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Abstract—Resistive random-access memory (ReRAM) 

memristors are promising candidates for various compute in 

memory and flow-based computing approaches. As an alternative 

to traditional von Neumann computation, flow-based computing 

avoids serial movement of data between memory and processor. 

In this paper, we demonstrate arrays of 1 transistor 1 ReRAM 

(1T1R) to detect edges between 8 bit pixels using flow-based 

computing, and the effects of stochastic variation of ReRAM on 

edge detection outputs. Three different Roff/Ron resistance ratios 

(1.5:1, 2.5:1 or 28.6:1) were utilized to implement multiple flow-

based edge detection computation matrices for 8 bit pixels. Edge 

detection was distinguishable for all Roff/Ron  ratios used, for all 

flow-based computing matrices. However, the binary output 

resistance ratio of the matrices improved 3-fold when the 

patterned Roff/Ron ratio was increased to 28.6:1. A Gaussian 

simulation of ReRAM resistance variability validates the 

experimental data, with a correlation coefficient (r) of 0.9547. 

These results suggest a trade-off between the flow-based edge 

detection output ratio and the variability of the ReRAM resistance 

in Roff/Ron resistance ratio. 

 
Index Terms—HfO2 ReRAM, 1T1R arrays, memristors, flow-

based computing, edge detection, memory window, Roff/Ron ratio, 

multi-level resistance states.  

 

I. INTRODUCTION 

ATASETS arising from sensors and devices on 

communications and sensing networks have increased 

exponentially and require extensive amounts of data storage 

and processing [1-6]. This is largely due to the advent of the 

internet of things (IoT) and edge-based computing. Previously, 

CMOS technology evolved rapidly with the development of 

digital systems on which conventional algorithms are executed. 

This approach makes use of the memory unit and the processing 

unit being in separate locations, in what is known as the von 

Neumann architecture. In this configuration, data must be sent 

back and forth between the memory and processing unit during 

computation. As the scaling of CMOS becomes limited, due to 
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the approaching end of Moore’s law [7] and finite bandwidth 

availability [1], these factors constitute an inherent bottleneck 

in the von Neumann architecture. This leads to the degradation 

of energy efficiency for performing computation [1-2, 4, 8].   

Edge detection is a crucial and important operation that is 

leveraged in computer vision applications. Therefore, it is 

imperative to find alternative ways to carry out this elemental 

operation in low-power mode, especially for edge-based 

computing applications. Improvements in this field have been 

proposed utilizing new architectures in the digital domain and 

mixed-analog signals to accelerate computations [1]. Non-

volatile memories (NVM), which operate in the analog domain, 

are attractive candidates to speed up elementary operations 

involved in these applications, due to their low energy 

consumption and high switching speed. Therefore, they are 

expected to boost the efficiency of conventional algorithms 

down the line [1, 4, 8-9]. 

 Flow-based computing is one such approach that utilizes a 

two-dimensional non-volatile memory array to perform 

Boolean computations to perform in-memory computing, 

circumventing the von Neumann bottleneck. Although multiple 

flow-based computing designs have been proposed for edge 

detection applications, the effect of the stochasticity of 

Resistive Random Access Memory (ReRAM) arrays on the 

implementation of these computational designs are still lacking. 

In this work, we investigated the effect of different Roff and Ron 

resistance states used in holding the input variables on two-

dimensional ReRAM arrays for flow-based computing, through 

experimental implementation of flow-based edge detection. 

Die-to-die electrical characterization of binary switching of 

ReRAM devices was carried out to obtain mean and standard 

deviation of the multi-level resistance states of fabricated HfO2-

based one transistor, one ReRAM (1T1R) cells. The impact of 

the variability of each Ron and Roff resistance states was 

investigated on the flow-based edge detection outputs.  
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II. BACKGROUND AND RELATED WORK 

A. Resistive Random-Access Memory 

Memristive NVMs are typically two-terminal devices, 

including those that were proposed in 1972 by Leon O. Chua as 

the last fundamental passive circuit element, apart from 

resistors, capacitors and inductors [10]. Such a device retains 

the history of the applied electric field in terms of resistance and 

is therefore considered a form of memory. The device can be 

switched between high resistance state (HRS) and low 

resistance state (LRS).  

One type of memristor, resistive random-access memory 

(aka: ReRAM) offers features such as non-volatility, 

scalability, and ease of fabrication. As such, these devices have 

been proposed for neural networks to hold weights as resistance 

states, as accelerators of mathematical computations such as the 

vector matrix multiplication, and to mimic biological synapses 

to help solve classification problems. Arrays of NVM, 

including ReRAM, have been used primarily in vector-matrix 

multiplication (VMM) in an analog fashion to carry out signal 

processing and solve classification problems [1-3, 11-12].   

B. Edge Detection using Non-volatile Memory 

Recently, non-volatile memories have also been used in edge 

detection [2, 4, 8-9]. The work of Mannion et al. demonstrated 

edge detection using a pair of ReRAM in a voltage divider 

configuration to detect the changes between frequencies, which 

was later correlated with variations in pixel intensities [9]. 

