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Abstract

Developing efficient and expressive representations of 3D
scenes is a pivotal problem within 3D computer vision.
The state-of-the-art approach is based on utilizing 3D point
clouds, which is inefficient in data utilization. In this paper,
we propose a neuro-symbolic approach leveraging Universal
Scene Description (USD) language. The approach is based on
representing 3D scenes using a combination of known objects
(symbolic) and 3D point clouds (neural) for the background.
We also propose a framework called neuro-symbolic conver-
sion (NSC) for automatically converting 3D scenes into the
proposed neuro-symbolic representation. The NSC frame-
work first locates candidate objects in the 3D point cloud rep-
resentation. Next, the objects are substituted with their com-
pact symbolic representation while considering translations
and rotations. The correctness of the substitution is verified
by rendering the neuro-symbolic representation and compar-
ing the visual similarity with the original point cloud repre-
sentation (or RGB-D view). The experimental results demon-
strate that our framework is highly accurate in object identi-
fication and objection substitution. The neuro-symbolic rep-
resentations are expected to be useful for downstream tasks
such as entity identification, activity recognition, and object
tracking.

1 Introduction

3D computer vision is a vital domain in machine learning
research, significantly contributing to spatial perception and
automation, especially in manufacturing, healthcare, and de-
fense. Recent advancements in 3D computer vision, includ-
ing enhanced semantic segmentation (Barbosa and Osório
2023), robust object pose estimation techniques (Zhu et al.
2022), and the integration of 3D vision into autonomous
systems (Singh and Bankiti 2023). Traditional explicit 3D
representations, like point clouds, meshes, and voxels, en-
counter challenges in efficiently handling complex and de-
formable shapes, facing issues in accurately capturing de-
tails and managing incomplete or noisy data. Point clouds,
utilized for 3D data capture, confront challenges, notably
in quantization, leading to precision loss, and their unstruc-
tured nature complicates compatibility with traditional ma-
chine learning techniques. Furthermore, innovative methods
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Figure 1: (left) Neural representation of the background
using a 3D point cloud. (right) Symbolic representation
of a known object in universal scene description (USD)
language. (middle) Neuro-symbolic representation of a 3D
scene using USD.

like Voxel-based CNNs (Liu et al. 2019) and Graph-Based
Approaches (Mirande et al. 2022) introduce complexities
and high computational overhead when transforming point
clouds into structured formats.

Symbolic representations of data offer computational ef-
ficiency and storage benefits, making it an attractive choice
for low-dimensional data. However, its limitations become
apparent in high-dimensional scenarios where symbolic ap-
proaches may need more expressiveness to effectively cap-
ture intricate patterns, presenting challenges in preserv-
ing the richness of information associated with complex
datasets. USD is embraced in production houses like Dream-
Works (Blevins and Murray 2018), becomes an industry
standard due to its versatility and user-friendly features.

In this paper, we propose a neuro-symbolic approach
for representing 3D scenes using USD. The approach in-
tegrates known objects (symbolic) with 3D point clouds
(neural), resulting in compact and efficient neuro-symbolic
representations of intricate 3D scenes as illustrated in Fig-
ure 1. We also propose a framework called neuro-symbolic
conversion (NSC) for converting RGB-D images (or 3D
point clouds) into the proposed neuro-symbolic representa-
tion using USD. The USD format has the capacity to ren-
der back the original RGB-D image. This bidirectional con-
version underscores the capacity to represent complex 3D
scenes adeptly but also demonstrates practical applications
by seamlessly substituting objects from a library into the
USD description. This showcases the framework’s poten-
tial for efficient scene manipulation and object recognition.
To the best of our knowledge, our neuro-symbolic frame-
work represents a pioneering exploration of USD, offer-
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ing more efficient and adaptable object representations. Our
main contributions can be summarized, as follows:

• A neuro-symbolic representation of 3D scenes in USD.
The format supports bidirectional conversions between
RGB-D images and neuro-symbolic 3D scenes.

• Introducing an effective approach called neuro-symbolic
conversion (NSC) for identifying and matching objects
within a 3D scene using a predefined object library.

• The experimental results show that NSC can identify ob-
jects with 100% accuracy and substitute the object with
more than 90% similarity on average.

The organization of this paper is as follows. Section 2
provides the necessary background for related concepts,
and Section 3 describes the proposed model 3D scene to
USD object conversion and reproduction method. Section 4
presents the experimental results, and the last section con-
cludes the paper with future directions.

Previous Works. Efficiently representing 3D data is cru-
cial with the growing use of 3D technologies in various
applications, including virtual and augmented reality, mo-
bile mapping, historical artifact scanning, and 3D visualiza-
tion (Sugimoto et al. 2017; blo 2023). The work (Nguyen
et al. 2023) investigates virtual reality technology for robot
environment modeling and presents a method to translate
USD-based scene graphs into Knowledge Graphs (KGs).
The resulting KG, augmented with dynamic data from a
physics simulator, acts as background knowledge for robotic
decision-making, demonstrated in a box unpacking sce-
nario. Despite these advances, exploring deep learning with
symbolic representations, like USD, remains relatively un-
charted. This research avenue holds the promise of seam-
lessly combining the advantages of compact 3D scene rep-
resentation in this efficient data structure than point cloud,
offering potential benefits for machine learning models to
operate more efficiently.

