Towards Area-Efficient Path-Based In-Memory
Computing using Graph Isomorphisms

Sven Thijssen*, Muhammad Rashedul Haq Rashed!, Hao Zheng*, Sumit Kumar Jha®, and Rickard Ewetz
*Department of Computer Science, University of Central Florida, Orlando, USA
TDepartment of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
iComputer Science Department, Florida International University, Miami, USA
{sven.thijssen, muhammad.rashed, hao.zheng, rickard.ewetz} @ucf.edu, jha@cs.fiu.edu

Abstract—In-memory computing has attracted significant at-
tention due to its potential to alleviate the issues caused by
the von Neumann bottleneck. Path-based computing is a re-
cently proposed in-memory computing paradigm for evaluating
Boolean functions using nanoscale crossbars. Unlike state-of-the-
art paradigms that use expensive WRITE operations to execute
functions, path-based computing only relies on READ operations,
which translates into benefits of low power consumption and low
computational delay. Unfortunately, path-based computing comes
with the penalty of substantial area overhead. In this paper, we
introduce the ISO framework, a hardware-software solution for
minimizing the area overhead of path-based computing systems.
The framework is based on mapping computation to in-memory
kernels using an intermediate k-LUT representation. The k-
LUTs facilitate reusing hardware resources that realize the same
computational structures. The reuse is performed by detecting
identical subfunctions using isomorphic graphs. We also present a
set of program instruction and scheduling algorithms to facilitate
the hardware reuse. We have evaluated our proposed ISO
framework on the 10 ISCAS85 benchmarks. Our experimental
evaluation indicates that our proposed architecture improves
energy consumption, latency, and area by 1.30x, 76.59x, and
2.79x on the average compared with previous state-of-the-art
methods for path-based computing.

I. INTRODUCTION

In an era where 328.77EB amounts of digital data are
created daily, computing systems are pushed to the limit to
process this information [1]. While these amounts of digital
data have facilitated the success of data-intensive applications,
such as deep learning, the applications are constrained by
the von Neumann bottleneck [2], which results from the data
movement between memory units and processing units. In-
memory computing promises to eliminate this bottleneck by
merging the memory and computing units.

Over the years, many in-memory computing paradigms have
been proposed, both in the analog and digital domain. While
the analog domain provides low energy and high density,
the digital domain provides robustness [3]. In the digital
domain, several computing paradigms have been proposed,
such as IMPLY [4], MAGIC [5], FLOW [6], and PATH [7].
The first three paradigms use WRITE operations to perform
Boolean logic operations while the latter solely relies on
READ operations. As WRITE operations in ReRAM require
orders of magnitude higher energy consumption compared
with READ operations, PATH is favorable compared with the
other aforementioned digital in-memory computing paradigms

The authors were in part supported by NSF awards # 2319399 and
2113307, and DOE award DE-SC0024576.

in terms of energy consumption [8]. Unfortunately, the state-
of-the-art synthesis methods for path-based computing suffer
from large area overhead [7].

The synthesis method directly maps functions represented
using binary decision diagrams (BDDs) into crossbar designs.
However, it is well-known that many classes of arithmetic
functions do not have compact BDD representations, resulting
in substantial area overheads. Therefore, there is immense po-
tential to improve computer-aided design tools for in-memory
computing systems by leveraging the success stories from the
well-established VLSI industry.

In this paper, we propose the ISO framework to address the
aforementioned problems. In the ISO framework, our main
objective is to reduce the overall area. To accomplish this, we
make multiple contributions. First, we draw concepts from the
VLSI community to synthesize large benchmarks into smaller
intermediary data structures, called k-LUTs [9]. A k-LUT is a
look-up table with at most % input variables. Each k-LUT will
be synthesized into a BDD, which is subsequently synthesized
into a crossbar design. From our experimental results, we
conclude that this already results in significant hardware
savings. Second, we observed that for a fixed value of k, the
number of possible BDD structures is bounded. This entails
that the BDD structures are isomorphic. A graph isomorphism
is a one-to-one mapping between the nodes of two graphs
such that the structure is preserved [10]. To identify these
isomorphic graphs, we use the Weisfeiler-Lehman kernel [11]
and we exploit this observation to make even more hardware
savings by reusing the same hardware resources.

