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Abstract—Next-generation warfighters will use sensors and
deep learning for advanced scene recognition and situational
awareness. Adversarial pixel and patch attacks can severely
degrade the performance of deep neural networks (DNNs).
This poses a critical security threat future combat systems.
Detecting adversarial attacks has been attempted before, but
recent advances in explainable artificial intelligence (XAI) have
opened the door to better detection methods using attribution
analysis. In particular, we observe that benign and attacked
images display different characteristics in their attribution maps.
Benign images tend to have dense attributions due to the
network focusing on the main object of the image, while at-
tacked images tend to have more sparse attributions due to
the widespread perturbations applied. Using this intuition, we
propose a framework for adversarial attack detection in the form
of a binary classifier. Using three methods: Integrated Gradients
(IG), Guided Backpropagation (GBP), and Integrated Decision
Gradients (IDG), we propose the training of a binary classifier
that can analyze an attribution map to detect attacked input data.
We evaluate the detection framework for three state-of-the-art
attacks with the three attribution analysis methods. We find that
IDG achieves state-of-the-art pixel attack detection performance
with up to 99% accuracy, and GBP manages state-of-the-art
patch detection performance achieving up to 88% accuracy.

Index Terms—Adversarial Robustness, Explainable Artificial
Intelligence

I. INTRODUCTION

Similar to other facets of the modern world, military
technology has come to rely on deep learning and deep
neural networks (DNNs). The OODA loop (observe, orient,
decide, act) is now expected to be performed not by humans
operating in seconds, but at the speed of light by DNNs.
Next-generation wars will therefore be fought with an ever-
increasing reliance on technology supported by DNNs. How-
ever, research has shown that DNNs used in computer vision
applications are susceptible to a number of attacks, including
pixel adversarial attacks [1], [2] and adversarial patches [3],
[4]. Pixel adversarial attacks manipulate DNN predictions by
applying imperceptible perturbations across an entire image.
Adversarial patches also manipulate DNN predictions, but the
perturbation size is unbounded and localized to a contiguous
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region on the image. These attacks have shown to be effective
in both the digital and physical domains in applications such
as copyright [5] and person detection [6].

One approach of detecting these attacks is through attribu-
tions [7]. Attributions are part of a wide set of algorithms,
known as explainable artificial intelligence, which attempt to
make DNNs more interpretable for humans. Attribution anal-
ysis determines the contribution of input features to a model
decision, often presenting this information in the form of a heat
map. Attribution analysis broadly falls into two categories:
backpropagation-based [8]–[10] and perturbation-based [11]
methods. Due to their speed and quality, backpropagation-
based methods are the most popular methods [12].

Previous attribution-based detection approaches separate
benign and adversarial attributions through the analysis of
attribution pixels. In [13], benign and attacked attributions are
shown to be distinct in the magnitude distribution of the pixels.
In [14], masking the top attribution pixels of a benign image
is shown to have little effect on classification, while it often
causes a change in predicted label for attacked images.

Recent advances in attribution analysis have allowed us to
observe clear differences in the attribution maps of benign
and attacked images. Benign images often have dense, focused
attributions on the main object in an image. However, attacked
images tend to have sparse, unfocused attributions due to
the confusion caused by attacks. Leveraging this insight,
we present a framework which trains a binary classifier on
attributions to detect adversarial examples from input data.
The main contributions of this paper are:

• We observe the attributions of benign and adversarial
images have different characteristics.

• We design an attack detection framework which can
successfully detect pixel and patch adversarial examples
via attribution analysis using a binary classifier.

• We evaluate the proposed framework with three state-of-
the-art attack methods and measure up to 88% and 99%
patch and pixel attack detection, respectively.

The paper is organized as follows: related work is explored
in Section II, an attribution analysis case study is performed in
Section III, the classifier is presented in Section IV, evaluation
is performed in Section V, the paper is concluded and future
work is discussed in Section VI.



II. RELATED WORK

In this section, we cover the attacks and attribution analysis
methods used in the design of the adversarial attack detec-
tor binary classifier. We additionally explore previous attack
detection approaches.

