
Path-based Processing using In-Memory Systolic
Arrays for Accelerating Data-Intensive Applications

Muhammad Rashedul Haq Rashed∗, Sven Thijssen†, Sumit Kumar Jha‡, Hao Zheng∗, and Rickard Ewetz∗
∗Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA

†Department of Computer Science, University of Central Florida, Orlando, USA
‡Computer Science Department, Florida International University, Miami, USA

{muhammad.rashed, sven.thijssen, hao.zheng, rickard.ewetz}@ucf.edu, jha@cs.fiu.edu

Abstract—The next wave of scientific discovery is predicated
on unleashing beyond-exascale simulation capabilities using
in-memory computing. Path-based computing is a promising
in-memory logic style for accelerating Boolean logic with
deterministic precision. However, existing studies on path-based
computing are limited to executing small combinational circuits.
In this paper, we propose a framework called PSYS to accelerate
data-intensive scientific computing applications using path-based
in-memory systolic arrays. The approach leverages path-based
computing for multiplying known constants with an unknown
operand, which substantially reduces the computational
complexity compared with general purpose multiplication of two
unknown operands. The systolic arrays minimize data
movement by storing the matrix elements using non-volatile
memory and performing processing in-place. The framework
decomposes unstructured computations to the systolic arrays
while considering the non-regular computational patterns of the
applications. Our experimental evaluations employ applications
from the domains of engineering, physics, and mathematics. The
experimental results demonstrate that compared with the
state-of-the-art, the PSYS framework improves energy and
latency by a factor of 101x and 23x, respectively.

I. INTRODUCTION

The availability of digital data has fueled the growth of
data-centric applications within computer vision [1], social
networks [2], and scientific computing [3]. The forthcoming
era of scientific exploration hinges on the expansion of
scientific simulations [4]. Numerous intricate systems are
replicated through digital twins [5], and simulations are
employed for intelligent decision-making processes [6].
However, current high-performance computing systems face
significant challenges in handling simulations beyond the
exascale level, primarily due to the separation of memory and
compute units in the traditional von Neumann
architecture [7]. In the relentless pursuit of faster and more
efficient computational systems, the industry is witnessing a
paradigm shift towards a more effective computing model.
This has sparked investigations into alternative computing
technologies and paradigms such as quantum computing [8],
optical computing [9], and in-memory computing [10]. One
notable area of interest in recent years has been processing
in-memory using emerging non-volatile memories, which has
garnered substantial attention due to its ability to achieve
energy-efficient in-situ processing [11].

This work was in part supported by NSF awards # 2319399, # 2113307, the
University of Central Florida, and Texas STARs award to Sumit Jha.

Fig. 1: Underlying matrix-vector multiplication kernels of four
scientific simulation problems from SuiteSparse [12].

In-memory computing has been investigated using logic
styles such as analog matrix-vector multiplication [13],
MAGIC [14], IMPLY [15], streaming-based computing [16],
flow-based computing [17–19], and path-based
computing [20]. Different in-memory logic styles offer unique
advantages and are subject to different limitations. While
analog matrix-vector multiplication is extremely efficient, it
lacks the deterministic precision provided by digital
in-memory computing paradigms [21, 22]. The digital
bit-wise-in-bulk paradigms MAGIC and IMPLY have been
the foundation for several in-memory computing
architectures [23–25]. The limitation is that the bit-wise
parallelism requires each multiplication operation to be
realized using a general purpose element-wise multiplication
operation. This paper focuses on path-based computing that is
capable of compiling arbitrary Boolean functions into
compact look-up tables [20]. The path-based computation is
(i) high-speed, (ii) extremely energy-efficient, (iii) in-situ
processing, and (iv) deterministic precision [20]. While
previous studies on path-based computing only focus on
realizing small Boolean functions, this paper aims to
accelerate full-blown scientific simulations using in-memory
computing. An overview of the underlying matrix kernels of
four scientific computing applications is shown in Figure 1.
The main advantage of path-based computing is that it allows
each element-wise multiplication with an operand and
constant to be compiled into an abstract look-up table, which
leads to substantial performance improvements compared with
general purpose element-wise multiplication due to the
reduction in computational complexity. On the other hand, the

path-based paradigm requires careful architecture design to
maximize parallelism and minimize data movement within the
system architecture.

Various types of systolic arrays have been proposed for the
acceleration of data-intensive applications [26, 27]. The
systolic array minimize data movement by keeping different
operands in-place and moving others systematically through
the architecture. Google’s tensor processing unit (TPU) was
for example based on systolic arrays that store matrix-values
in-place and pipeline the vector operands through the
architecture [28]. Systolic arrays have been used to accelerate
matrix-vector multiplication operations that are larger than the
maximum crossbar dimensions in [29]. The limitation of
systolic arrays is that they are customized for dense
matrix-vector, or matrix-matrix multiplication operations. The
hardware utilization quickly becomes prohibitively low if the
matrix kernel is sparse. Various blocking and decomposition
schemes have been proposed to improve the array
utilization [30–33]. The use of reconfigurable adder trees have
been demonstrated useful for sparse matrix
representations [34, 35].