We make the following contributions:
1) We leverage k-LUT representations to map Boolean func-

tions into crossbar designs.

2) We made the observation that for a fixed value of k,
the number of different BDD structures is bounded. By
exploiting isomorphic properties between these BDDs, we
can make significant hardware savings.

3) Third, we have developed an end-to-end synthesis frame-
work, ISO, to compile a Boolean function into a comput-
ing system for path-based computing. A tight hardware-
software co-design is proposed, including crossbar design
and program execution.

In Section II, we provide preliminaries, and we motivate
our work in Section III. The ISO framework is introduced
in Section IV. Area optimization is discussed in Section V.
Experimental evaluation in Section VI, and the paper is
concluded in Section VII.

Phase 1: Synthesis)

module ex (
xyf);
inputx,y;
output f;
assign f=
x&~y) |y;
endmodule

(b) BDD

(a) Specification (c) Crossbar design

Phase 2: Compilation) Phase 3: Execution)
Vi v T
’ﬁ ON ’ﬁ offF | [, oN ON LOFF OFF
S i t I_.-v ~]
z E 1
’q ON ’q ON ’¢ OFF ON ON OFF
== =3 e "~ Vour
_ﬁ OFF _ﬁ ON _li oN | f OFF E ON off | f=1
=1 =3 = -]
y X x 1 1 0
(d) Programmed crossbar (e) Evaluation

Fig. 2. High-level overview of the synthesis, compilation, and execution phase for path-based computing. The synthesis and compilation phase must be done
once for each Boolean function, and the execution phase is repeated for each input vector.

II. PRELIMINARIES
A. Binary decision diagram

A Binary Decision Diagram (BDD) is a directed acyclic
graph (DAG) representation for a Boolean function (see Fig-
ure 2(b)). A BDD consists of layers of nodes where each node
in a layer is assigned the same input variable. Each node,
except for two terminal nodes, have two outgoing edges. One
edge (solid) is labeled the positive literal, and one edge is
labeled with a negative literal (dashed). The terminal nodes
are labeled ‘0’ and ‘1’. For evaluation, we are given an input
vector, and the BDD is traversed from the root node to a
terminal node. At each node, take the edge such that the truth
value of the literal evaluates to ‘1’. When reaching the ‘1’ (‘0*)
terminal node, the Boolean function evaluates to true (false).

B. Isomorphism

An isomorphism between
a graph G and H is a bijec-

tion B from the nodes in G 1 o’ e <Al

to the nodes in H such that / yd

BV(G) = V(H)¥(u,v) € |2 3 b
E(G) = (B(u),B(v)) € =TT -
E(H) [10]. In other words, ¢ T H

Fig. 1. Example of an isomorphism

there is a mapping from the
between two graphs G and H.

nodes in G to the nodes in
H such that for every edge in G there exists an edge in H
while adhering to this mapping. In Figure 1, we provide an
example of an isomorphism between two graphs, G and H.

C. Path-based computing

Path-based computing is a READ-based digital in-memory
computing paradigm. The paradigm consists of three phases:
synthesis, compilation, and execution.

Phase I: Synthesis. The input of this phase is a specifica-
tion, and the output is a crossbar design. In Figure 2(a), the
specification is the Boolean function f = (z A —y) Vy, which
is subsequently synthesized into a binary decision diagram
(BDD). The resulting BDD is shown in Figure 2(b). Then, the
BDD is mapped to a crossbar design, as shown in Figure 2(c).
In a crossbar design, the Boolean literals are assigned to the
selectorlines, and the memristors are assigned binary truth
values. The synthesis phase is performed only once for a given
Boolean function.