A. Attack Types
To evaluate our detection method, we use Projected Gra-

dient Descent (PGD) [2] for the pixel attacks and Local and
Adversarial Noise (LaVAN) [3] for the patch attacks.

a) Projected Gradient Descent: The PGD pixel attack
is completed over multiple steps based on the popular Fast
Gradient Sign Method [15]. At each iterative step, a move
of size α is made in the gradient direction of a model’s cost
function J . Following this, the resulting perturbation is clipped
to a maximum allowable change of ϵ in the positive or negative
direction as follows:

xadv
n+1 = Clip+ϵ

−ϵ(x
adv
n + α× sign(∇xJ(θ, x

adv
n , y))) (1)

where xadv
0 = x the original input, y is the label, and θ is

the model parameters [2]. We employ both the L2 and L∞
versions of the attack [2].

b) Local and Visible Adversarial Noise: LaVAN is an
untargeted per-image patch. Per-image patches are generated
with respect to their target image, making them nontransfer-
able, but significantly stronger than universal patches, which
attack an entire dataset [16]. A LaVAN patch p̂ can be
generated through the following optimization process:

p̂ = argminE[logP (y|n, x, l)] (2)

where noise n is added to the image x at location l so that
the log probability of the image’s class y is minimized [3].

B. Attribution Analysis Methods
We will discuss the characteristics of attributions generated

by two foundational methods: guided backpropagation (GBP)
and integrated gradients (IG), and then we explore integrated
decision gradients (IDG).

a) Guided Backpropagation: One of the first attribution
analysis methods is called saliency or the plain backprop-
agation method [7]. By feeding an input to a model and
performing one backpropagation pass, model gradients at the
output are captured, and these gradients are displayed as a heat
map for the attribution visualization [7]. However, the non-
linear activations used in DNNs result in the attribution to be
noisy. GBP modifies the original approach, allowing only non-
negative gradients to propagate which results in a substantial
reduction in attribution noise [10].

b) Integrated Gradients: IG is also an expansion on
the saliency method. It performs a backpropagation pass to
capture gradients for multiple images which come from the
interpolation from a black image to the input image [8].
This process results in attributions with reduced noise when
compared to saliency. However, due to the characteristic of
many of the individually captured gradients in IG having high
noise, the output retains a large amount of noise around the
image subject.

c) Integrated Decision Gradients: IDG, like IG, gathers
gradients from the interpolated images via the backpropaga-
tion operation, but it eliminates the noisy gradients that IG
traditionally captures by detecting which gradients do not
correspond to growth in model confidence [9]. By removing
these noisy gradients before averaging, IDG generates sharp
attributions that are highly focused on the subject and provide
dense groupings on the features which are important for the
model decision [9].

We compare the three attribution analysis methods for an
input from the ImageNet “Warplane” class [17] in Figure 1. It
is clear that the noise in the IG attribution is substantial, and
the objects of focus are lost in the result. When comparing
GBP and IDG, we see in each method that the focus is mainly
on the “Warplane” objects, but IDG retains less noise in its
attribution. The lower noise of an attribution method creates
room for a clear difference to be seen between attributions of
benign and attacked images. We explore this in Section III.

Fig. 1. A comparison of integrated gradients [8], guided backpropagation
[10], and integrated decision gradients [9]. It is clear that IDG has the lowest
amount of noise in the benign image attribution. This makes IDG a strong
candidate for the detection framework, as the IDG attributions for benign and
attacked images are more likely to have a greater difference than with other
methods since the initial noise is very low.

C. Attack Detection Frameworks

Defenses that attempt to detect attacks through input image
analysis use a variety of approaches. Adversary Detection
Networks [18] add layers to existing networks which give a
binary prediction on whether an input is adversarial. Spectral
Defense [19] determined that pixel adversarial attacks cause
easily detectable perturbations in the Fourier domain, so they
use a binary classifier to detect attacked images from their
Fourier domain transformations. Scalecert [20] determined that
adversarial patches must cause large activation values in the
beginning layers of DNNs for their effects to propagate to the
network output, so the detector analyzes the top layers of a
network to determine whether an input is adversarial.