In this paper, we propose a framework called PSYS to
accelerate data-intensive scientific computing applications
using path-based in-memory systolic arrays. Path-based
computing is used to efficiently accelerate element-wise
multiplications of operands and constants using compact
look-up tables. The LUTs realized using resistive random
access memory (RRAM) are combined with CMOS based
adders to form multiply-and-accumulate units within a
systolic array. The systolic array is designed using bit-slicing
decomposition schemes to maximize computational efficiency.
Unstructured computations are decomposed into the systolic
arrays while considering the non-regular computational
patterns of the applications, with the objective of maximizing
the utilization of the systolic arrays.

The main contributions of the paper are summarized, as
follows:

• Leverage path-based in-memory computing to realize
configurable LUTs. The LUTs realize constant and
operand multiplication instead of general purpose
multiplication of a pair of operands.

• The systolic arrays perform in-situ computation of dense
matrix-vector operation. The arrays leverage a hybrid of
crossbars and CMOS logic, with shift-and-add
decomposition for improved efficiency.

• The non-regular computational patterns are decomposed to
regular computational patterns. The approach maximizes
the utilization of the systolic arrays.

• The PSYS framework is evaluated using 20 applications
from the domains of engineering, physics, and
mathematics. Compared with the state-of-the-art, the
experimental evaluation demonstrate energy and latency
improvements of 101x and 23x, respectively.

The remainder of the paper is organized as follows:
preliminaries and the motivation are presented in Section II.
The PSYS framework is introduced in Section III. The

Fig. 2: Path-based in-memory computing using 1T1M crossbar.
(a) Programming of the crossbar to perform Boolean
function f (b1,b2,b3), and (b) execution of f for [1,0,0]
instances of variables (b1,b2,b3). (WL=wordline, BL=bitline
and SL=selector line.)

synthesis methodology of the framework is explained in
Section IV. Decomposition method of unstructured system is
discussed in Section V. The architecture and the experimental
evaluations are discussed in Section VI. The paper is
concluded in Section VII.

II. PRELIMINARIES

In this section, we first explain the operating principles of
Path-based in-memory computing. Next, we describe the
design of systolic array to accelerate MVM operations.
Finally, we discuss the motivation for designing path-based
in-memory systolic array architectures.

A. Path-based computing

Path-based computing is a READ-based digital in-memory
computing paradigm on 1T1M (one-transistor one-memristor)
crossbars [20]. The computing paradigm is READ-based
because it only requires the memristors to be programmed
once to a resistive state. Path-based computing consist of two
steps. First, a Boolean function is synthesized into a crossbar
design, which is subsequently mapped to a programmed
platform. For example, in Figure 2, the Boolean function
f = (b1 ∧ ¬b2) ∨ b3 is synthesized into the programmed
platform in Figure 2(a). In a programmed platform, the input
variables are assigned to the selector-lines, and the
memristors are programmed to either a low (ON) or high
resistive state (OFF). The next step is the execution where the
Boolean function is evaluated for a given input vector. In
Figure 2(b), we are provided the input vector b1 = 1, b2 = 0,
and b3 = 0. Based on these values, the corresponding selector
lines are charged accordingly. For example, when b1 = 1, the
transistors connected to this selector line are closed. For
b3 = 0, the selector line is open. Next, a high input voltage is
applied to the input bit line Vin. This will result in an
electrical current flowing through the crossbar. If the electrical
current from the input bit line to the output bit line through
memristors in the low resistive state, we conclude that the
function evaluates to true. Otherwise, if there is no such path

from input to output, then the function evaluates to false. In
Figure 2(b), we observe that there is a path from input to
output, and thus f evaluates to true.

B. Systolic Arrays

Systolic arrays are powerful parallel processors that can
accelerate matrix-vector multiplications (MVM) [36–38]. To
perform MVM operations within traditional architecture,
iterative data fetch from the main memory is required to
bring the MVM operands to the processor. This results in a
scenario where a piece of data may get repeatedly fetched
from and sent back to the main memory which imposes
significant load on the valuable data transfer bandwidth. On
the contrary, the systolic array processors are designed in a
way that when a piece of data for MVM is fetched from the
main memory, the utilization of the fetched data is maximized
before it is sent back to the memory. We explain the concept
of MVM operation using systolic arrays in Figure 3.

In Figure 3(a), we show a 2× 2 MVM operation. The
outputs of the MVM is achieved by sequential multiplication
and accumulation of operands. In Figure 3(b), we show the
assignment of the matrix operands into an architecture of
orthogonal systolic arrays [39]. Note that the matrix operands
are mapped in a transposed manner within the arrays. We
illustrate the MVM workflow of the systolic arrays in
Figure 3(c). Each of the arrays perform a multiplication and
accumulation operation. The computation within an array can
be generalized as follows:

out j = (ai j×b j)+out j−1

s.t. out j−1 = ai(j−1)×b j−1, out0 = 0, ∀(i, j) ∈ Z+

For Cycle 1 in Figure 3(c), the top-left systolic array performs
a multiplication on the stored a11 matrix operand with
incoming input-vector operand b1. In the following cycle, the
operand b1 is routed horizontally to the systolic array storing
a21. At the same time, operand b2 is introduced on the array
storing a12 in similar data-flow direction. In an orthogonal
direction of the data (bi) flow, the multiplication results
ai j × b j are routed. Within this data-flow, the input operands

Fig. 3: Matrix-vector multiplication (MVM) using systolic
arrays. (a) A 2×2 matrix-vector multiplication, (b) transposed
matrix weight mapping in systolic arrays and, (c) workflow of
MVM within systolic arrays.

