
Towards Resilient Analog In-Memory Deep Learning via Data
Layout Re-Organization

Muhammad Rashedul Haq Rashed∗, Amro Awad†, Sumit Kumar Jha‡, Rickard Ewetz∗
∗Department of ECE, University of Central Florida, Orlando, FL, USA

†Department of ECE, North Carolina State University, Raleigh, NC, USA
‡Department of CS, University of Texas at San Antonio, San Antonio, TX, USA

rashed09@knights.ucf.edu,ajawad@ncsu.edu,sumit.jha@utsa.edu,rickard.ewetz@ucf.edu

ABSTRACT
Processing in-memory paves the way for neural network inference
engines. An arising challenge is to develop the software/hardware
interface to automatically compile deep learning models onto in-
memory computing platforms. In this paper, we observe that the
data layout organization of a deep neural network (DNN) model
directly impacts the model’s classification accuracy. This stems
from that the resistive parasitics within a crossbar introduces a de-
pendency between the matrix data and the precision of the analog
computation. To minimize the impact of the parasitics, we first per-
form a case study to understand the underlying matrix properties
that result in computation with low and high precision, respec-
tively. Next, we propose the XORG framework that performs data
layout organization for DNNs deployed on in-memory computing
platforms. The data layout organization improves precision by opti-
mizing the weight matrix to crossbar assignments at compile time.
The experimental results show that the XORG framework improves
precision with up to 3.2X and 31% on the average. When acceler-
ating DNNs using XORG, the write bit-accuracy requirements are
relaxed with 1-bit and the robustness to random telegraph noise
(RTN) is improved.

ACM Reference Format:
MuhammadRashedul Haq Rashed∗, AmroAwad†, Sumit Kumar Jha‡, Rickard
Ewetz∗. 2022. Towards Resilient Analog In-Memory Deep Learning via Data
Layout Re-Organization. In Proceedings of the 59th ACM/IEEE Design Au-
tomation Conference (DAC) (DAC ’22), July 10–14, 2022, San Francisco, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.
3530532

1 INTRODUCTION
Deep neural network (DNN) models have surpassed human-level
capabilities for several cognitive tasks such as image classification
and object detection [10]. However, it is a daunting task to execute
DNNs on von-Neumann based computing systems. Mainly, due to
the power-hungry and bandwidth-limited data movement between
the computing and memory units [17]. In-memory computing is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530532

promising contender for conventional computing in that computa-
tions occur in memory, and thus minimizes data movements. Many
recent studies have shown that deep learning workloads can bene-
fit significantly from in-memory computing, and how in-memory
computing makes deep learning at edge devices more plausible [6].

While in-memory computing systems are promising, they face
several challenges that can limit their wide adoption. Perhaps one of
the most pressing challenges is the reliability and resilience against
analog errors [1, 5]. Due to non-linear device characteristics of
memristor cells, in addition to noise effects, in-memory computing
operations can suffer from unpredictable accuracy losses due to
voltage IR-drops across crossbar metal wires. To overcome this
issue for deep learning applications, several prior work explored
techniques to improve reliability by increasing the model size [13]
or injecting noise in the training process [3]. Recent work also
explored algorithms to convert matrices into appropriate memristor
conductance values while accounting for the resistive parasitics [4,
11, 15, 16]. Such techniques compensate for the voltage IR-drop
over the parasitics by tuning the memristors to be more conductive.

While the techniques for tuning conductance can significantly
improve reliability, we observe that the matrices’ values play a
major role in the accuracy of computations, even when such tech-
niques are applied. In particular, we observe that the precision for
different matrices could vary significantly (up to 5.9𝑋). Such accu-
racy difference stems from ignoring the dependency between the
matrix data and the precision of the analog computation. For in-
stance, we observe that a very poor precision consistently appears
when matrix elements with large magnitudes are mapped to the
top-right corner of a crossbar. One reason behinds this is that it
becomes impossible to tune the corresponding memristor devices
to be sufficiently conductive for compensating the voltage IR-drop
over the resistive paratisitcs. Therefore, in this paper, we investigate
the root causes for such errors, and propose novel matrix mapping
techniques that can improve accuracy.