Phase II: Compilation. The memristors of a crossbar
are programmed to either a high (OFF/‘0’) or low (ON/‘1’)
resistive state, depending on the provided crossbar design.
Orthogonal to other digital in-memory computing paradigms,
programming of the memristors is only done once during the
system’s lifecycle. In Figure 2(d), we illustrate the state of the
crossbar, and the assignment of literals to the selectorlines.

Phase III: Execution. The Boolean function f is evaluated
repeatedly for different input vectors. The selectorlines are
charged according to the truth value of the respective literal.
For example, in Figure 2(e), the Boolean function f is evalu-
ated for the input vector x = 0, y = 1. When the selectorline
is assigned ‘1’, then it is charged and the transistors connected
to this selectorline are closed. Otherwise, when the selectorline
is assigned ‘0’, it is not charged and open. Then, a high input
voltage is applied to the input wordline, and an electrical
current flows through the crossbar along memristors which are
ON. When the electrical current reaches the output wordline,
f evaluates to true. Otherwise, f evaluates to false.

III. MOTIVATION

In this section, we outline the limitations of previous work,
and motivate our proposed ISO framework. Path-based com-
puting has the benefit of low energy consumption and low
latency, but the computing paradigm currently suffers from
large area overhead. The state-of-the-art synthesis methods
map a single BDD directly to a crossbar. This brings three
problems with it:

1) A single BDD may result in larger area than a collection
of small BDDs.

2) BDDs may grow large in the number of input variables
(if they can be synthesized after all for real-world bench-
marks), and consequently the resulting area is larger than
physical crossbar dimensions allow. Consequently, a poste-
riori partitioning algorithms are required.

To address these problems, we will leverage k-LUTs as
intermediate data structure to synthesize a Boolean function.
Instead of creating a single BDD for the whole Boolean
function, we will create a BDD for each LUT. This directly
solves the first two problems. Further, we made the observation
that when £k is fixed, the possible number of BDD structures is
bounded. This enables the reuse of hardware resources as the
crossbar design is structurally the same for different LUTs.

.. input ..., .. input ... input Execution
£ LUT1 | | LUT2 LUT3 | o order
= H H
o Stepl : Step 2
= I L]
= » LUT 4 LUTS » -

8
—
=]
=]
m

| LUT6 :

& output output
(a) k-LUT topology (b) BDD topology

b

1

(c) Unbounded crossbar design + execution order

Fig. 5. Synthesis of a Boolean function using k-LUTSs. In step 1, the Boolean function is synthesized into a k-LUT topology. In step 2, the k-LUT topology
in (a) is converted in a BDD topology in (b). Next, in step 3, the individual BDDs are mapped into a crossbar design using the synthesis method described
in Section II-C such that we obtain an unbounded crossbar design with execution order in (c).

In Figure 3(a) and (b), we show an overview of the architec-
ture targeted in previous work [7], and our work, respectively.
In previous work, the logic units are connected to the bus,
which is power-hungry and slow. In our work, we aim for
locality. First, the inputs are provided from the bus to the input
buffer @). The controller @ fetches the data from the buffer,
and executes the operations in the logic unit €). The output
is either written to the output buffer @, which is connected
to the bus, or to the intermediate results buffer @) such that
the values can be applied in a next iteration.

‘ BUS ‘
LOGIC LOGIC T T
(ReRAM) (ReRAM) Q o
INTERMEDIATE
INPUT RESULTS OUTPUT
i T BUFFER SUFFER BUFFER
! BUS | | i T
CONTROLLER ‘ ‘ t ‘ ‘ t ‘ } ‘
QO — | LOGIC
0 (ReRAM)

CONTROLLER | ==+

LOGIC LOGIC ||
(ReRAM) (ReRAM)
............ R (3]

(a) Previous work (b) Proposed architecture
Fig. 3. High-level overview of the targeted architecture.

IV. PROPOSED ISO FRAMEWORK

In this section, we introduce the ISO framework, which
synthesizes Boolean functions into k-LUTs, and subsequently
maps these to crossbar designs for path-based computing.