Prior detection approaches have also relied on attribu-
tions [13], [14]. In ML-LOO [13] the attributions of benign
and pixel attacked images are analyzed, and it is shown
the two attributions have distinct and detectable distributions.
However, these approaches are constrained by noisy attribution
analysis methods that are unable to accurately pinpoint the
most important pixels.

With the development of better attribution analysis methods,
can we develop a binary classifier to detect an attacked input
from its attribution?



Fig. 2. A case study of the attributions methods and attacks. We compare the attributions from IG [8], GBP [10], and IDG [9] for the pixel (PGD L∞) [2]
and patch (LaVAN) [3] attacks. We examine each given method by the difference between the benign and attacked attribution outputs. It is clear that the IG
method does not generate clearly distinguishable attributions between a benign and attacked image, presenting a potential challenge for classification. Benign
and pixel attacked IDG attributions show a clear difference in attribution distribution and noise. GBP attributions for patch attacks clearly highlight the square
patch in each sample. IDG and GBP will therefore be strong choices for pixel and patch attack detection, respectively.

III. CASE STUDY

The integrated decision gradients method has proven to
reliably generate sharp attributions on the subject of an image.
This created promise for the use of IDG to help determine if an
image is attacked. In Figure 2 we perform a case study of the
output behavior of three attribution analysis methods: IG, GBP,
and IDG when they are given benign and adversarial images
as input with reference to a pixel and patch attack. In the
figure, the pixel and patch attacks are PGD L∞ [2] and LaVAN
patch [3] attacks, respectively. The top row presents the benign
image, pixel, and patch attacks for the three sample images.
Additionally, the original or new class is listed under the
image type. The following three rows of attributions show the
output of the IG, GBP, and IDG attribution analysis methods
respectively.

a) Pixel Attack Attributions: We first analyze the benign
and pixel attacked attributions shown in the first and second
columns of the three groups of images. First observing IG,
we see that the benign and pixel attacked attributions appear
to be very similar, with no clear distinction in the attribu-
tion distribution, making classification potentially challenging.
When viewing GBP, there is more contrast between a given
benign and attacked attribution than IG, as a sharp attribution
becomes noisy after attack. However, in comparison to IDG,
the benign GBP attribution is more noisy, and the attacked
GBP attribution is less noisy than those from IDG. Clearly,
benign and attacked attributions generated from IDG have the
largest difference out of the three methods. This indicates that
IDG will be the strongest performer for pixel attack detection.

b) Patch Attack Attributions: We now analyze patch
attack attributions. Once, again IG does not show a consis-
tent difference between benign and patch attributions, which
insinuates a class boundary will be hard to determine. When
viewing IDG, we make two observations. First, the focus of
the attribution consistently shifts towards the patch location.
Second, the resulting attribution is amorphous and relatively
small. Together, this leads to patch attack attributions appear-
ing with a similar form as benign IDG attributions. This is
unlike GBP. For GBP, in all presented examples, the patch is
highlighted in the attributions as a sharp, dense, square. This
creates an east-to-extract feature for a classifier. Due to this,
GBP should provide the best detection rate out of the three
attribution analysis methods for patch attacks.

We recognize these observations may not always hold true
and the distribution of attacked and benign attributions could
be the opposite, which is a topic of further investigation.
However, we operate under the assumption that the observed
distributions hold true and design pixel and GBP patch attack
detectors using IDG and GBP respectively.

IV. METHODOLOGY

In this section we present the framework for implementing
the proposed classifier. We present the classifier architecture,
detail the data generation process, and provide the training
process shown in Figure 3.