Learning in a 3D environment is an active research area.
The unidirectional transformer-based approach (Hong et al.
2023) presents a Large Reconstruction Model, capable of
rapidly predicting 3D object models from single input im-
ages, trained on an extensive multi-view dataset for en-
hanced generalizability and performance across various test-
ing scenarios. Neuralangelo (Li et al. 2023) combines multi-
resolution 3D hash grids with neural rendering, utilizing nu-
merical gradients and a coarse-to-fine optimization strategy
to achieve superior 3D surface reconstruction from multi-
view images. Our research focuses on utilizing USD rep-
resentations of 3D objects to enhance downstream machine
learning applications within the 3D environment.

2 Neuro-Symbolic Representations of 3D

Scens using USD

Conversion from a neural representation to a neuro-symbolic
representation requires substituting part of neural represen-
tations with symbolic representations. This substitution re-
quires identifying objects of interest from the neural repre-
sentation and extracting essential information related to the

object in question. The information extracted from the neu-
ral images can then be used to reconstruct symbolic repre-
sentation of the object and can then be replaced constructing
a neuro-symbolic representation. These neuro-symbolic hy-
brid representations stored in USD formats can be used to
store, interpret, analyze, and view neuro-symbolic data.

2.1 Problem Formulation

Finding the solution to this complex problem can be formu-
lated using the following optimization function:

max
✓

SSIM(I, J✓) (1)

Here, the terms I and J✓ are the neural image and neuro-
symbolic images with different parameters ✓, respectively.
The neuro-symbolic images are generated based on the de-
tection of an object of interest from the neural image, and
then parameters (✓) of the symbolic objects are optimized by
maximizing the Structural Similarity Index (SSIM) score.

3 Overview of Proposed Methodology

In this section, we provide the details of the neuro-symbolic
conversion (NSC) framework. The flow of the framework is
shown in Figure 2 and illustrated with an example in Fig-
ure 3. The input to the framework is an RGB-D image. The
output is a neuro-symbolic representation in USD. The first
step of the framework is to construct a 3D point cloud (neu-
ral) representation of the scene. The next step is to identify
and substitute portions of the image with objects of inter-
est (symbolic) from a library. The substitution is performed
such that a perception-based metric is minimized.
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Figure 2: Overall architecture of proposed NSC frame-
work explaining proposed neural and neuro-symbolic bidi-
rectional conversion procedure.

3.1 Bidirectional Conversion

The process of seamlessly converting images to and from
USD involves harnessing the high-performance capabilities
of the USD software platform. In the forward process, RGB
and depth images are rendered from existing USD files. This
bidirectional conversion process ensures a holistic trans-
formation between neural representations and symbolic de-
scriptions. According to the USDA 1.0 specification, a USD
can contain different primitive objects. These primitive ob-
jects are the nodes that stores the mesh and other objects
(e.g., lights, cameras, etc.) of a scene. These USD files can
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Figure 3: Semantic segmentation guides the extraction of object point clouds, analyzed for primitive object properties
(Paramsi). These properties drive the placement of primitives in the scene, facilitating USD reconstruction.

then be rendered using a USD rendering engine. We uti-
lize “PointInstancer” to store the neural point cloud data and
primitive types to store symbolic library objects in NSC.

Conversely, in the reverse process, USD files are gener-
ated from RGB-depth images. For instance, RGB and depth
frames captured from DARPA Airsim are utilized in our spe-
cific implementation to form the basis for USD scene gener-
ation. This intricate conversion process is facilitated through
the utilization of USD-core and Kaolin libraries.

3.2 Image to Object-wise USD Scene Generation

Consider the capture of RGB color images, denoted as IRGB,
and depth images, denoted as IDepth, from the Airsim envi-
ronment. To semantically segment the color images, a pro-
posed open-set semantic segmenter is applied, producing
semantic segmentation maps denoted as MSemantic. Concur-
rently, the depth images are utilized to generate point-cloud
information, represented as PCloud.

The semantic segmentation maps MSemantic are then intri-
cately projected onto the point-cloud data PCloud. This pro-
jection serves the purpose of symbolically identifying dis-
tinct objects within the 3D environment. Mathematically,
this projection operation can be expressed as:

OSymbolic = Project(MSemantic, PCloud) (2)

Here, OSymbolic is the set of symbolically identified objects
from the scene. Subsequently, individual objects are se-
lected from the symbolic identification OSymbolic and un-
dergo direct USD export or reconstruction from the point-
cloud information to form 3D meshes. Let Mi denote the
mesh of the i-th object, and Oi represent the i-th se-
lected object. The reconstruction operation can be rep-
resented as: Mi = Reconstruct(Oi, PCloud). This image-to-
object-wise USD scene generation process involves seman-
tic segmentation, point-cloud generation, symbolic identifi-
cation, object selection, reconstruction, and USD export.