A. Overview

The ISO framework consists of three main steps. In Fig-
ure 4, we give a high-level overview of the ISO framework.
First, we illustrate in Section IV-B how a Boolean function can
be synthesized using a topology of k-LUTSs into a crossbar
design with unbounded dimensions. Then, we illustrate in
Section V-A how graph isomorphisms can be used to reduce
the overall area. Finally, in Section V-B, we target the pro-
posed architecture from previous section where the crossbar
dimensions are constrained.

Section IV.B Section V.A
| Boolean function | Area-improved crossbar designs
7 | using graph isomorphisms +
| Topology of k-LUTs | execution order
| Topology of BDDs | Section V.B
1 :
Crossbar designs + Are.a-constramed. crossbar
. designs + execution order
execution order

Fig. 4. High-level overview of the ISO framework.

B. Synthesis of a Boolean function using k-LUTs

In this section, we describe the synthesis of a Boolean
function using a topology of k-LUTs. The input is a Boolean
function (specification), and the output is a set of crossbar
designs and an execution order. First, the Boolean function is
converted into a k-LUT topology, as shown in Figure 5(a).
The k-LUT topology is a data-flow graph, represented as a
DAG where the leaf node is the output, and the root nodes
are the inputs. Next, each k-LUT is converted into a topology
of BDDs, as shown in Figure 5(b). Each BDD is synthesized
into a crossbar design according to the methodology of the
synthesis method described in Section II-C. The output is
a set of crossbar designs with unbounded dimensions and
an execution order, as shown in Figure 5(c). The execution
order is a series of evaluation instructions (EVAL). An EVAL
instruction fetches the input data from the buffer, applies the
steps required for evaluation as described in Section II-C, and
writes the output data back to the buffer. The execution order
consists of multiple cycles, where each cycle corresponds to
a generation in the topological sort of the BDD topology.

(a) ©) (d) (O] ®

Original crossbar designs

Hash Conflict-free

execution order
123

l

Execution
order order

(1,23 LILIN

| l,"

L4555 » 1L, 11
- |
(b) Weisfeiler-Lehman hash

6 1
BoD | 1]2]3]4]5]6
Hash | 1|1 [m|m|m]1

Area-improved
crossbar designs

Il
‘ I

4
|
5
l

Fig. 6. Area improvement using graph isomorphisms.

V. AREA OPTIMIZATIONS
A. Area-improved synthesis using graph isomorphisms

In this section, we explain how the overall area require-
ments can be improved by leveraging isomorphic properties of
graphs. When the number of inputs k for a k-LUT is small,
we observe that the number of possible BDD structures is
also small. In other words, while the inputs may vary, the
structure of some BDDs may be invariant. We will leverage
this observation to reduce the overall area of the crossbar
design. More specifically, when two BDDs G and H are
isomorphic, we will reuse the same hardware resources for
both G and H. The only difference is that the inputs, which
are aligned with the selectorlines, may differ.

In Figure 6, we provide a high-level overview of the area-
improved synthesis. Given the original execution order and
crossbar designs, as shown in Figure 6(a), we now compute the
Weisfeiler-Lehman kernel (hash) for each BDD [11], as shown
in Figure 6(b). For clarity, we identify the unique hashes using
a Roman number. Based on this hash table, we construct a hash
order, which maps each BDD in the execution order into its
corresponding hash, as shown in Figure 6(c). However, since
there will be only a single resource available for each hash,
the execution order may have conflicts according to the hash
order. A conflict arises when at least two identical hashed are
present in the same generation, as highlighted in Figure 6(c).
To resolve this, we propose Algorithm 1 where we push down
identical hashes with their corresponding BDD into a new
generation. For example, in Figure 6(d), BDD 5 is pushed
down into a new generation such that we obtain a conflict-
free execution order.