In this paper, we propose XORG, a framework that performs
resilient data layout organization for DNN models deployed on
in-memory computing platforms. The data layout organization
aims to improve precision by modifying the matrix data to crossbar
assignments at compile time. Specifically, the data is organized to
map matrix elements with large (small) magnitude to the top-right
(bottom-left) crossbar corner. The experimental results demonstrate
that XORG improves the analog precision with up to 3.2𝑋 and with
31% on the average. When accelerating DNNs using XORG, the
device write-bit accuracy requirements are relaxed with 1-bit and
the robustness to RTN is improved. The improvements come at the
modest expense of 6% longer compile time.

https://doi.org/10.1145/3489517.3530532
https://doi.org/10.1145/3489517.3530532
https://doi.org/10.1145/3489517.3530532

Deep Learning

Model (M)

In-Memory

Platform (P)

Decomposition

and Resource

Allocation

Data

Layout

Organization

Platform

Recon guration

Execution

in

Hardware

Compilation time

Inputs

(Proposed)

Outputs

Classi cation

accuracy in

hardware

Initilization Evaluation

Matrix to

Conductance

Conversion

M M

P(M) and P(M)

Figure 1: Flow for compiling a DNN model𝑀 to an in-memory computing platform 𝑃 .

2 PRELIMINARIES
In this section, we first introduce the flow for compiling DNN mod-
els to in-memory computing platforms. Next, we providemotivation
and problem statement.

2.1 Flow for compiling DNN models to
in-memory computing platforms

The flow for compiling a DNN model to in-memory computing
platform for inference is shown in Figure 1. The input to the frame-
work is a deep learning model 𝑀 and an in-memory computing
platform 𝑃 . The output is the classification accuracy in hardware
𝑃 (𝑀).

The first step is decomposition and resource allocation [7]. This
involves decomposing the deep learning model 𝑀 into matrix-
vector multiplication operations [14, 20]. Next, the matrices are
further partitioned and assigned to specific crossbars within the
platform [8]. The assignment is performed to minimize data move-
ment between the crossbar accelerators while considering the plat-
form interconnect topology.

The second step is the proposed data layout organization. This
involves modifying the layout of the data within the deep learning
model𝑀 to obtain an model𝑀 that has exact same classification
accuracy in software. However, the data layout organization modi-
fies the assignment of the weight matrices to the crossbars within
the platform. This can for example be performed by swapping the
location of two neurons in the same layer of a neural network. The
details of the data layout organization are provided in Section 4.

The third step is to convert each matrix into memristor conduc-
tance values while accounting for non-ideal crossbar effects [4, 11,
15, 16]. This mainly involves specifying the conductance of the
memristors in the top-right corner of each crossbar to be more con-
ductive, which compensates for the voltage IR-drop over the array
parasitics. As conductance values cannot be negative, we use a dif-
ferential pair configuration to represent each matrix. Consequently,
each matrix is split into a positive and negative component.

The fourth step is to program the memristor devices in hard-
ware to the specified conductance values. Programming techniques
based on accurate closed-loop tuning have demonstrated a write
bit-accuracy of 5-6 bits within array structures [5].

The fifth step is to perform inference by streaming input data to
the configured in-memory computing platform. The classification
accuracy in hardware is evaluated as the percentage of inputs that
are correctly classified. The classification accuracy of a model 𝑀
compiled to the platform 𝑃 is denoted 𝑃 (𝑀). Similarly, the classifi-
cation accuracy of the model 𝑀 is denoted 𝑃 (𝑀). The difference

between the classification in software and hardware stem from
errors introduced by the analog computation within each crossbar
and the peripheral circuitry used to convert signals between the
analog and digital domain, i.e., digital-to-analog converters (DACs)
and analog-to-digital converters (ADCs).