(ai j,b j) and the output results are not returned to the main
memory until the entire MVM operation is concluded.

C. Motivation

In this section, we discuss the motivation behind designing
a path-based in-memory systolic array architecture.

Although traditional systolic array architectures highly
parallelize the MVM operation and reduce the repeated access
of same data from memory, they are still required to fetch
both the matrix and vector data from the memory. This large
amount of data movement requires localized buffers within
the array units which are costly in terms of energy and
area [40–42]. Large systolic array architectures, such as
Google TPU employ embedded memory units to reduce
off-chip data communications [36]. However, these embedded
memory are power hungry and they create a localized
memory-wall bottleneck due to the performance gap between
the memories and the processors [43]. In-memory computing
can be a promising solution to overcome this memory wall by
in-situ processing of computational operands.

Some recent works have explored the design of in-memory
systolic arrays [29, 44]. However, these works are based on
analog in-memory computing processors. Previous studies
have shown that analog in-memory computing is vulnerable
to various errors that result in limited precision
computation [21, 22, 45]. Therefore, an in-memory systolic
array capable of performing computation with deterministic
precision is still missing.

Path-based computing is a natural candidate for an
in-memory systolic array system due to its inherent
streaming-style computing capability and its ability to
perform deterministic precision computation. Additionally, for
fixed-weight matrix operands, the path based in-memory
computing only fetches the input-vector operands and thus
reduces memory fetch complexity from O(N2) to O(N).

III. THE PSYS FRAMEWORK

In this section, we introduce the PSYS framework. An
architectural overview of PSYS is illustrated in Figure 4.

The overall architecture consists of a CPU unit, a DRAM
memory unit and a series of systolic array based processing
elements (PEs) interconnected with high-speed bus. The
systolic array arrangement within a PE is shown on the
top-middle of the figure. Each of the array units within the

Fig. 4: Overview of the PSYS framework.

PEs consists of a hybrid multiply and accumulate (MAC) unit
which is shown in the top-right of the figure. A path-based
ITIM crossbar architecture constitute the multiplier unit.
Multiplication operations are converted into kernels for
path-based computing and are bound to the crossbar. The
output of the multiplier unit is fed into a CMOS adder unit.
The adder also receives inputs from the previous systolic
array unit. The output of the MAC operation is collected from
the output side of the adder unit.

The overview of the synthesis operation is shown at the
bottom of Figure 4. The input to the synthesis tool is the
operands of the MVM operation. The output of the tool is the
configurations of the path-based multiplier units. The
synthesis process is described in the Section IV.

IV. SYNTHESIS

In this section, we explain the synthesis flow for the PSYS
framework. An overview of the synthesis flow is illustrated in
Figure 5.

Fig. 5: Synthesis flow for PSYS framework.

The synthesis process starts with an exhaustive
enumeration of multiplications of a p-bit known number a
with a p-bit unknown number b. The final output of the
synthesis process is a lookup table of crossbar designs for all
the enumerated multiplications. First, the multiplication
operations are converted into hardware description language
(HDL) verilog. Next, ABC [46] tool is used to convert the
verilog files into binary decision diagram (BDD) netlists.
Finally, BDDs are synthesized into path-based crossbar
designs using the PATH tool [20].

The synthesis problem consists of two major challenges:
1) Scaling: Our experimental evaluation shows that the

path-based design scale poorly for high precision
multiplication operation. In particular, the netlist size
tend to explode for high-precision of the unknown
operand b. However, the impact of the higher-precision
of the known operand a is not very significant as its a
constant value.

2) Enumeration: The exhaustive enumeration of
multiplication operations involve the enumeration of all
possible bit-patterns of the known operand. This
translates into an enumeration complexity of O(2p).

These two challenges are co-related. We solve the challenges
using an adaptive bit-slicing scheme.

A. Problem Formulation

To address the first challenge, the aim is to find a bit-slicing
width of the unknown operand b that minimizes the normalized

cost of the multiplication. Let m denote the bit-slicing precision
of b. To address the second challenge, we aim to maximize the
bit-slicing precision n of the known operand a while keeping
the enumeration complexity within an acceptable limit. This
can be formalized, as follows:

min
m

max
n

cost(Si).cost(Tj), ∀i, j ∈ Z+ (1)

where Si is the semi-perimeter (number of rows+column) of
the crossbar design for unknown operand precision of i and
Tj is the synthesis runtime for the exhaustively enumerated
multiplication operations for known operand precision of j.