A. Proposed Detector Architecture

We treat the objective of detecting adversarial examples
as an image classification task. Analyzing the attributions of



Fig. 3. An overview of the full detector training and inference process. There are two steps to the process shown in (a): data generation and training. During
data generation, for every training input image selected, a given adversarial attack is applied (PGD [2] L∞ or L2 or LaVAN patch [3]. This results in benign
and attacked images, both of which are given to an attribution analysis method (IG [8], GBP [10], or IDG [9]) and a benign and attacked attribution are
created. Once this is done for all training images, the binary classifier is trained on the two classes of attributions. For inference in (b), an image will be
classified as benign or attacked when an attribution of the image is given to the respective classifier (e.g. a classifier trained on IDG attributions of benign
and PGD L∞ images) which can predict if the image is attacked or benign.

benign and attacked images shows the existence of a clear
distinction in noise levels and noise distribution between the
two classes of attributions. Therefore aiming to distinguish
attributions from these two classes, an image classification
CNN will provide a strong foundation.

The classifier design is built from a ResNet101 [21] back-
bone. ResNet101 is a powerful and well-founded CNN ar-
chitecture which is suited for the task of classifying high-
information images. As we generate the attributions from the
ImageNet dataset [17], this strong backbone for the classifier
is necessary for the high-information attributions. To train
the ResNet101 classifier to provide binary classification of
attributions we start without weights, and modify the final
fully-connected layer of the model to an output size of 2. We
present the training details of this classifier in Section IV-C.

B. Data Generation

Before training a classifier we generate training and eval-
uation sets of benign and adversarial attributions. We source
input images from the 2012 ImageNet training images dataset
for training data generation.

We used the following criteria for image selection: the
image must be RGB, correctly classified by ResNet101, and
the subject must cover no more than 50% of the image area.
This image area limitation is in place to give all the attribution
analysis methods the best possibility of generating a sharp
benign attribution. In general, the smaller the subject, the more
focused the attribution and the sharper the benign attribution,
the more separable the attacked attributions will be.

All selected images are attacked and attributions for the
benign and attacked images are generated. This results in nine

datasets of benign attributions and attacked attributions for
each pairing of an attack and attribution analysis method, e.g.
IDG attributions of benign and patch attacked images. If 100
images were chosen this would result in 200 attributions (half
benign, half attacked) for each dataset.

As the attribution appearance is greatly decided by the
visualization method, a standard method which presents highly
visible features was chosen. As seen so far in the paper,
attributions are visualized with the Captum [22] visualization
library. The training data are generated by this library using the
default blue heat map and the absolute value of the attribution
so that all attribution data is presented equivalently. Once all
attributions are generated, we train the classifiers.

C. Training

We train one classifier for each of the nine datasets using
a modification of the PyTorch ImageNet training example
[23]. The classifier is a modified ResNet101 classifier without
pre-trained weights. For each dataset, the mean and standard
deviation is measured before training as the attributions do
not share the same distribution as the original ImageNet
data. Lastly, the traditional classification accuracy measure is
modified to the binary classifier accuracy measure in Eq.(3).

We train for 50 epochs with a 60/40 train/validation split.
The batch size is set to 1024 and shared across four GPUs.
We use cross entropy loss and a stochastic gradient descent
optimizer with an initial learning rate of 0.1, momentum of
0.9, and weight decay of 1e− 4. The epoch with the highest
validation accuracy is saved.

In Figure 3 we show an overview of the data generation
and training process as well as the inference process. In (a)



TABLE I
CLASSIFICATION ACCURACY FOR PROPOSED DETECTORS

Pixel Attack Patch Attack
Attribution Method PGD L∞ PGD L2 3% LaVAN

IG 93.52 93.44 69.50
GBP 98.80 95.27 87.98
IDG 99.13 97.98 72.04

we show the generation of the training data IDG attributions
from benign and PGD L∞ attacked images. The attributions
are passed to a modified binary CNN classifier which learns
the distribution of the two classes of attributions. In (b) we
see the inference process where an attribution is generated for
an image and is given to the trained binary classifier which
will predict if the original input image is benign or attacked.
This process takes less than one second on modern hardware.

V. EVALUATION

In this section we present the evaluation performed for
the proposed attack detection method. We first present the
experimental setup for the hardware, libraries, and evaluation
methods used. Next, we present details on the results of all the
trained proposed attack detection models and select the best
models for comparison. Finally, we compare the best proposed
detectors against existing methods in the field.