2.2 Motivation and problem definition

Figure 2: Hardware classifica-
tion accuracy of a VGG style net-
work [12] deployed on a plat-
form 𝑃 with data layout organi-
zations𝑀1 and𝑀2. The platform
is based on 256x256 crossbars and
5-bit memristors.

In this section, we pro-
vide the high-level moti-
vation for studying data
layout organization for
DNN models deployed
on in-memory platforms.
Given a neural network
model𝑀 , we apply data
layout organization to
obtain two models 𝑀1
and 𝑀2. The classifica-
tion accuracy in soft-
ware is 92.5% for both
the models 𝑀1 and 𝑀2.
We show the classifica-
tion accuracy in hard-
ware of the two models
𝑃 (𝑀1) and 𝑃 (𝑀2) in Fig-
ure 2. The figure shows
that model 𝑀1 achieves
an accuracy close to the
software level while the
model𝑀2 achieves a clas-
sification accuracy of only 60%. This highlights the importance of
data layout organization. The difference between𝑀1 and𝑀2 is only
how the data is organized within the models, which results in that
different matrices are mapped to the crossbars within 𝑃 . Therefore,
it can be concluded that precision of the analog computation greatly
depends on how the matrix data is assigned to the crossbars.

Problem statement: The objective of this paper is to determine
the data layout transformation 𝐿 that converts a DNNmodel𝑀 into
a DNN model𝑀 = 𝐿(𝑀) with the maximum classification accuracy
in hardware 𝑃 (𝑀).

We approach this problem by first performing a case study in
Section 3 to understandwhat matrix properties that result in compu-
tation with low and high precision, respectively. Next, we propose
a principled framework called XORG, which optimizes the matrix
data to crossbar assignments using data layout organization in
Section 4.

2

3 CASE STUDY: ANALOG ERRORS
In this section, we perform a case study to analyze the dependency
between the matrix data stored in a crossbar and the precision of
the analog computation. The goal is to understand the underlying
matrix properties that result in computation with low and high
precision, respectively.

Py PyAPx Px x= y }

A

Ax = y

A

-1 -1

Py

Px Ax

y

x

y

crossbarcrossbar

(a) (b)

Figure 3: (a) Matrix-vector multiplication 𝐴𝑥 = 𝑦. (b) Matrix-
vectormultiplicationwith rows and columns permuted using
𝑃𝑥 and 𝑃𝑦 , respectively.

The case study is performed by constructing a matrix 𝐴 by sam-
pling elements from a Gaussian distribution. Next, we observe that
performing the matrix-vector multiplication 𝐴𝑥 = 𝑦 in software
is equivalent to 𝑃𝑦𝐴𝑃𝑥𝑥 = 𝑦, where 𝐴 = 𝑃−1𝑦 𝐴𝑃−1𝑥 and 𝑃𝑥 and 𝑃𝑦
are permutation matrices. However, the reformulation results in
different computational accuracy in hardware because different
matrices 𝐴 and 𝐴 are mapped to the crossbars, which is shown
in Figure 3. To analyze the impact of the data to hardware assign-
ment, we generate 100 different permutation matrices 𝑃𝑥 and 𝑃𝑦

and map the 100 different matrices 𝐴 to a crossbar using the algo-
rithms in [4, 11, 15, 16]. This involves converting the matrices into
a set of memristor conductance values 𝑔 within the programmable
conductance range [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥]. The conversion is performed by
linearly mapping 𝐴 (or 𝐴) into the conductance range and tuning
the memristors more conductive to compensate for the voltage IR-
drop over the resistive parasitics. We show the normalized output
errors for the different matrices with respect to the utilization of
the programmable memristor conductance range in Figure 4(a). A
two-dimensional histogram of the locations where memristors have
been programmed to 𝑔𝑚𝑎𝑥 is illustrated in Figure 4(b).