B. Adaptive Bit-slicing

The concept of adaptive bit-slicing is explained with an
example in Figure 6.

Fig. 6: Adaptive bit-slicing of MVM operands.

On the top of the figure, we show two 8-bit operands a and
b where the value of a is known. Next, bit-slicing of a and b
with different bit-slicing width is shown in the middle of the
figure. For the known and the unknown operands, bit-slicing
width of 4-bit and 2-bit, respectively, are selected. As a result
of the bit-slicing, the original multiplication operation is now
partitioned into a series of multiplication and accumulation
operations. All the different multiplicand pairs are shown at
the bottom of the figure. During accumulation of the
partitioned multiplications, shifting operations are required to
align the multiplication results to their corresponding weight
locations. The entire multiplication operation can be
expressed as follows:

mult =
p/n

∑
i=1

p/m

∑
j=1

ai×b j×2(xi+y j−2), ∀(i, j) ∈ Z+

Here, p is the original bit-precision of the operands, (ai,b j)
are a pair of bit-sliced multiplicands, the LSB of ai is the xth

i
LSB of a and the LSB of b j is the yth

j LSB of b. For alignment,
each partial multiplication of ai & b j is shifted by (xi +y j−2)
bit-position to the left.

V. DECOMPOSING UNSTRUCTURED COMPUTATION

In this section, we develop a matrix compression algorithm to
decompose unstructured sparse matrices to PSYS framework.

In Figure 7(a), we show the sparsity pattern of a system
Si2 from the SuiteSparse matrix collection [12]. It can be

(a) (b)

Fig. 7: Bit-slicing of matrix operands. (a) Sparsity pattern of
the system Si2 from quantum chemistry domain [12], and (b)
bit-sliced matrices Si2 for 8-bit slicing width. nz denotes the
number of non-zeros within the matrix.

observed that the matrix is very sparse and a naive mapping
of matrix operands into crossbars will result in significant
under-utilization of hardware. Also, the sparsity pattern shows
that the distribution of operand weight is not uniform. The
more darker (lighter) parts of the sparsity pattern denote
higher (lower) valued operands. This results in that, when we
bit-slice the matrix operands, it generates several matrices
with different sparsity patterns. For instance, Figure 7(b)
shows the conversion of 32-bit Si2 matrix into four sparse
matrices, each with 8-bit operands. We target to develop an
algorithm to automatically decomposed the bit-sliced matrices
that can be efficiently evaluated within the PSYS framework.

Recent works have proposed a blocked-shifting based
compression of sparse matrices to decompose the original
matrix into a series of denser matrix blocks [47]. The concept
is illustrated with an example in Figure 8. Figure 8(a) shows
the bit-sliced matrix of Si2 system for the 8 most significant
bits (31:24). In the first step, the matrix is partitioned into a
number of rectangular blocks with a fixed number of rows as
shown in Figure 8(a). For the remainder of this paper, we will
use the term block-size to denote the number of matrix rows
within the blocks. Next, each column within a block that
contains a non-zero operand is selected and the zero values of

(a) (b) (c) (d)

Fig. 8: Shifted compression of sparse matrix for fixed block-
size of 128 [47]. (a) Original matrix, (b) padding of non-zero
columns, (c) shifting, and (d) cleaning of padded operands.

the selected columns are padded with dummy values. Next,
the non-zero columns within each blocks are shifted to the
left. The padding and shifting steps are shown in Figure 8(b)
and 8(c), respectively. Finally, the dummy values are cleared
and a set of relatively denser matrix blocks are achieved.

While this algorithm works for a few of the sparse systems,
it cannot guarantee dense partitioning for all sparse systems.
It is evident form Figure 8(d) that the blocks extracted by the
algorithm are not significantly dense. This is due to that the
density of the compressed blocks is highly dependent on the
localized data-pattern and the selected block-size. However,
the algorithm fixes a block-size for all matrices irrespective of
the data-arrangement of the system. We have already observed
in Figure 7 that each of bit-sliced matrices may have different
sparsity patterns. Therefore, the block dimension should be
dynamically updated for the target matrices. We present a
case study on the impact of using different block sizes for the
matrix(31:24) of Si2 in Figure 9. Figure 9(a)−(d) shows the
blocked matrices for block-size of 128, 64, 32 and 16,
respectively. The Figure shows that for smaller block-size, the
extracted matrix blocks become increasingly denser.

(a) (b) (c) (d)

Fig. 9: Matrix Compression of matrix[31:24] of Si2 for variable
block sizes of (a) 128, (b) 64, (c) 32, and (d) 16.

However, an exhaustive exploration of block sizes will pose
two challenges:

1) Complexity: The computational complexity of block
extraction will become O(MN).

2) Memoization: While extracting the blocks, we are
required to record (#rows/block-size) subsets of the
input vector indices. For very small block-size, this
bookkeeping can become expensive.

