layer LeNet (LeCun et al., 1998)

• 110-layer ResNet (He et al., 2016)

• CIFAR-100

3

Image reproduced under fair use from 
https://arxiv.org/abs/1706.04599

https://arxiv.org/abs/1706.04599


Motivation - II

• neural networks produced well-
calibrated probabilities on 
binary classification tasks
• Niculescu-Mizil & Caruana (2005)

• Comparison
• 5-layer LeNet (LeCun et al., 1998)

• 110-layer ResNet (He et al., 2016)

• CIFAR-100

• Reliability Diagram
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Calibration Definition

• Let ℎ be a neural network with   ℎ 𝑋 = 𝑌, 𝑃
• 𝑌 is a class prediction

• 𝑃 is its associated confidence, i.e. probability of correctness. 

• Expect confidence estimate 𝑃 to be calibrated

• For example, 
• given 100 predictions, 

• each with confidence of 0.8, 

• expect that 80 should be correctly classified. 
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Reliability Diagram
• Visual representation of model calibration

• Plot accuracy vs. confidence 

• Deviation from diagonal represents miscalibration

• Let 𝐵𝑚 be the set of indices of samples 

• whose confidence falls into interval Im= (
𝗆−1

𝑀
,

𝑚

𝑀
).

• The accuracy of Bm is

• Define the average confidence within bin 𝐵𝑚 as 
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Expected Calibration Error (ECE)

• Visual vs. Numeric
• while reliability diagrams are useful visual tools, 

• it is more convenient to have a scalar summary statistic of calibration. 

• Statistics comparing two distributions cannot be comprehensive(?)

• ECE: difference in expectation between confidence and accuracy

• ECE approximation:
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Maximum Calibration Error (MCE)

• high-risk applications
• reliable confidence measures are absolutely necessary

• Minimize the worst-case deviation between confidence and accuracy 

• Approximation involves binning (similar to ECE)
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Negative Log Likelihood (NLL)

• Negative log likelihood
• a standard measure of a probabilistic model’s quality 

• Friedman et al., 2001 

• Also known as cross entropy loss
• Bengio et al., 2015 

• Given a probabilistic model               , and n samples, NLL is defined as

• In expectation, NLL is minimized if and only if                 recovers the 
ground truth conditional distribution              .
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Observing Miscalibration - I
• Model capacity

• model capacity increased at a fast pace 
over the past decade. 

• 100-1000 layers 
• (He et al., 2016; Huang et al., 2016) 

• 100s of convolutional filters per layer 
• (Zagoruyko & Komodakis, 2016)

• increasing depth and width may reduce 
classification error

• Such increases negatively affect model 
calibration
• ResNet on CIFAR-100
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Observing Miscalibration - II

• Batch Normalization 
• (Ioffe & Szegedy, 2015) 

• minimizes distribution shifts in activations

• improves training time

• reduces the need for more regularization

• May improve accuracy

• Enable the development of very deep 
architectures

• Creates more miscalibrated models
• regardless of hyperparameters
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Observing Miscalibration - III

• Weight decay
• used to be a predominant regularization 

mechanism for neural networks
• Learning Theory Vapnik, 1998

• regularization prevents overfitting

• Ioffe & Szegedy, 2015
• models with less L2 regularization generalizes 

better

• Now common to train models with little 
weight decay, if any at all. 

• more regularization improves calibration
• well after optimal accuracy. 
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Observing Miscalibration - IV
• NLL indirectly measures model 

calibration. 

• In practice, we observe a disconnect 
between NLL and accuracy

• Neural networks can overfit to NLL 
without overfitting to the 0/1 loss. 

• Both error and NLL drop at epoch 250
• when the learning rate is dropped

• however, NLL overfits during the 
remainder of training. 

13

Image reproduced under fair use from 
https://arxiv.org/abs/1706.04599

https://arxiv.org/abs/1706.04599


Calibration Methods – I

• Histogram binning is a simple non-parametric calibration method

• all uncalibrated predictions       are divided into mutually exclusive bins 𝐵1 , . . . , 𝐵𝑀 . 

• Each bin is assigned a calibrated score θm; if        is assigned to bin Bm, then

• For a fixed M, we define bin boundaries 

• The predictions θi are chosen to minimize the bin-wise squared loss: 

• The solution results in θm that correspond to the average number of positive-class 
samples in bin Bm. 
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Calibration Methods – II
• Isotonic regression 

• learns a piecewise constant function f to transform uncalibrated outputs
• Generalizes histogram binning 

• bin boundaries and bin predictions are jointly optimized.