Source of Analog Errors: We observe that normalized max-
imum output error varies from 1X to 1.5X when only a portion
of the programmable conductance range [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥] is used. In
contrast, the normalized maximum output errors vary from 1.0X to
5.9X when the full conductance range is used. This is a result of that
large errors are introduced when the conductance of a memristor
is attempted to be tuned above 𝑔𝑚𝑎𝑥 . As expected, the memristors
that are attempted to be tuned larger than 𝑔𝑚𝑎𝑥 are located in the
top-right crossbar corner, where the voltage IR-drop is more severe.

Proposed Guideline for Data Layout Organization: Based
on these observations, we propose the following guide line for data
layout organization.

Matrix elements in 𝐴 of large magnitude should be placed close to
the bottom-left corner within a crossbar. Similarly, matrix elements
of small magnitude should be placed close to the top-right corner..

(a) (b)

Figure 4: (a) Normalized maximum output error and norm.
conductance range utilization for 100 different permutation
matrices 𝑃𝑥 and 𝑃𝑦 . (b) A two-dimensional histogram of loca-
tions where the memristor conductance is set to 𝑔𝑚𝑎𝑥 for the
same 100 permutation matrices.

The placement of large elements in the bottom-left corner serves
two purposes. First, it is less likely that the correspondingmemristor
will be attempted to be tuned above 𝑔𝑚𝑎𝑥 , which we observed
was the main source of errors in Figure 4(a). Second, the overall
voltage IR-drop in the crossbar will be reduced because smaller
currents are flowing long distances along the wordlines and bitlines.
Consequently, other memristors are likely to require less tuning.
The purpose of placing matrix elements of small magnitude in
the top-right crossbar corner is that those elements are linearly
mapped into small conductance values. Consequently, there will be
a significant amount of conductance margin available for voltage
IR-drop compensation.

It is important to note that matrix to conductance conversion
algorithms already attempt to counter the issue of tuning memris-
tors above 𝑔𝑚𝑎𝑥 by mapping 𝐴 in to a less conductive conductance
matrix𝐺 = 𝛼𝐴 [4, 11, 15, 16], by specifying a smaller scaling factor
𝛼 . The scaling factor 𝛼 is realized by the peripheral circuitry.𝐺 is
the conductance matrix that relates the input voltages (𝑣𝑖𝑛) to the
output currents 𝑖𝑜𝑢𝑡 = 𝐺𝑣𝑖𝑛 . However, using a too small 𝛼 also in-
troduces errors because fewer conductance states are utilized in the
bottom-left crossbar corner. The recent mapping algorithms do al-
ready optimize 𝛼 to balance these two types of errors [4, 11, 15, 16].
We view the proposed data layout organization to be orthogonal
to the mapping techniques, which can be used in synergy. In the
next sections, we present the XORG framework that provides a
principled approach to data layout organization for DNN models
deployed to in-memory computing platforms.

4 THE XORG FRAMEWORK
A cost metric that measures the quality of a data layout assignment
is presented in Section 4.1. A family of data layout transformations
L are presented in Section 4.2. The flow of the XORG framework
is explained in Section 4.3.

4.1 Quality metric for data layout organization
In this section, we present the qualitymetric thatmeasures howwell
the data layout organization of a DNN model follows the proposed
guideline. The metric is based on multiplying the absolute value

of every weight in a neural network with a crossbar dependent
location cost C, as follows:

𝑐𝑜𝑠𝑡 (𝑀) =
∑︁

𝑙 = 1 to (𝐿 − 1)

∑︁
(𝑖, 𝑗) ∈𝑊𝑙

𝐶 (𝑖, 𝑗) · |𝑊 (𝑖, 𝑗)𝑙 |, (1)

where𝑊𝑙 is the weight matrix of layer 𝑙 . 𝐶 is a cost matrix of the
same dimensions. 𝐶 (𝑖, 𝑗) and𝑊 (𝑖, 𝑗)𝑙 are the elements on row 𝑖

and column 𝑗 of 𝐶 and𝑊𝑙 , respectively. |.| is the absolute value
operator.