To overcome these challenges, we present Algorithm 1
where the block search complexity is O(log2(N)). We also
set a density threshold to run the algorithm until an
acceptable density is achieved. The inputs to the algorithm
are the original matrix A, matrix bit-slicing width n and the
block density threshold d. The algorithm returns a library (L)
of denser matrix blocks, and the lookup table (I) of the
corresponding input vector subset indices. First, the algorithm
decomposes the original matrix into bit-sliced matrices of
n-bit width. Next, for each of the bit-sliced matrices, an
iterative exploration of block-size is performed. In each
subsequent iteration, the block-size is halved from its previous
value, bringing the search complexity to O(log2(N)). For
each exploration of blocking, the blocks are compressed using
the algorithm in Figure 8. For all the compressed blocks, the

Algorithm 1: Decomposing Sparse Matrices
Inputs: Matrix, A; bit-slicing width, n; block density
threshold, d

Output: Compressed matrix block library, L; look-up
table of input-vector subset indices, I
L, I ← φ ; \\initializing
[r,c] ← size(A); \\matrix dimensions
A ← Bitslice(A,n); \\Bitslicing original matrix
for all Ai ∈ A do

block size ← r; \\initial block size
d́ ← density(Ai); \\initial density
while d́ < d do

block size ← block size/2; \\downsizing block
{A⌈, Í} ← Compress(Blocking(Ai,block size));
\\matrix compression. A⌈ stores compressed
blocks, Í tracks corresponding column indices

for all compressed blocks A′j ∈ A⌈ do
d́ ← avg density(A′j); \\running average

end
if (d́≥d) then
L ← L ∪ (A⌈, i); \\indexed matrix blocks
I ← I ∪ (Í, i); \\indices look-up table

end
end

end
return L, I;

running average density d́ is calculated. When the condition
d́ ≥ d is met, the block downsizing is stopped and the L and
I are updated with current matrix blocks and corresponding
input-vector indices, respectively.

The workflow of decomposition of sparse matrices for

Fig. 10: Sparse matrix conversion using Algorithm 1.

PSYS framework is illustrated in Figure 10. The figure shows
how the original matrix is first bit-sliced into several matrices
with different sparsity. Next, for each of the sliced matrices,
compression is performed using different block-sizes. Next,
the compressed blocks are transposed to align with the
operand mapping flow of the systolic arrays. Finally, the
transposed matrix blocks are hardware bound to the NVM
systolic arrays using the look-up table of Section IV.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
of the PSYS framework. We use an octa-core machine with
3.60 GHz Intel Core i9 processor with NVIDIA RTX 2070
and 64 GB RAM to conduct the experiments. We use a blend
of MATLAB and Python scripts to decompose the sparse
matrices and to generate the HDL codes. For synthesizing the
path-based computing kernels, we use the ABC tool [46] and
PATH [20] tool. For the evaluation of CMOS-based
architectural components, we use the Synopsis Design
Compiler tool. We couple the compiler with a gscl-45 nm
technology library [48] to evaluate the power, area and
latency overheads. To estimate the cross-architecture
data-transfer cost, we utilize the the CACTI 7 tool [49] on 45
nm technology node. The power and area performance of the
NVM crossbars are adapted from [50–52]. The operating
latency of NVM devices are obtained from [53].

We first present the architecture overview of the PSYS
framework in Section VI-A. Next, we evaluate the bit-slicing
step of the synthesis flow in Section VI-B. Subsequently, we
experimentally justify the NVM-CMOS hybrid design for the
MAC unit in Section VI-C. Finally, we evaluate the
performance of the PSYS framework for 20 sparse matrices
from different domains of scientific computation in
Section VI-D.

A. Architecture

In this section, we present the architecture of the processing
elements (PEs) within the PSYS framework. The components
of the PE architecture are illustrated in Figure 11.

Fig. 11: PSYS PE architecture.

The overview of the PE architecture is shown in
Figure 11(a). The PE consists of a collection of orthogonal
systolic arrays (A). Each of the arrays perform multiply and
accumulate (MAC) operation to process MVM applications.
Controller and global drivers are used to program the arrays
based on synthesized MVM operands. The components within

a systolic array is shown in Figure 11(b). Each array is
equipped with a NVM crossbar to perform multiplication and
a CMOS adder to accumulate the results. The figure shows
the incoming and the outgoing data flows within the array
unit. Each array within the same row of arrays share the same
set of input vectors. The vector is streamed side-wise
throughout the PE. After the multiplication within an array is
processed, the vector is streamed to the next row-parallel
array. Simultaneously, partial sums of the MVM operations
are streamed column-wise throughout the arrays. Each array
within a PE column receive a stream of running partial sum
from the previous array on top and streams the updated
partial sum downwards to the next array in the same column.
Each NVM crossbar performs several bit-sliced multiplication
operations. Input registers (IR) and output registers (OR) are
used to hold the input and output operands to enable
pipelining of bit-sliced computations. Shifters (Sh) are used to
perform shifting of bit-slices. The per-unit area-power costs
of the systolic array components are listed in Table I. The
dimensions for the NVM crossbars are selected to be
128× 256. This rectangular shape is deliberately selected as
the crossbar design of the bit-sliced multiplications assume a
rectangular shape. This is experimentally demonstrated in the
next subsection.

