Adversarial Robustness against Perceptual Attacks
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Abstract

Neural networks are vulnerable to adversarial examples,
which are carefully crafted inputs designed to cause mis-
classification. Particularly in image classification, recent
research has focused on providing guarantees against im-
perceptible perturbations, often defined using the L,, norm
family or other formulations. This paper introduces a
novel perturbation space based on the Structural Similarity
Index Measure (SSIM), a perception-based metric. We
demonstrate that existing defenses fail to protect against
imperceptible perturbations in this space. Furthermore, we
propose a defense method leveraging adversarial training,
which significantly improves performance against both
L,-based and SSIM-based attacks.

1 Introduction

Neural networks have demonstrated remarkable perfor-
mance in various image classification tasks. However, they
remain susceptible to adversarial examples, which are sub-
tly modified natural images that lead to misclassification.
The presence of adversarial examples suggests that these
models do not interpret the semantic content of images in
the same way humans do, thereby creating a security risk
for decision-making systems based on neural networks.
Previous research [5, [7, 9] has focused on developing
more robust classifiers by providing guarantees against
adversaries constrained to an L, threat model. However,
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recent findings [6, [14]] have shown that it is possible to
create imperceptible adversarial perturbations with large
L, errors using more advanced heuristic measures to quan-
tify perceptual differences. These perturbations can fool
defended networks, indicating that the L,, norm may not
adequately represent the space of imperceptible perturba-
tions.

Numerous image quality metrics [4, [12} [16} [17] have
been developed to measure distortion in image processing
applications, and they show strong correlation with hu-
man perception across various image quality databases [8].
In this work, we utilize existing image quality metrics to
establish more meaningful measures of adversarial robust-
ness. Our contributions are as follows:

* We propose a new formulation of image classifier
robustness based on a class of adversarial perturba-
tions defined by the SSIM image quality metric, as
an alternative to L, norms. We also develop vari-
ants of existing state-of-the-art attacks that search for
adversarial examples within this class.

* We demonstrate that current defenses are unable to ac-
curately classify images generated using our methods,
and we present a defense approach that enhances ro-
bustness against a range of perceptual attacks without
compromising accuracy on benign images.

2 Motivation

The majority of adversarial robustness research primarily
focuses on adversaries constrained by L,,-bounded attacks.
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Figure 1: Illustration of adversarial spaces around an im-
age. The most common threat model constrains adversaries
to the inner L, ball, which does not capture the space of
imperceptible perturbations. Increasing the size of the
L, ball to capture all imperceptible perturbations neces-
sitates an infeasibly large radius. We propose utilizing
image quality metrics that better approximate the space of
imperceptible perturbations, ensuring the smallest region
encompassing all possible attacks is defendable.

However, this threat model does not accurately encompass
the full range of possible perturbations an adversary can
employ [2]]. Figure[T]illustrates various relevant adversar-
ial spaces, including the inner L,, ball, which is the largest
L, ball that only contains visually indistinguishable im-
ages; the set of images visually indistinguishable from the
original image, representing the ideal threat model; the
outer L, ball, the smallest L,, ball that encompasses all
visually indistinguishable images; and the proposed per-
turbation space. The inner L,, ball fails to account for all
potential adversarial perturbations, rendering it an insuf-
ficient threat model despite its prevalence in adversarial
robustness research.

Certified defenses can only guarantee protection against
attacks within a small L, radius [5,[10], but it is feasible
to construct visually similar images with large L,, errors.
Figure 2] demonstrates that shifting an image by one pixel
to the right can yield the desired effect. Observe that L,,-
based defenses cannot feasibly be improved to accurately
classify such perturbations; the shifted image has an L, =
0.506, and any classifier capable of resisting all adversarial
perturbations with an Lo, > 0.5 must output a single label
across the entire input space.

Figure 2: An example of a potential adversarial attack.
The adversarial image (right) was created by shifting the
original image left by 1 pixel. Its Ly and L, errors are
4.549 and 0.506, respectively, but visually, it is very similar
to the original. The SSIM error is 0.116.

Figure 3: Clean images (top row) and SSIM adversarial
examples (bottom row) generated by attacking an unde-
fended network. Mean Lo error, L, error, and SSIM error
of SSIM adversarial examples are 0.629, 0.136, and 0.003
respectively.

A well-defined mathematical threat model that accu-
rately reflects the range of perturbations a real-world ad-
versary can produce is essential. To achieve this, we em-
ploy the SSIM metric, which is designed to quantify the
impact of distortion effects on human visual perception.
As depicted in Figure[2] translating an image by one pixel
can generate an image with low visual distortion and mod-
erate SSIM error. Although the SSIM ball of radius 0.116
is sizable, it remains significantly smaller than the cor-
responding L, balls necessary to defend images against
translation attacks. Metrics that closely approximate hu-
man perception demand smaller radii to encompass the
space of imperceptible perturbations.