Algorithm 1 Conflict-free execution order

Input: G // The original execution order (list of lists)

Output: G* // The new conflict-free execution order (list of lists)
1: GF 0
2: while |G| > 0 do
3: G < G[0] // Get first generation

4: G + G\ {G} // Remove generation

5: K« 0,Hk < 0, P < () // Auxiliary data structures

6: for g € G do

7: h <—HASH(g) // Convert BDD into its hash

8: if h € Hy then // If hash not already in kept BDDs
9: K+ KU{g}

10: Hg < Hg U {h}

11: else

12: P+ PU{g}

13: end if

14: end for

15: G* < G* U K // Append the kept BDDs

16: if |P| > 0 then

17: G <~ P UG /I Prepend the pushed down BDDs
18: end if

19: end while

20: return G*

We make the following claim in Theorem 1:

Theorem 1: The conflict-free execution order is optimal in
terms of latency.

To illustrate this, we first define Lemma 1.

Lemma 1: Let X = {X1,..., Xn} be an execution order
where each X is a generation of BDDs to be executed. Then
X is a total order, such that Vi,j € N,i # j7:X; < X;.
Further, let each BDD x belong to a generation X; such
that it is scheduled as early as possible. In other words,
v € X;:Pi,jij<i€NuaweX;.

Proof 1: Whenever two isomorphic BDDs G and H are in
the same generation X;, we retain one BDD, say G, in gener-
ation X;, and move the other, say H, to a new generation X *.
This new generation X* must be placed between generation
X, and X;;;. H cannot be placed in generation X1, as this
would contradict Lemma 1. Hence, the order is optimal in
terms of latency. B

Finally, we realize one crossbar design for each hash. In
Figure 6(e), we observe how the original crossbar designs are
reduced to the area-improved crossbar designs in Figure 6(f).

Algorithm 2 Fixed and variable crossbar designs

Input: U/, D // The structure hashes sorted in descending order
according to their frequency, and the crossbar dimension
Output: F,V // Set of fixed and variable structure hashes
I L+ 1,H + [U|,M + |22]
2: while L < H do
3: R <3 jeup.aROWS(9)

4: C <+ X eup.aCOLS(9)

5: Riax < max({Rows(g) | Vg € U[M + 1:|U|]})
6: Crmax < max({CoLS(g) | Vg € U[M + 1:|U|]})
7: if R+ Rumax > D or C + Chax > D then

8: H+— M-1

9: else

10: L+ M+1

11: end if

122 M« |22

13: end while

14: F «+ U[1:M], V <+ UM + 1:|U]]
15: return F, V

B. Area-constrained synthesis

In previous section, we have proposed a synthesis method
for k-LUTs to crossbars with arbitrary dimensions. In this
section, we address the issue of real-world scenarios where
the crossbar dimensions are constrained. We have observed
that a few BDD structures occur frequently, and that many
other BDD structures occur only a few times. Our proposed
execution algorithm is as follows: first, we sort the BDD
structures by frequency in descending order. Then, using the
binary search algorithm in Algorithm 2, we try to find the
maximum number of crossbar designs that can be placed in the
crossbar permanently while leaving enough space for replacing
irregular BDD structures. The permanent crossbar designs, we
will call fixed set, and the others variable set. The inputs are
the set of unique structure hashes with their frequency ¢/, and
the crossbar dimensions D. The outputs are the fixed set F
and variable set V.

EEEEE prasep—— N
Il v v 'E I
Structure I Im:mor|Iv| v

Frequency 20 [124 2 1 1 I
Dimensions | 2x2 | 3x3 } 5x5 | 2x3 | 4x4

Fig. 7. Frequency and dimensions for different structures, ordered in descend-
ing order according to their frequency. Structures I and II are permanently in
the crossbar, and structures III, IV, and V are loaded into the crossbar when
needed.

In Figure 7, the frequency and the dimensions for different
structures are provided in descending order of frequency.
We observe that only structures I and I/ can be placed
permanently in the crossbar, and that the infrequent structures
III, IV, and V are stored in the buffer. Further, there is space
left available in the crossbar for these infrequent structures.
Using the LOAD operation, these structures can be loaded
into the crossbar when needed.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed ISO framework.
First, we evaluate the proposed synthesis method based on k-
LUTs. Then, we evaluate the graph isomorphisms. Finally, we
compare our proposed framework with previous state-of-the-
art digital in-memory computing paradigms. The framework
is implemented in Python 3.10 and is available on GitHub'.
We evaluate our proposed ISO framework on ten ISCASS85
benchmarks.