TABLE I: Area-Power Cost of Systolic Array Components

Component Parameter Specs Area Power

Crossbar size 128×256 50 µm2 0.6 mW
Adder resolution 16 b 186.31 µm2 0.08 mW

IR size 10 B 10.5 µm2 0.006 mW
OR size 2 B 5.86 µm2 0.003 mW
Sh # unit 1 23.43 µm2 0.02 mW

Local Bus #wires 64 0.0075 mm2 0.58 mW

B. Evaluation of Adaptive Bit-Slicing
In this section, we evaluate the adaptive bit-slicing step of

synthesis. The step begins with an exhaustive enumeration of
all possible multiplication operations of an unknown operand
with a known operand of p-bit. Due to the O(2p) order of
enumeration complexity, we make an engineering choice to
fix the bit-slicing width of the known operand to 8-bits. This
helps us to limit the enumeration size to 256 different
multiplication operations. Next, we generate the look-up table
of crossbar designs for different bit-slicing width of the
unknown operand. Each of the look-up table for different
bit-slicing width (1, 2, 4, etc.) contain 256 entries. Next, we
evaluate the worst-case semi-perimeter for each of the table.
The results of this experiment are presented in Table II. The
table presents the total semi-parameter overhead to perform
8-bit multiplication (8-bit known operand × 8-bit unknown
operand) for different bit-slicing width of the unknown
operand. The table shows that the overhead is least when the
unknown operand is sliced using a bit-width of 2-bits. It can
also be observed that the optimum crossbar design is
rectangular (24× 48). Based on this observation, we select
rectangular crossbars for the design the systolic arrays within
the PEs.

TABLE II: Overhead Comparison for Different Bit-slicing.

Worst-case Overhead Bit-slicing Width of Unknown Operand
for 8-bit Multiplication 1-bit 2-bit 4-bit 8-bit

#wordlines 8 24 100 414
#bitlines 72 48 84 327

Semi-perimeter 80 72 184 741

C. Evaluation of MAC Unit

In this section, we perform a comparative performance
evaluation of the proposed hybrid multiply-accumulate (MAC)
design. For the comparative study, we consider three different
MAC designs as shown in Figure 12. Figure 12(a)-(c) show a
purely CMOS-based MAC design, a purely NVM-based MAC
deign and the proposed hybrid MAC design, respectively.

Fig. 12: MAC architectures for comparative evaluations.

We present the comparative power and area performance of
the three MAC architectures in Figure 13(a) and (b). The
figures show that, CMOS-based multiplier are more power
hungry and incur more area overhead than the NVM-based
multiplier. On the other hand, the NVM adder is more
expensive in terms of power and area than the CMOS adder.
This is due to the fact that the adders in the MAC architecture
are general purpose and the path-based computing systems
scale poorly for general purpose operations. It can be
observed from the figures that, the hybrid MAC architecture
outperforms both the CMOS-only and NVM-only MAC
architectures in terms of power and area overhead. The
evaluation shows that, compared to the CMOS-only and
NVM-only MAC architectures, the hybrid MAC is 50% and
97% more power efficient, respectively. Also, the hybrid
MAC reduces area overhead by 78% and 30%, respectively,
over the CMOS-only and NVM-only MAC architectures.

D. Evaluation with MVM Applications

In this section, we evaluate the performance of the PSYS
framework on 20 applications from different domains of
scientific simulation. The selected applications are listed in

(a) (b)

Fig. 13: (a) Power, and (b) area comparison for CMOS-only,
NVM-only and hybrid MAC architectures.

Fig. 14: Comparison of latency, and energy for traditional CMOS-based systolic array architecture and the PSYS framework on
twenty benchmarks of the SuiteSparse Matrix Collection [12].

TABLE III: Overview of benchmarks from the SuiteSparse
Matrix Collection [12].

Applications Systems Matrix Dimensions #Non-zeros

mesh3em5 Structural 289×289 1377
bcsstk34 Structural 588×588 21418
Si2 Quantum Chemistry 769×769 17801
coater1 Fluid Dynamics 1348×1348 19457
Chem97ZtZ Mathematical 2541×2541 7361
mycielskian12 Undirected Graph 3071×3071 407200
raefsky1 Fluid Dynamics 3242×3242 293409
crystk01 Materials 4875×4875 315891
fxm3 6 Optimization 5026×5026 94026
EX5 Combinatorial 6545×6545 295680
fp Electromagnetics 7548×7548 834222
benzene Quantum Chemistry 8219×8219 242669
bcsstk33 Structural 8738×8738 591904
graham1 Fluid Dynamics 9035×9035 335472
net25 Optimization 9520×9520 401200
bundle1 Computer Vision 10581×10581 770811
Si10H16 Quantum Chemistry 17077×17077 875923
Goodwin 040 Fluid Dynamics 17922×17922 561677
Trefethen 20000b Combinatorial 19999×19999 554435
pkustk06 Structural 43164×43164 2571768

Table III. The systems are very sparse with an average data
density of only 1.4%. The systems are decomposed into
denser matrix blocks using the Algorithm 1. We select a
reasonable density threshold of d = 60% for the system
conversion. The performance of the PSYS is compared with
traditional CMOS-based systolic architecture. The
comparative latency and energy performance are illustrated in
Figure 14.