 4 8 12 16

 3 6 9 12

 2 4 6 8

 1 2 3 4

Figure 5: Location
based cost for a
4x4 matrix.

The absolute value operator is used
because each weight matrix𝑊𝑙 is decom-
posed into a positive and negative com-
ponent𝑊 +

𝑙
and𝑊 −

𝑙
, which are mapped

to two separate crossbars arranged in
a differential pair configuration. Small
scores correspond to high quality data
layout organizations and high scores cor-
respond to low quality data layout orga-
nizations.

The costs in 𝐶 are set to be high in
the top-right corner of the crossbar and
small in the bottom-left corner. The cost matrix𝐶 for a 4x4 crossbar
is shown in Figure 5. We note that many weight matrices within
a neural network are larger than the crossbar size. Therefore, we
define the cost for an element 𝐶𝑖 𝑗 , as follows:

𝐶𝑖 𝑗 = (𝑚𝑜𝑑 (𝑖, 𝑀) + 1) · (𝑚𝑜𝑑 (𝑗, 𝑁) + 1), (2)
where 𝑖 and 𝑗 refer to the row and columns, respectively.𝑀 and 𝑁

refer to the crossbar dimensions, respectively.

4.2 Data layout transformations L
The concept of modifying the data to hardware assignment within
an in-memory computing platform has been explored to handle
defective devices [18, 19]. In this paper, we instead optimize the
data to hardware assignment with the objective of minimizing the
impact of the resistive parasitics.

Wl
Wl+1

layer l layer lWl
Wl+1

(a) (b)
Figure 6: Data layout transformations in the form of (a) neu-
ron and (b) channel transformation.

We define a family of transformations L consisting of a neuron
transformation and a channel transformation. The two transforma-
tions are illustrated with an example in Figure 6. A CNN consists of
𝐿 layers of neurons. The layers are in the form of convolutional lay-
ers or fully-connected layers. The neuron transformation is applied
to neurons between fully-connected layers. The channel transfor-
mation is applied to feature maps between convolutional layers.
The neuron transformation involves reordering the neurons within

a layer 𝑙 . The reordering of the neurons naturally modifies the or-
dering of the rows in the weight matrix𝑊𝑙 connecting layer (𝑙 − 1)
to 𝑙 and the ordering of the columns in the weight matrix𝑊𝑙+1 con-
necting layer 𝑙 to layer (𝑙 + 1), which is shown in Figure 6(a). The
channel transformation involves reordering the channels within
the feature map of layer 𝑙 . The reordering modifies the groups of
rows in the weight matrix𝑊𝑙 connecting layer (𝑙 − 1) to layer 𝑙 and
the ordering of columns in the weight matrix𝑊𝑙+1 that connects
𝑙 to 𝑙 + 1, which is shown in Figure 6(b). The group size is 9 · 𝐶𝑙 ,
where 𝐶𝑙 is the number of channels in layer 𝑙 .

4.3 Flow of XORG framework
In this section, we describe the flow of the XORG framework. The
framework is applied to perform data layout organization after the
decomposition and resource allocation step and before the platform
reconfiguration step in Figure 1. The input to the XORG framework
is a DNN model𝑀 and the in-memory computing platform 𝑃 . The
output is a more resilient deep learning model𝑀 that has a smaller
cost defined by the metric in Eq (1). The model 𝑀 is compiled
into the resilient model𝑀 by applying data layout transformations
𝐿 ∈ L using Algorithm 1. Consequently, the classification accuracy
in hardware 𝑃 (𝑀) is expected to be higher than 𝑃 (𝑀). Note that
both 𝑀 and 𝑀 have the exact same accuracy when evaluated in
software.