The toy example of translating an image by one pixel
theoretically demonstrates the existence of adversarial ex-
amples that appear unperturbed yet possess high L, errors.
We provide practical evidence for such attacks using the
SSIM metric. Figure ] presents images generated by an
SSIM-bounded adversary, which exhibit high L, errors



Figure 4: SSIM adversarial examples (top row) and images
generated using the PGD- L, attack with e = 0.136 (bot-
tom row). Both have a mean L, of 0.136, but the average
SSIM error is 0.003 for SSIM attacked images and 0.320
for PGD- L, attacked images. As a result, SSIM images
appear unperturbed, while PGD-L, attacked images are
highly distorted.

but appear visually unperturbed due to their low SSIM
errors. We compare this adversary to the PGD attack with
€ = 0.14. Although the mean L, errors of the two attacks
are equal, the PGD attack fails to find images with mini-
mal visual distortion. An L,-based defense that resists the
SSIM attack must also defend against all images within the
L ball of radius 0.14, which includes numerous images
with significant visual distortion. Employing image quality
metrics like SSIM enables us to capture only those images
that appear visually similar to the original; we contend that
this smaller set of images is theoretically easier to defend.

3 Background

3.1 Structural Similarity Index Measure
(SSIM)

The Structural Similarity Index Measure (SSIM) is an
image quality metric proposed by Wang et al. [16] that
quantifies the perceived difference between a reference
image and a distorted image. SSIM is designed to evaluate
the change in structural information, meaning that if an
image is perturbed in a way that retains its information
content, the perturbed image will have a high SSIM value
compared to the original. This metric has demonstrated
strong correlation with human subjective assessments of
image quality.
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Figure 5: Visualization of SSIM computation. Using the
formula in Equation [T} a local SSIM value is computed for
each 8x8 window; the overall SSIM value is the mean of
local SSIM values for each window.
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As illustrated in Figure [5] SSIM is computed on
greyscale images by applying the formula in Equation [I]
to corresponding spatial patches (e.g., w X w windows).
Let x; ; ., represent the w X w window with its top-left
corner at (%, j); the local SSIM for images « and y can be
calculated as SSIM(; j,w, ¥i,j,w). A similarity value is
computed for each spatial patch, producing a local simi-
larity map across the image. The mean of these similarity
values serves as the overall SSIM value. An SSIM of 1
indicates identical patches, while an SSIM of 0 suggests no
structural similarity between patches. SSIM computation
can be extended to RGB images by converting the RGB
channels to greyscale.

Wang et al. [[16] recommend computing SSIM using
11x11 windows weighted by a circular-symmetric Gaus-
sian weighting function. This weighting function assigns
higher weight to central pixels and lower weight to those
near the image border. However, in our experiments, we
found that adversarial attacks minimizing this metric gen-



erate visually distorted images. Since an adversary can
significantly manipulate border pixels with minimal im-
pact on the Gaussian-weighted SSIM, the metric performs
poorly at assessing perceptual distortion of images in adver-
sarial contexts. We thus adopt the sliding window approach
proposed by Wang et al. [15]], which assigns equal weight
to all pixels. Although this method can cause blocking arti-
facts [16], it remains effective in generating imperceptible
adversarial perturbations in practice.

4 SSIM Adversarial Attacks

The SSIM metric can be utilized to create perceptual ad-
versarial attacks. Generally, an adversary aims to find
the minimal perturbation § such that ' = x + § is an
adversarial example for a given classifier F'; meaning
F(z') # F(z) (for an untargeted attack) or F(z') = ¢
(for a targeted attack with class ¢ # F'(x)). The notion
of a minimal ¢ is defined concerning a distance measure
D; in this case, D = 1 — SSIM. This nonconvex opti-
mization problem is generally NP-hard; however, several
approximate algorithms have been developed for comput-
ing minimal adversarial perturbations. We enumerate a
few such algorithms and describe their modifications to
generate SSIM-bounded perturbations.

4.1 PGD-SSIM

Projected gradient descent (PGD) [7] is an adversar-
ial attack algorithm that iteratively computes distance-
constrained, loss-maximizing perturbations using the fol-
lowing update rule:

2 =Tl e y<e (@' + aViLo(z',y) (2

where L is the neural network loss function, y is the
ground-truth label, « is the step size, and 1I is a function
that projects its input onto the valid set of perturbations,
defined by a distance metric D and a maximum pertur-
bation magnitude e. The SSIM metric does not satisfy
the properties of a distance metric; however, the slight
modification D = /1 — SSIM constitutes an approximate
distance metric [[1]] and can, therefore, be used to normalize
the step size.