The results show that the PSYS framework achieves 23x
speedup on average compared to the traditional systolic array
architecture. This remarkable improvement is the result of
limited data-movement within the PSYS framework due to
that it only streams the input vectors. On the contrary,
traditional architecture streams both the system matrix and the

input vector elements, making the data movement complexity
in the order of O(N2). The PSYS system also achieves 101x
more energy-efficiency compared to the traditional
architecture. As shown in the previous subsection, the hybrid
MAC units of the PSYS framework are more power efficient
than the traditional MAC units. This improvement is
amplified by the speedup achieved by limited data movement,
bringing down the total energy consumption significantly.

VII. CONCLUSION

In this paper, we have introduced PSYS, a novel
framework that significantly accelerates data-intensive
scientific computing applications by leveraging path-based
in-memory systolic arrays. The core of the PSYS approach
lies in its application of path-based computing, which
facilitates efficient multiplication between known constants
and unknown operands, thus mitigating the inherent
computational complexity of traditional multiplication
methods involving two unknown operands. Additionally, the
systolic arrays in the PSYS framework store matrix elements
using non-volatile memory and conduct in-place processing,
drastically minimizing data movement. One of the strengths
of PSYS is its capacity to convert unstructured computations
into forms compatible with systolic arrays, exploiting the
unique non-regular computational patterns of the applications
being accelerated. In future research, we intend to explore the
use of machine learning methods for accelerating the PSYS
framework by avoiding the algorithmic construction of
libraries for matrix-vector multiplications. Instead, we will
seek to search and reason about the library by storing it in a
compact neural network representation.

REFERENCES
[1] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al., “Deep learning

for computer vision: A brief review,” Computational intelligence and neuroscience,
vol. 2018, 2018.

[2] T. A. Snijders, “Statistical models for social networks,” Annual Review of Sociology,
vol. 37, no. 1, pp. 131–153, 2011.

[3] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy,
S. H. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, et al., “Best practices
for scientific computing,” PLoS biology, vol. 12, no. 1, p. e1001745, 2014.

[4] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,
A. Patra, J. Sethian, S. Wild, and K. Willcox, “Brochure on basic research needs
for scientific machine learning: Core technologies for artificial intelligence,”

[5] S. Niederer, M. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins from
the artisanal to the industrial,” Nature Computational Science, vol. 1, pp. 313–320,
05 2021.

[6] L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, “Data-driven materials science:
Status, challenges, and perspectives,” Advanced Science, vol. 6, no. 21, p. 1900808,
2019.

[7] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8t sram cell as a multibit dot-
product engine for beyond von neumann computing,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2556–2567, 2019.

[8] E. National Academies of Sciences, Medicine, et al., “Quantum computing: progress
and prospects,” 2019.

[9] C. Qian, X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen,
“Performing optical logic operations by a diffractive neural network,” Light: Science
& Applications, vol. 9, no. 1, p. 59, 2020.

[10] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory
devices and applications for in-memory computing,” Nature nanotechnology, vol. 15,
no. 7, pp. 529–544, 2020.

[11] A. Gebregiorgis, H. A. Du Nguyen, J. Yu, R. Bishnoi, M. Taouil, F. Catthoor,
and S. Hamdioui, “A survey on memory-centric computer architectures,” J. Emerg.
Technol. Comput. Syst., vol. 18, oct 2022.

[12] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM
Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011.

[13] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila,
C. E. Graves, et al., “Analogue signal and image processing with large memristor
crossbars,” Nature Electronics, vol. 1, no. 1, p. 52, 2018.

[14] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Magic—memristor-aided logic,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[15] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design principles and
methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 10, pp. 2054–2066, 2013.

[16] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz, “Stream: Towards
read-based in-memory computing for streaming based processing for data-intensive
applications,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

[17] D. Chakraborty and S. K. Jha, “Automated synthesis of compact crossbars for
sneak-path based in-memory computing,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pp. 770–775, IEEE, 2017.

[18] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision diagram-based
synthesis of compact crossbars for in-memory computing,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 622–626, 2018.

[19] A. Velasquez and S. K. Jha, “Parallel boolean matrix multiplication in linear time
using rectifying memristors,” in 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1874–1877, IEEE, 2016.

[20] S. Thijssen, S. K. Jha, and R. Ewetz, “Path: Evaluation of boolean logic using
path-based in-memory computing,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, pp. 1129–1134, 2022.

[21] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y. Xie,
“Overcoming the challenges of crossbar resistive memory architectures,” in 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 476–488, IEEE, 2015.

[22] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma, C. Bekas,
A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory computing,” Nature
Electronics, vol. 1, no. 4, pp. 246–253, 2018.