Algorithm 1: XORG: Data Layout Organization.
Input: DNN model𝑀 with 𝐿 layers.
Output: Resilient DNN model𝑀 .
for 𝑙 = 2 to (L-1) do

// Apply transformation to layer 𝑙
Compute cost matrix
Solve assignment problem
Reorganize data within𝑊𝑙 and𝑊𝑙+1

end
return𝑀 ;

The XORG framework casts the data layout organization prob-
lem as an optimization problem focused on minimizing the metric
in Eq (1). The metric is minimized by iterating over the internal
layers of a the deep learning model 𝑀 and applying the neuron
transformation or the channel transformation to each layer. The
feature maps in the first layer and the neurons in the last layer
are not transformed to ensure that the optimization is seamless
within the flow in Figure 1. The neuron or channel transformation
for a layer can be viewed as assigning a neuron/channel to a lo-
cation, which can be cast as the well known assignment problem.
The assignment problem can be solved both optimally using the
Hungarian algorithm [2, 19]. Next, the model 𝑀 is updated with
the new neuron order in layer 𝑙 based on the assignment solution.

5 EXPERIMENTAL EVALUATION
5.1 Simulation setup
The experimental results are obtained using a quad core 3.4 GHz
Linux machine with 32GB of memory. The XORG framework is

implemented using a cross-layer framework involving, C++, Ten-
sorflow, MATLAB, and HSPICE. The crossbar parameters used in
the evaluation are provided in Table 1. The default crossbar size
is set to 256x256. The sensitivity to the crossbar dimensions and
noise is evaluated at the end of the experimental results section. We
first evaluate XORG on the crossbar level in Section 5.2. Next, we
evaluate XORG using neural network applications in Section 5.3.

Table 1: Crossbar parameters in evaluation.
Property Value
Array block resistance 1 Ω
Input resistance 100 Ω
Output resistance 100 Ω
Programmable resistance range [2𝑘, 300𝑘] Ω
Max input voltage 0.25𝑉
Memristor bit-accuracy 6 bits
DAC/ADC bit-accuracy 8 bits
Transistor model JETMOS v1

5.2 Crossbar level evaluation
To demonstrate that the XORG framework is capable of improv-
ing the precision of analog matrix-vector multiplication, we repeat
the experiment in the case study and compare the baseline (ran-
dom organization) with XORG+ and XORG–. XORG+ is the XORG
framework proposed in Section 4. XORG– is the XORG framework
while maximizing the cost in Eq (1), which makes the data layout
organization worse instead of better. We evaluate the three tech-
niques in terms of cost in Eq (1) and the normalized output errors
in Figure 7. The analog computation is performed using circuit
simulation with SPICE level accuracy.

(a) (b)
Figure 7: (a) Norm. cost in Eq (1). (b) Norm. max output error
for 100 matrices with different data layout organizations.

The cost in Eq (1) is evaluated in Figure 7(a). The figure shows
that the XORG framework is capable of reducing and increasing the
cost in Eq (1) with 6% and 7%, respectively. This translates into that
XORG+ reduces the maximum output errors with 31% and XORG–
increases the normalized output errors with 28%, which is shown
in Figure 7(b). The strong correlation between the cost in Eq (1)
and the normalized output errors confirms our conclusions drawn
in the case study. The 1.8X difference in output errors highlights
the need for resilient data layout organization and the effectiveness
of the XORG framework.