In Table I, we provide the parameters and specifications for
the components in our architecture model. The numbers are
obtained from [8], [12], [13], and the CACTI tool [14].

A. Single BDDs vs k-LUTs

First, we illustrate that synthesis using k-LUTs reduces the
overall area compared with synthesis using a single BDD. In
Table II, we show both the rows, columns, and semiperimeter
(rows + columns) for synthesis using a single BDD, for our
proposed k-LUTs without isomorphism, and for our proposed
k-LUTs with isomorphism. For our proposed synthesis, we
have set k = 4. For the synthesis using a single BDD, we
have used [7]. From Table II, we conclude that our proposed
synthesis method using k-LUTs without isomorphisms results
in much smaller semiperimeter than [7] with an average
normalized reduction of 90%. Our proposed synthesis method
using k-LUTs with isomorphisms results in even smaller
semiperimeter with a reduction of 99%. The number of cycles
increases by 109x.

B. Sensitivity analysis of k

Now we will determine the sensitivity of k£ on the area
and the delay. The delay is estimated based on the number of
cycles in the execution. This value is determined by the critical
path of the k-LUT topology. For this experiment, we assume
unbounded crossbar dimensions. We observe in Figure 8(a)
that the semiperimeter increases for increasing value of k.
Further, in Figure 8(b), we observe that the number of cycles
decreases for increasing value of k. This is what we would
expect; when k increases, the BDD sizes for the k-LUTSs
increase. This entails that the probability decreases that two
BDDs are isomorphic, resulting in larger semiperimeter. On
the other hand, the larger k-LUTSs capture more logic at once,
resulting in a lower number of cycles.

@8000 250
2 6000 gzoo

o 2150

£ 4000 % 100

£ 2000 2

& < 50

E o 0

@ 4 6 8 10 12 4 6 8 10 12

@k)k
Fig. 8. Sensitivity analysis of the benchmark ¢7552 for the parameter k.

To illustrate our explanation for the increase of the
semiperimeter for increasing value of k£, we have analyzed

Thttps://github.com/sventhijssen/iso

the structure frequency for both £ = 4 and k = 12. In this
section, we make two conclusions. In Figure 9(a), we show
the frequency of each structure. We observe that for & = 4,
the frequency for the structures is higher than for £ = 12.
Further, we observe that the graph has a sharp decline and a
long tail. This means that a few structures occur many times,
while others occur infrequently (Conclusion I). In Figure 9(b),
we show the cumulative sum of the structure frequencies. We
observe that the cumulative sum of the number of structures
for k = 4 is much larger than the cumulative sum of the
number of structures for £ = 12 (Conclusion II).

——--12

—yq

—_
W
(=}
[
(=3
(=}

—
(=3
(=]

frequency (num)

(=]

60 90
(b) Structure
Fig. 9. Structure frequency analysis of the benchmark c7552.

0 30 60 90 120 150 120 150

(a) Structure

0 30

Pattern frequency (num)
W
(=]
Cumulative pattern

C. Area-constrained synthesis

In this section, we evaluate the area-constrained synthesis,
and we finally compare our proposed synthesis method with
other digital in-memory computing paradigms. In Figure 10(a),
we show the normalized number of LOAD and EVAL in-
structions for varying values of k (the crossbar dimension
is D = 128). First, we observe that the LOAD instructions
increase for increasing value of k. This corresponds with
the Conclusion I of previous section that there are many
more structures for higher value of k. Second, the number
of EVAL instructions decreases for increasing k. This is due
to Conclusion II of previous section. Third, the total number of
cycles increases for increasing value of k. This is in contrast
with our observation from Figure 8(b). Due to the bounded
dimensions, the structures must be regularly swapped whereas
for the unbounded dimensions, there are no cycles required
for swapping any structures. In the next experiment, we set
k = 4 as the number of LOAD instructions and the overall

number of cycles is low.
TABLE I
COMPARISON OF THE NUMBER OF THE REQUIRED HARDWARE RESOURCES
FOR SINGLE BDDS AND THE PROPOSED k-LUTS.