• Produces 𝑓 to minimize the square loss 
• Optimization problem

• M is the number of intervals   
• a1, . . . , aM+1 are the interval boundaries
• and θ1 , . . . , θM are the function values
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Calibration Methods – III

• Bayesian Binning into Quantiles (BBQ)

• Naeini et al., 2015 

• an extension of histogram binning using Bayes model averaging

• BBQ marginalizes out all possible binning schemes

• The parameters of a binning scheme are θ1 , . . . , θM

• Under this framework, 
• histogram binning and isotonic regression both produce a single binning scheme, 
• where BBQ considers a space S of all possible binning schemes for the validation data 

set D 

• BBQ performs Bayesian averaging of the probabilities produced by each 
scheme     
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Calibration Methods – IV

• Platt scaling (Platt et al., 1999) is a parametric approach to calibration

• The non-probabilistic classifier predictions are used for logistic 
regression
• trained on the validation set to return probabilities

• Platt scaling learns scalar parameters                     and  

• outputs                                   as the calibrated probability. 

• Parameters a and b optimized using NLL loss over validation set

• Neural network’s parameters are fixed during this stage
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Calibration – V
• Extension to Multiclass Models 

• network outputs a class prediction      and confidence score      for each input           

• In this case, the network logits        are vectors, where                 

• is typically derived using the softmax function

• Goal: produce a calibrated confidence and class prediction based on the above.

•
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Calibration - VI
• Extension of binning methods. 

• Extend binary calibration methods to the multiclass setting
• by treating the problem as K one-versus-all problems

• Matrix and vector scaling: multi-class extensions of Platt scaling. 

• Let 𝒵𝑖 be the logits vector for input Χ𝑖. 

• Matrix scaling applies a linear transformation W𝒵𝑖 + b to the logits

• The parameters W and b are optimized with respect to NLL on the 
validation set. 

• # parameters for matrix grows quadratically with number of classes K

• Define vector scaling: W is restricted to be a diagonal matrix
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Temperature Scaling
• Commonly used in other settings

• knowledge distillation (Hinton et al., 2015)
• statistical mechanics (Jaynes, 1957) 

• Temperature scaling uses a single scalar parameter T > 0 for all classes
• the simplest extension of Platt scaling

• Given the logit vector 𝒵𝑖, the new confidence prediction is 

• 𝑇 is called the temperature

• It “softens” the softmax with 𝑇 > 1.

• As 𝑇 → ∞, the probability  ෝ𝑞𝑖 approaches    1/K 
• which represents maximum uncertainty. 

• 𝑇 is optimized with respect to NLL on the validation set. 

• Because the parameter 𝑇 does not change the maximum of the softmax function, 

• the class prediction remains unchanged. 

• In other words, temperature scaling does not affect the model’s accuracy. 
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Results – I 
6 data sets for image classification

1. Caltech-UCSD Birds (Welinder et al., 2010): 200 bird species.   

2. Stanford Cars (Krause et al., 2013): 196 classes of cars by make,                   
model, and year.  

3. ImageNet 2012 (Deng et al., 2009): Natural scene images from 1000 
classes.  

4. CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009): Color images (32 
× 32) from 10/100 classes.  

5. Street View House Numbers (SVHN) (Netzer et al., 2011): 32 × 32 
colored images of cropped out house numbers from Google Street 
View. 
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Results – II 

4 data sets for document classification

1. 20 News: News articles, partitioned into 20 categories by content. 

2. Reuters: News articles, partitioned into 8 categories by topic.

3. Stanford Sentiment Treebank (SST) (Socher et al., 2013): Movie 
reviews, represented as sentence parse trees that are annotated by 
sentiment. 
• Each sample includes a coarse binary label and a fine grained 5-class label. 
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Results – III 

CIFAR-100
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Results – IV 

CIFAR-10
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Results – V 

ImageNet/SVHN
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Results – VI 

NLP
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Results – VII 

ResNet on CIFAR-100

27



Theoretical Result

28



Proof
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Proof
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Proof
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Lagrangian

Setting 
derivative to 0, 



Proof
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Lagrangian

Setting 
derivative to 0, 

Since 
probabilities 
sum to 1, 



Conclusions 
• Probabilistic error and miscalibration worsen for modern neural nets

• Even when classification error is reduced. 

• Recent advances worsen network calibration
• model capacity, 

• normalization, 

• regularization

• Future work: 

Understand why these trends affect calibration while improving accuracy 

• Temperature scaling is effective in calibrating models
• simplest, 

• fastest, and 

• most straightforward 
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