A. Hardware and Libraries

We performed all training and quantitative evaluation in
PyTorch [23] on a server with four NVIDIA A40 GPUs.
We use libraries for the PGD attacks [24], patch attack [25],
and GBP attribution analysis method [22]. The IG and IDG
methods use personal implementations of the code.

B. Quantitative Evaluation

We use binary classifier accuracy for evaluation of the
proposed and comparison methods. This accuracy measure
classifies predictions as true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

We additionally use the F1 score to measure how reliable
the training process for the proposed methods is. A low
F1 score indicates the reported accuracy is due to dataset
imbalances, whereas a high score indicates each class has
equivalent accuracy. The F1 score are defined as follows:

F1 =
TP

TP + 1
2 (FP + FN)

(4)

C. Training Results

We trained the nine potential detection models of the
proposed framework on a large dataset to determine the highest
performing models. From 11000 input images, we trained the
nine models on a 13200 and 8800 train and validation split
as explained by the details in Section IV-C. We evaluate the
validation accuracy and F1 scores in this section.

TABLE II
F1 SCORES FOR PROPOSED DETECTORS

Pixel Attack Patch Attack
Attribution Method PGD L∞ PGD L2 3% LaVAN

IG 0.935 0.933 0.674
GBP 0.989 0.953 0.874
IDG 0.991 0.980 0.703

In Table I, we present the binary classification accuracy as
calculated from Eq.(3). The best detection accuracy for each
of the three attacks is in bold. For the pixel attacks, IDG
provides a clear lead over GBP and IG in detection accuracy as
expected from Section III. GBP also performs well, but not to
the level of IDG. Surprisingly, IG manages a high pixel attack
detection accuracy which may be explained by the existence
of patterns only seen by a classifier. For the patch attack
detectors, the results also meet expectations. GBP performs
the best as expected from the analysis in Section III. For IG
and IDG, accuracy is well above random prediction, but does
not meet GBP as expected from the analysis of Figure 2.

In Table II, we report the F1 scores for the nine trained
classifiers. We analyze scores in comparison to the accuracy
scores of Table I to determine the reliability of the reported
accuracy scores. Since we use a class-balanced dataset and the
accuracy and F1 scores are nearly equivalent, we confirm the
model is performing well on both classes, and the accuracy
reported translates to real-world usage.

D. Comparison With Previous Work

In this section we compare the best-performing proposed
methods of IDG pixel attack detection and GBP patch attack
detection against competitors on ImageNet data.

a) Patch Attack Detection: In Table III, we compare
the classification accuracy of the proposed GBP patch attack
detection model to the accuracy of the PatchGuard++ [26] and
ScaleCert [20] detection frameworks. The PatchGuard++ and
ScaleCert evaluation numbers are taken from the ScaleCert
[20] paper, as there is no public code available for ScaleCert.
To compare, we train the GBP patch detection model on patch
sizes of 1, 2, and 3% on a set of 1320 attributions and validated
on 880 (equal parts benign and attacked). There we no details
on the dataset size of the ScaleCert paper results. Evaluating
the proposed model against PatchGuard++ and ScaleCert,
shows a large increase in detection accuracy for all patch sizes.
With up to a 30% detection accuracy improvement, the GBP
method clearly outperforms the previous work.

b) Pixel Attack Detection: In Table III, we compare the
classification accuracy of the proposed IDG pixel attack detec-
tion model to the accuracy of the ML-LOO [13] attribution-
based attack detection framework. Both detection models are
trained on the same train and validation split as the patch
comparison (1320/880) for each of the PGD L∞ and L2

pixel attacks. The ML-LOO results were measured from our
personal implementation of their detection framework. In the
comparison, ML-LOO receives a near-random accuracy of
roughly 50% in each of the tests, while the proposed IDG



TABLE III
IMAGENET PATCH AND PIXEL ATTACK DETECTION ACCURACY

Patch Attack Pixel Attack
Detector 1% LaVAN 2% LaVAN 3% LaVAN PGD L∞ PGD L2

PatchGuard++ [20] 36.30 33.90 31.10 - -
ScaleCert [20] 60.40 55.40 52.80 - -
ML-LOO [13] - - - 49.86 49.57

Proposed 80.57 80.93 83.56 95.26 96.06

detector manages over a 95% detection accuracy on both attack
variations. The larger accuracy reported in the ML-LOO paper
[13] may be attributed to using the less complex CIFAR-10.