5.3 DNN level evaluation
In this section, we evaluate the effectiveness of XORG on the appli-
cation level using the flow in Figure 1. The input to the flow is a set

Table 2: Evaluated neural networks.
Name Dataset Software #Conv. #FC #Max #Norm #Train.

accuracy layers layers pooling layers params
(%) layers (M)

VGG-7 CIFAR-10 82.8 4 2 2 6 2.2
VGG-10 CIFAR-10 88.8 7 2 3 9 1.5
VGG-13 CIFAR-10 92.5 10 2 5 12 9.7
VGG-16 CIFAR-10 94.0 13 2 5 14 14.9

of DNN models𝑀 and an in-memory computing platform 𝑃 . For
the DNN models, four convolutional neural networks (CNNs) are
trained on the CIFAR-10 dataset [9] using TensorFlow on a NVIDIA
Tesla K80 GPU. The details of the neural networks are provided
in Table 2. We use a platform 𝑃 with crossbars of dimension up
to 256x256. Consequently, weight matrices that are larger than
256x256 will be partitioned to multiple crossbars. Weight matrices
smaller than 256x256 are mapped to smaller crossbars if power can
be saved. Within the flow in Figure 1, we use the XORG framework
described in Section 4 to perform the data layout organization step.
Again, we let XORG+ and XORG– denote the case when XORG is
used to improve or degrade precision and classification accuracy,
respectively. Here, baseline is the DNNmodel obtained from Tensor
Flow.

(a) (b)

Figure 8: (a) Cost in Eq (1). (b) Compile time overhead.

The cost in Eq (1) and the overhead in compile time is evaluated
in Figure 8. Compared with the baseline, XORG+ reduces the cost
with 11% and XORG– increases the cost with 11%, respectively. The
improvements come at the expense of a modest 6% overhead in
terms of compile time. The data layout organization takes between
2 and 26 min depending on the network size, which is significantly
smaller than the run-time of 0.8 to 5.4 hours for the voltage IR-drop
compensation in [4, 11, 15, 16].

VGG-13 VGG-16
Figure 9: Evaluation of mapping cost and classification accu-
racy with respect to memristor bit-accuracy.

Now we turn our attention to evaluating the capability of the
XORG framework at reducing the memristor write bit-accuracy
requirements in Figure 9. We show the classification accuracy for
VGG-13 and VGG-16 in (a) and (b) of Figure 9. While only using a
write bit-accuracy of 5 bits, it can be observed that the Baseline and
XORG+ is capable of achieving an classification accuracy close to
the software level. In contrast, XORG– requires a write bit-accuracy
of 6-bits to achieve similar classification accuracy. While the initial
data layout organization happens to result in high accuracy, XORG+
ensures that a poor data layout organization is not selected.

Next, we evaluate the sensitivity of the classification accuracy
to the crossbar dimensions in Figure 10. The classification accuracy
of VGG-7 and VGG-10 with respect to the crossbar dimensions is
shown in (a) and (b) of Figure 10. The memristor bit-accuracy is
set to 6-bits. While all methods have similar classification accuracy
for smaller crossbars, it is clear that XORG+ achieves the highest
classification accuracy when the crossbar dimensions are scaled to
512x512. The explanation is that it is naturally more important to
mitigate the impact of parasitics when larger crossbars are used.
The figure shows that Baseline is significantly worse than XORG–
gor VGG-7. Given the results on the crossbar level, we speculate
that this stems from application level properties.

VGG-7 VGG-10
Figure 10: Classification accuracy w.r.t. crossbar dimensions.

Now we focus on evaluating the effectiveness of XORG at im-
proving the robustness to RTN using 256x256 crossbars. We intro-
duced RTN, which we model using a uniform distribution with
[−𝑥%, +𝑥%]. It can be observed that XORG+ produces data layout
organizations that are more resilient to the RTN than both the Base-
line and XORG–. The higher resilience to errors stems from that
XORG+ results in mapping solutions with larger 𝛼 and the errors in
the analog domain are scaled with 1/𝛼 . To the best of the authors
knowledge, this observation provides a new pathway to improving
the resilience to RTN.