4.2 CW-SSIM

Carlini and Wagner [3] propose the following method for
generating adversarial examples given the pre-softmax
activations Z of a classifier, a base image =z, its label y,
and confidence k:

D(z,z+9)+c- f(z+0)s.t

minimize
3)
where D is a distance metric and f is defined as

f(z) = max(max Z(x)i,i #y — Z(x)y,—r) (4

The constant c is a hyperparameter and can be optimized
using one-dimensional optimization techniques such as
binary search to find an adversarial image of minimum
distance. Directly applying this method with D = 1 —
SSIM is sufficient to produce adversarial examples.

Unlike PGD, which only guarantees an upper bound on
the distortion of the generated adversarial example (and
in practice, nearly always finds adversarial examples on
the boundary of the valid set), the CW attack can find
minimally distorted adversarial examples. However, CW
is significantly slower in comparison; thus, we opt to use
the PGD attack in our proposed defense.

5 Adversarial Defenses

We now focus on developing classifiers that are robust
against the previously described attacks. Formally, we
aim to solve the following saddle-point formulation of
adversarial robustness:

mein E(z,y) € S[maxd : SSIM(x, 2 + 0) < eLg(x+6,y)]
(5
Although this problem is intractable in general (the in-
ner maximization problem is non-convex and the outer
minimization problem is non-concave), approximate solu-
tions can be found using first-order methods. It is common
to use an adversarial attack algorithm (such as FGSM or
PGD) to solve the inner maximization problem and a first-
order optimizer (such as SGD or Adam) to solve the outer
minimization problem; this technique is more commonly
known as adversarial training. Our proposed defense in-
troduces attacked images generated using the PGD-SSIM
attack into the training procedure.

z+6€0,1)"



Figure 6: Clean images (top row) and adversarial examples generated by various attack methods (PGD- Ly, PGD-SSIM,
CW-SSIM, and Shadow Attack). Images generated by attacking an undefended network (a) and networks trained
adversarially against the PGD-L5 attack (b) and the PGD-SSIM attack (c).

Undefended AT-PGD-L, AT-PGD-SSIM
Benign 92.58% 75.68% 78.71%
PGD-L, 17.29% 50.49% 53.12%
PGD-SSIM 9.57% 45.61% 52.83%
Shadow Attack 8.59% 20.90% 27.44%
CW-SSIM 0.003 0.009 0.010

Table 1: Accuracy of defended networks against various adversarial attacks. The CW-SSIM attack generates adversarial
examples of minimal SSIM error; since the attack always succeeds, we instead report the average SSIM error of the

generated examples.

6 Experimental Results

We conducted experiments using our proposed adversar-
ial training method on the German Traffic Sign Recogni-
tion Benchmark (GTSRB) dataset. For these experiments,
we employed the ResNet50 network architecture, training
each network for 100 epochs. Our experiments involved
training against two types of adversaries: the traditional
Lo-bounded adversary (represented by the PGD- L attack
with € = 0.5) and a perceptually bounded adversary (rep-
resented by the PGD-SSIM attack with e = 0.02).

To evaluate the networks, we subjected them to vari-
ous attacks, including the Shadow Attack [6]. Table |I|
shows the test set accuracy results. The SSIM-trained net-
work outperformed the Lo-trained network for all attacks
while maintaining higher benign accuracy. Our findings

indicate a tradeoff between adversarial robustness and ac-
curacy [13]], which can be modulated by the strength
of the adversary (in this case, by adjusting €). Therefore,
our results suggest that SSIM training is strictly superior
to Lo training. Moreover, SSIM-based attacks were more
successful against the Lo-defended network than the PGD-
L attack, demonstrating that using Lo-based attacks can
lead to overestimations of robustness.

7 Conclusions

In this paper, we proposed a novel adversarial training
method that focuses on improving robustness against per-
ceptually bounded adversaries. By leveraging structural
similarity (SSIM) as a perceptual metric, we were able



to create more visually consistent adversarial examples.
Our experiments on the German Traffic Sign Recognition
Benchmark (GTSRB) dataset demonstrated that SSIM-
trained networks outperformed their Lo-trained counter-
parts in terms of both adversarial robustness and benign
accuracy.

Our results indicate a tradeoff between adversarial ro-
bustness and accuracy, which can be modulated by the
strength of the adversary, as shown by adjusting the value
of e. Our findings suggest that SSIM-based adversarial
training is strictly superior to Lo-based training, as it pro-
vides better robustness against various attacks, including
SSIM-based ones. Furthermore, our study showed that
using Lo-based attacks for evaluating robustness can lead
to overestimations, highlighting the importance of consid-
ering perceptual metrics when designing defenses against
adversarial attacks.

As future work, we plan to explore the use of other per-
ceptual metrics for adversarial training and to investigate
the impact of these methods on other datasets and network
architectures. Additionally, we aim to develop more effi-
cient and effective optimization techniques for generating
perceptually consistent adversarial examples. Ultimately,
our goal is to design deep learning models that are robust
against a wide range of adversaries, while maintaining
high performance on benign data.
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