We recognize this dataset is relatively small and more
extensive training and evaluation on larger datasets would
be needed to thoroughly validate performance. In particular,
we do not measure the detectors resilience against adaptive
attacks. In the future, adversarial training or other techniques
may be needed to harden the detectors. Additionally, conduct-
ing ablation studies to validate classifier architecture choice
could reveal significant opportunities for further improvement.

VI. CONCLUSION

Pixel adversarial attacks and adversarial patches are attacks
on DNNs that have shown to be effective at causing model
confusion in many applications. We have shown that these at-
tacks are easily detected through the analysis of the heat maps
produced by different attribution methods. We trained binary
classifiers to take attribution maps as inputs and determine
whether the image from which the attribution was generated
has been attacked. These models achieved up to 99% accuracy
on pixel adversarial attacks and 88% accuracy on adversarial
patches. We found that analysis of guided backpropagation
attributions provides strong patch detection, and analysis of
integrated decision gradients attributions provides strong pixel
attack detection detection.

Recently proposed defenses do not determine whether an
image has been attacked before applying a defense [16], [25].
This results in adverse effects to benign images and increased
computational overhead. We plan to apply our detector to ex-
isting defenses in order to avoid these adverse effects, improve
computational efficiency, and increase recovery accuracy. Ad-
ditionally, as this paper focused on image classification, we
are working to extend the approach to other domains such as
object detection and semantic segmentation.
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[12] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better
understanding of gradient-based attribution methods for deep neural
networks,” arXiv preprint arXiv:1711.06104, 2017.

[13] P. Yang, J. Chen, C.-J. Hsieh, J.-L. Wang, and M. Jordan, “Ml-loo:
Detecting adversarial examples with feature attribution,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 6639–6647.

[14] S. Jha et al., “Attribution-driven causal analysis for detection of adver-
sarial examples,” arXiv preprint arXiv:1903.05821, 2019.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[16] J. Liu, A. Levine, C. P. Lau, R. Chellappa, and S. Feizi, “Segment
and complete: Defending object detectors against adversarial patch
attacks with robust patch detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
14 973–14 982.

[17] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, 2015.

[18] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[19] P. Harder, F.-J. Pfreundt, M. Keuper, and J. Keuper, “Spectraldefense:
Detecting adversarial attacks on cnns in the fourier domain,” 2021.

[20] H. Han et al., “Scalecert: Scalable certified defense against adversarial
patches with sparse superficial layers,” in Advances in Neural Infor-
mation Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds., 2021.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[22] N. Kokhlikyan et al., “Captum: A unified and generic model inter-
pretability library for pytorch,” arXiv preprint arXiv:2009.07896, 2020.

[23] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proceedings of the 33rd International Conference
on Neural Information Processing Systems. Curran Associates Inc.,
2019.

[24] H. Kim, “Torchattacks: A pytorch repository for adversarial attacks,”
arXiv preprint arXiv:2010.01950, 2020.

[25] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, “Patchguard: A
provably robust defense against adversarial patches via small receptive
fields and masking,” in 30th USENIX Security Symposium (USENIX
Security), 2021.

[26] C. Xiang and P. Mittal, “Patchguard++: Efficient provable attack de-
tection against adversarial patches,” arXiv preprint arXiv:2104.12609,
2021.


	Introduction
	Related Work
	Attack Types
	Attribution Analysis Methods
	Attack Detection Frameworks

	Case Study
	Methodology
	Proposed Detector Architecture
	Data Generation
	Training

	Evaluation
	Hardware and Libraries
	Quantitative Evaluation
	Training Results
	Comparison With Previous Work

	Conclusion
	References