3.3 Image to Object-Wise Property Extraction

The object property extraction from images involves project-
ing a semantic segmentation map MSemantic to identify object
point clouds PObject as shown in Figure 3. The object-wise
point clouds are then analyzed to extract parameters ✓ =
{location, rotation, color, . . .} characterizing each primi-
tive object. These parameters are utilized to place primitives
in the scene. Finally, a USD scene is reconstructed by op-
timization of ✓ using equation 1, combining primitives and

their extracted properties. The objective of this step is to en-
sure the effective extraction and utilization of object proper-
ties within the USD environment.

Algorithm 1: Neuro-Symbolic Conversion
Require: Neural image Itest, SymbolicObjectLibrary(SOL)
Ensure: Neuro-Symbolic representation of 3D image

1: function MATCHOBJECTS(Itest, SOL)
2: for each object of interest Oi in SOL do

3: GradCAM identifies point cloud of Oi: Pobject
4: for each identified point do

5: Remove pixel: Imodified  Itest \ Pobject
6: for each object ✓ set do

7: Compute SSIM and MSE scores
8: Track scores for each variation
9: end for

10: Select best-matched variation Ot

11: Replace removed pixel with Ot

12: end for

13: end for

14: return Imodified + Ot

15: end function

The proposed method NSC is outlined in Algorithm 1.
The goal is to find the best match between a test image
and library objects. Using GradCAM, the algorithm identi-
fies the pixels in the test image corresponding to the objects
of interest. Subsequently, it performs pixel removal and re-
placement with various library object variations, consider-
ing different orientations and colors. The matching process
involves computing SSIM and Mean Squared Error (MSE)
scores between the modified test image and rendered im-
ages with library object variations. The algorithm iterates
through possible variations, keeping track of scores for each.
The best match for each object is one that has maximum
SSIM and minimum MSE scores. The outcome is a neuro-
symbolic image showcasing the best-matched variations of
the objects of interest. This algorithmic approach enables ef-
ficient estimation of categorical and transformational infor-
mation for important objects in the scene.

4 Experimental Results

In this section, we validate NSC through two distinct 3D sce-
narios involving five different scenes featuring a red car and
a human as our objects of interest. The objective is to apply
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Figure 4: Best matching scene selection based on the MSE.
Objects of interest are car (top) and human (bottom).

NSC to identify point clouds representing these objects, sub-
sequently substituting them with corresponding symbolic li-
brary objects. The modified scenes are then compared with
the ground truth scenarios, and the best match is determined
on SSIM and MSE metrics. Upon finding a highly matching
object, transformation information is extracted and stored in
USD format.

Illustrated in Figure 4, NSC demonstrates notable effec-
tiveness in substituting objects within 3D scenes. The red
car, enclosed in a green box, exhibits the lowest normal-
ized MSE, indicating the highest match with the ground
truth neuro-image. MSE is normalized by the image size
(224⇥ 224) and multiplied by 100 for better representation.
Figure 4 also showcases the top five USD representations out
of 108 car object variants compared in this scene. Table 1 re-
ports property extractions for the corresponding car object.
A high SSIM value, along with very low errors (Err.) in ro-
tation (in radians) and relative depth (m) as shown in Scene

1, instills confidence in the identified objects. The scene
can be further annotated with the library objects’ known
attributes, facilitating numerous downstream learning and
analysis tasks efficiently. The Accur. column highlights that
object identification is correct for all instances (108 out of
108) in this example scenario.

A similar trend is observed in MSE and SSIM scores for
the human object, albeit not as ideal as the car object. Hu-
mans are correctly identified in all scenes (72 out of 72) and
replaced accurately. Our investigation reveals that the hu-
man object’s location in the scene relative to the surround-
ings contributes to poorer MSE and SSIM compared to the
car object.

NSC iteratively estimates both categorical and transfor-
mational information for essential objects, facilitating the
update of object attributes within the USD library. The pre-
liminary results affirm the feasibility of NSC in intricate
neuro-symbolic AI tasks.

5 Conclusion and Future Work

Our work demonstrates a substantial advancement in the
neuro-symbolic representation of 3D scenes. The bidirec-
tional image-to-USD conversion, object-wise property ex-
traction, and dynamic library matching highlight the effi-
ciency and adaptability of our approach. In terms of future

Table 1: Object (Obj.) property extraction.

Scene Obj. SSIM Accur.
Err.

|✓sr|
Err.

|Y |
1 Car 0.98 100% 0.003 0
2 Human 0.92 100% 0.012 0
3 Car 0.97 100% 0.003 0
4 Human 0.91 100% 0.012 0
5 Car 0.97 100% 0.004 0

Average 0.95 100% 0.006 0
directions, we foresee an expansion of our machine learning
models to bolster symbolic reasoning, with a specific focus
on deeper exploration of inter-symbolic relationships.
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