Component Parameter Spec
READ/WRITE energy (pJ) 1.08/3910
ReRAM crossbar READ/WRITE latency (ns) 29.31/50.88
Area (mm?2) 0.000025
READ/WRITE energy (pJ) 58.97/57.57
SRAM buffer READ/WRITE latency (ns) 3.379/3.379
Area (mm?2) 0.083
Power (mW) 13
Bus Latency (ns) 53.8379

In Figure 10(b), we show the normalized number of LOAD
and EVAL instructions for varying values of D. We ob-
serve that the number of LOAD instructions decreases for
increasing value of D. The number of EVAL instructions
remains constant, as the number k is set to the same value
for all dimensions. When the dimensions are bounded, less
structures can be placed in the crossbar, resulting in a higher

https://github.com/sventhijssen/iso

TABLE 11
COMPARISON OF THE NUMBER OF THE REQUIRED HARDWARE RESOURCES FOR SINGLE BDDS AND THE PROPOSED k-LUTS.

Single BDD k-LUT (k=4, without isomorphism) k-LUT (k=4, with isomorphism)

Benchmarks Rows Cols Semi Cycles Rows Cols Semi Cycles Rows Cols Semi Cycles

(num) (num) (num) (num) (num) (num) (num) (num) (num) (num) (num) (num)
c432 1290 2463 3753 1 537 682 1219 11 85 114 199 64
c499 111114 212466 323580 1 602 908 1510 5 37 54 91 65
c880 5750 11151 16901 1 697 890 1587 10 98 132 230 59
cl355 111114 212466 323580 1 602 908 1510 5 37 54 91 65
c1908 30580 57308 87888 1 751 982 1733 10 147 206 353 68
c2670 8111 14622 22733 1 1437 1664 3101 8 133 180 313 168
c3540 - - - - 2051 2698 4749 13 169 234 403 107
c5315 15331 27477 42808 1 2866 3720 6586 10 211 298 509 164
c6288 - - - - 3701 5334 9035 26 89 122 211 248
c7552 33875 65400 99275 1 3635 4738 8373 9 194 272 466 219
Normalized 1.00 1.00 1.00 1.00 0.13 0.09 0.10 8.50 0.02 0.01 0.01 109.00

rate of swapping. Consequently, the overall number of cycles
decreases for increasing value of D.

mk=4 Bk=6 Bmk=8 mD=64 mD=128 »D=256

o 3 o 12
%" 4 %‘) 1.0
&3 508
35 RS
N 22 NE04
< 1 <

E 1 E oo
Z zZ -

EVAL

Cycles
@ ®)

Fig. 10. Analysis of the number of EVAL and LOAD instructions, and total

number of cycles for varying values of k and D.

LOAD EVAL Cycles

Lastly, we compare our proposed ISO framework with
other digital in-memory computing frameworks. More specifi-
cally, we compare with COMPACT [15], CONTRA [16], and
PATH [7]. COMPACT is the SoTA framework for flow-based
computing, CONTRA for the MAGIC in-memory computing
paradigm, and PATH is the SoTA for path-based computing.
In Figure 11, we mISO BCOMPACT ZPATH @CONTRA

compare the energy, 1000

latency, and area for 2 100

all three frameworks. '3 10

We observe that ISO § 1 '

improves the energy % 0 %E I ik
consumption by Energy Latency Area
230.89x and 5.43Xx Fig. 11. Comparison of energy, latency, and

area for COMPACT, CONTRA, PATH, and our

on average for
proposed ISO framework.