[23] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled, and
S. Kvatinsky, “Simpler magic: Synthesis and mapping of in-memory logic executed
in a single row to improve throughput,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2434–2447, 2019.

[24] A. Zulehner, K. Datta, I. Sengupta, and R. Wille, “A staircase structure for scalable
and efficient synthesis of memristor-aided logic,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, pp. 237–242, 2019.

[25] D. Bhattacharjee and A. Chattopadhyay, “Synthesis and technology mapping for in-
memory computing,” in Emerging Computing: From Devices to Systems: Looking
Beyond Moore and Von Neumann, pp. 317–353, Springer, 2022.

[26] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An fpga-based systolic
array to accelerate the bwa-mem genomic mapping algorithm,” in 2015 international
conference on embedded computer systems: Architectures, modeling, and simulation
(samos), pp. 221–227, IEEE, 2015.

[27] G. Peng, L. Liu, S. Zhou, S. Yin, and S. Wei, “A 2.92-gb/s/w and 0.43-gb/s/mg
flexible and scalable cgra-based baseband processor for massive mimo detection,”
IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 505–519, 2019.

[28] J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based accelerators
for deep neural network execution,” IEEE Design & Test, vol. 36, no. 5, pp. 44–53,
2019.

[29] N. Challapalle, S. Rampalli, M. Chandran, G. Kalsi, S. Subramoney, J. Sampson, and
V. Narayanan, “Psb-rnn: A processing-in-memory systolic array architecture using
block circulant matrices for recurrent neural networks,” in 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 180–185, IEEE, 2020.

[30] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication,” IEEE Transactions on parallel and
distributed systems, vol. 10, no. 7, pp. 673–693, 1999.

[31] R. Dorrance, F. Ren, and D. Marković, “A scalable sparse matrix-vector
multiplication kernel for energy-efficient sparse-blas on fpgas,” in Proceedings of
the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays,
pp. 161–170, 2014.

[32] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, “An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on gpus,” in
Proceedings of the 28th ACM international conference on Supercomputing, pp. 273–
282, 2014.

[33] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye, Y. Chen,
et al., “Sparse-tpu: Adapting systolic arrays for sparse matrices,” in Proceedings of
the 34th ACM international conference on supercomputing, pp. 1–12, 2020.

[34] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on fpgas,” in
Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pp. 63–74, 2005.

[35] J. Sun, G. Peterson, and O. Storaasli, “Sparse matrix-vector multiplication design on
fpgas,” in 15th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM 2007), pp. 349–352, IEEE, 2007.

[36] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, et al., “In-
datacenter performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, pp. 1–12, 2017.

[37] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,
“Automated systolic array architecture synthesis for high throughput cnn inference
on fpgas,” in Proceedings of the 54th Annual Design Automation Conference 2017,
pp. 1–6, 2017.

[38] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, “Toward functional safety
of systolic array-based deep learning hardware accelerators,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 485–498, 2021.

[39] H. T. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse Matrix
Proceedings 1978, vol. 1, pp. 256–282, Society for industrial and applied
mathematics Philadelphia, PA, USA, 1979.

[40] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine
learning: Challenges and opportunities,” in 2017 IEEE Custom Integrated Circuits
Conference (CICC), pp. 1–8, IEEE, 2017.

[41] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE journal
of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[42] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-memory-
computing cnn accelerator employing charge-domain compute,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799, 2019.

[43] H. Amrouch, N. Du, A. Gebregiorgis, S. Hamdioui, and I. Polian, “Towards reliable
in-memory computing: From emerging devices to post-von-neumann architectures,”
in 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 1–6, IEEE, 2021.

[44] P. Bowen, G. Regev, N. Regev, B. Pedroni, E. Hanson, and Y. Chen,
“Analog, in-memory compute architectures for artificial intelligence,” arXiv preprint
arXiv:2302.06417, 2023.

[45] M. H. I. Chowdhuryy, M. R. H. Rashed, A. Awad, R. Ewetz, and F. Yao, “Ladder:
Architecting content and location-aware writes for crossbar resistive memories,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 117–130, 2021.

[46] A. Mishchenko et al., “Abc: A system for sequential synthesis and verification.”
”http://www.eecs.berkeley.edu/alanmi/abc”.

[47] M. R. H. Rashed, S. K. Jha, and R. Ewetz, “Logic synthesis for digital in-memory
computing,” in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, pp. 1–9, 2022.

[48] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, et al., “Freepdk: An
open-source variation-aware design kit,” in 2007 IEEE international conference on
Microelectronic Systems Education (MSE’07), pp. 173–174, IEEE, 2007.

[49] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas,
“Cacti 7: New tools for interconnect exploration in innovative off-chip memories,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 14, no. 2,
pp. 1–25, 2017.

[50] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 14–26, 2016.

[51] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general
model for voltage-controlled memristors,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[52] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration
of deep neural network training with high precision,” in Proceedings of the 46th
International Symposium on Computer Architecture, pp. 802–815, 2019.

[53] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in 2017 IEEE international symposium on high
performance computer architecture (HPCA), pp. 541–552, IEEE, 2017.