6 SUMMARY AND FUTUREWORK
In this paper, we proposed the XORG framework that performs
resilient data layout organization for DNN models deployed on
in-memory computing platforms. The framework is based on the
observation that the resistive parasitics within a crossbar introduces
a dependency between the matrix data and the precision of the
analog computation. This opens the door to reorganizing the data
within a DNN model to improve classification accuracy by optimiz-
ing the matrix to crossbar assignments. The experimental results
show that the XORG framework relaxes the hardware requirements

VGG-7 VGG-10
Figure 11: Evaluation of resilience to RTN.

and improves the robustness to noise. We believe that this paper
will establish data layout organization as a standard design step
within compilers for in-memory computing platforms.

ACKNOWLEDGMENTS
This work was in part supported by NSF awards #1755825, #1908471,
#2008339, #2113307, DARPA cooperative agreement #HR00112020002,
ONR grant #N000142112332, and DOE/NNSA.

REFERENCES
[1] S. Choi, Y. Yang, and W. Lu. Random telegraph noise and resistance switching

analysis of oxide based resistive memory. Nanoscale, 6, 11 2013.
[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2001.
[3] Z. He et al. Noise injection adaption: End-to-end ReRAM crossbar non-ideal

effect adaption for neural network mapping. DAC’19, pages 57:1–57:6, 2019.
[4] M. Hu et al. Dot-product engine for neuromorphic computing: Programming

1T1M crossbar to accelerate matrix-vector multiplication. DAC’16, pages 1–6,
2016.

[5] M. Hu et al. Memristor-based analog computation and neural network classifica-
tion with a DPE. Adv. Materials, 30, 2018.

[6] A. James, O. Krestinskaya, and L. Chua. Neuromemristive circuits for edge
computing: A review. IEEE Transactions on Neural Networks and Learning Systems,
PP, 02 2019.

[7] Y. Ji et al. Bridge the gap between neural networks and neuromorphic hardware
with a neural network compiler. ASPLOS ’18, page 448–460, 2018.

[8] K. Kourtis et al. Compiling Neural Networks for a Computational Memory
Accelerator. arXiv e-prints, page arXiv:2003.04293, 2020.

[9] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[10] Y. LeCun et al. Deep learning. In Nature, pages 436–444, 2015.
[11] B. Liu et al. Reduction and IR-drop compensations techniques for reliable neuro-

morphic computing. ICCAD’14, pages 63–70, 2014.
[12] S. Liu and W. Deng. Very deep convolutional neural network based image

classification using small training sample size. In 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), pages 730–734, Nov 2015.

[13] C. Münch, R. Bishnoi, and M. B. Tahoori. Reliable in-memory neuromorphic
computing using spintronics. ASPDAC ’19, page 230–236, 2019.

[14] L. Song et al. Pipelayer: A pipelined reram-based accelerator for deep learning.
HPCA’17, pages 541–552, 2017.

[15] N. Uysal et al. Dp-map: Towards resistive dot-product engines with improved
precision. In ICCAD’20, pages 1–9. IEEE, 2020.

[16] N. Uysal et al. Xmap: Programming memristor crossbars for analog matrix-
vector multiplication: Towards high precision using representable matrices. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[17] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[18] L. Xia et al. Fault-tolerant training with on-line fault detection for rram-based
neural computing systems. DAC’17, pages 1–6, 2017.

[19] B. Zhang et al. Handling stuck-at-fault defects using matrix transformation for
robust inference of dnns. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1(56):1–14, 2019.

[20] Z. Zhu et al. Mixed size crossbar based RRAM CNN accelerator with overlapped
mapping. ICCAD’18, pages 69:1–69:8, 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Flow for compiling DNN models to in-memory computing platforms
	2.2 Motivation and problem definition

	3 Case Study: Analog Errors
	4 The XORG Framework
	4.1 Quality metric for data layout organization
	4.2 Data layout transformations L
	4.3 Flow of XORG framework

	5 Experimental evaluation
	5.1 Simulation setup
	5.2 Crossbar level evaluation
	5.3 DNN level evaluation

	6 Summary and Future work
	Acknowledgments
	References