COMPACT and
CONTRA, respectively. This is due to that both COMPACT
and CONTRA require WRITE operations for evaluation,
whereas path-based computing relies on READ operations.
Recall that a WRITE operation is 77X more expensive
than a READ operation. Further, ISO improves the energy
consumption by 1.30x compared with PATH, the previous
SoTA for path-based computing. This is due to the mitigation
of expensive bus inter-connections between crossbars. Similar
argument for latency. Finally, COMPACT, CONTRA, and
ISO have similar area due to the proposed hardware reuse.
Compared with PATH, ISO has an area reduction of 179%.

VII. CONCLUSION

In this paper, we have introduced a framework, ISO, to
improve the area overhead from which the state-of-the-art

synthesis methods for path-based computing suffer. Our first
contribution is the use of k-LUTs. Our second contribution is
the observation that isomorphic structures can be identified
to reduce the overall area even further. Finally, we have
introduced an algorithm to perform in-memory computing
within an area-constrained crossbar. From our experimental
results, we conclude that the overall semiperimeter (rows +
columns) of the crossbar designs can be reduced by 99%
on the ten ISCAS85 benchmarks, resulting in an average
area improvement of 2.79x. Even though the number of
cycles increases 109x compared with the SoTA for path-based
computing, the energy consumption and latency improve by
1.30x and 76.59x on the average.

REFERENCES
[1] F. Duarte, “Amount of data created daily (2023).” https:
/lexplodingtopics.com/blog/data- generated- per-day, Mar. 2023.

Accessed: 2023-7-19.

[2] J. Backus, “Can programming be liberated from the von neumann
style?,” CACM, vol. 21, no. 8, pp. 613-641, 1978.

[3] M. R. H. Rashed, S. K. Jha, and R. Ewetz, “Hybrid analog-digital in-
memory computing,” in /CCAD, pp. 1-9, IEEE, 2021.

[4] E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis
methods for memristors,” in ISCAS’12, pp. 2441-2444, 1EEE, 2012.

[5]1 S. Kvatinsky et al., “Magic—memristor-aided logic,” IEEE TCAS-II,
vol. 61, no. 11, pp. 895-899, 2014.

[6] S. Jha et al., “Computation of boolean formulas using sneak paths in
crossbar computing,” Apr. 19 2016. US Patent 9,319,047.

[71 S. Thijssen, S. K. Jha, and R. Ewetz, “Path: Evaluation of boolean logic
using path-based in-memory computing,” in DAC, pp. 1129-1134, 2022.

[8] T. Yang et al., “Pimgcn: a reram-based pim design for graph convolu-
tional network acceleration,” in DAC, pp. 583-588, IEEE, 2021.

[9] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based fpga designs,”
TCAD, vol. 13, no. 1, pp. 1-12, 1994.

[10] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall
Upper Saddle River, 2001.

[11] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.,” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

[12] D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with fefets,”
in ISPLED, pp. 1-6, 2018.

[13] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH, vol. 44,
no. 3, pp. 14-26, 2016.

[14] R. Balasubramonian et al., “Cacti 7: New tools for interconnect explo-
ration in innovative off-chip memories,” TACO, vol. 14, no. 2, pp. 1-25,
2017.

[15] S. Thijssen et al., “Compact: Flow-based computing on nanoscale
crossbars with minimal semiperimeter,” in DATE, pp. 232-237, IEEE,
2021.

[16] D. Bhattacharjee et al., “Contra: area-constrained technology mapping
framework for memristive memory processing unit,” in /CCAD’20,
pp- 1-9, 2020.

https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day

	Introduction
	Preliminaries
	Binary decision diagram
	Isomorphism
	Path-based computing

	Motivation
	Proposed ISO framework
	Overview
	Synthesis of a Boolean function using k-LUTs

	Area optimizations
	Area-improved synthesis using graph isomorphisms
	Area-constrained synthesis

	Experimental evaluation
	Single BDDs vs k-LUTs
	Sensitivity analysis of k
	Area-constrained synthesis

	Conclusion
	References