Although the method detected the frequency variations 

experimentally, the edge detection between neighboring pixels 

was done in a simulation model, made from extracted empirical 

data. Pajouhi et al. demonstrated edge detection using ant 

colony optimization algorithms through simulation as well [8]. 

Li et al. carried out edge detection using VMM on memristor 

crossbar array, where they supplied pixel intensities as voltages 

to an array mapped with conductance from a Discrete Cosine 

Transformation (DCT) matrix [2]. The array had a one 

transistor, one ReRAM (1T1R) architecture but was referred to 

as a memristor crossbar during the actual computation as all 

gates of the transistors were biased to give a passive array. 

However, an array of a much larger dimension, of 128 x 64 was 

used to implement edge detection, with trans-impedance 

amplifiers (TIA) used in their custom-made testing hardware. 

In this work, we carried out an experimental demonstration 

of edge detection using flow-based computing [5]. Edge 

detection identifies the divider lines of different objects within 

an image. This work differs from [5] in that ReRAM variability 

was not considered in our previous work [5]. Our approach 

differs from conventional use of crossbar arrays such as VMM 

in that it uses the non-volatile memory array as a reconfigurable 

network to manipulate the flow of current through it, to give the 

output of edge detection. In this work, we present a novel 

experimental implementation of an edge detection between two 

pixels on an 8x8 1T1R HfO2 array, where the mapping of the 

resistance states are determined by the input bits of the pixels 

in an unique flow-based computing design. This is carried out 

in 2 parts: (1) configure the array according to the input pixels 

by programming to target resistance states and (2) injecting the 

input read pulse for the flow-based computation and observing 

its output. Previously we have used this approach to implement 

a one-bit adder [6]. 

Work has been reported on the various designs for flow-

based computing to detect an edge using memristor crossbars 

[4, 13], however, ReRAM is often regarded as a binary switch 

where it is assumed to completely block the current when the 

memristor is turned off, and all the off-state (high resistance 

state) memristors are expected to behave in a uniform manner. 

In contrast to ideal binary switches, physically implemented 

ReRAM devices exhibit rich dynamics in their resistance states, 

as well as device-to-device and cycle-to-cycle variability. 

Therefore it is critical to know the effect of ReRAM variability 

on flow-based computing designs. In this work, we have 

implemented flow-based computing edge detection algorithms 

using fabricated 1T1R memristors, and have demonstrated the 

effects of resistance variability and memory window (Roff vs. 

Ron) on edge detection accuracy.  

 

  
 

Fig. 1.  Transmission electron micrograph (TEM) image of the fabricated 1-

Transistor-1-ReRAM (1T1R) device.  The right-hand side shows the cross-

sectional TEM of the HfO2 ReRAM device stack. 

 

 
 

Fig. 2.  Schematic of the fabricated 8x8 1-Transistor-1-ReRAM (1T1R) array. 

The eight source, eight drain and eight gate lines of the 1T1R devices are 

represented by the notations S1-S8, D1-D8 and G1-G8 respectively. Each 

device is accessed through its corresponding source, drain and gate lines. 
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III. MATERIALS AND METHODS 

A. 8x8 1T1R Arrays 

Fully-integrated nanoscale CMOS/ReRAM structures were 

implemented on a 300 mm wafer platform using a custom 

ReRAM module within SUNY Polytechnic Institute’s 65nm 

CMOS process technology. Figure 1 shows the transmission 

electron micrograph (TEM) image of the fabricated 1-

transistor-1-ReRAM (1T1R) device, and the cross-sectional 

TEM of the ReRAM. As shown in Fig. 1, the ReRAM device 

stack is comprised of TiN top and bottom electrodes, a Ti 

oxygen exchange layer and a switching layer of HfO2. The 

hafnium oxide-based ReRAM was integrated with a transistor 

at the Metal 1/via 1 (M1/V1) interface to form high density 

memory arrays. The size of the ReRAM is 100 x 100 nm2.  The 

switching layer of hafnium dioxide was deposited using atomic 

layer deposition (ALD) with a chlorine-based precursor at 

temperature of 300 °C. The excellent performance of these 

devices was presented earlier in [14]-[17]. The schematic of the 

fabricated 8x8 1T1R array is depicted in Fig. 2. In the array, top 

electrode lines are shared by the rows while the bottom 

electrode and transistor gate lines are shared by the columns. 

Each device is accessed through the gate of its integrated 

transistor, and its top and bottom electrodes. The arrays have 

demonstrated excellent yield of greater than 90 percent and 

therefore facilitated the testing of edge detection.  

B. Electrical Characterization 

Electrical characterization was carried out using an Agilent 

B1500 parametric analyzer and a B1530 module, which is a 

Waveform Generator / Fast Measurement Unit (WGFMU) for 

binary switching of the 1T1R devices. The edge detection 

computing was implemented using an Agilent E5270 

parametric analyzer, a Keithley 707A switching matrix and a 

2x12 probe card from Celadon Ultra High Performance Probe 

Cards. The probe card was used to access all the 24 pads of the 

schematic in Fig. 2 simultaneously for programming of the  

individual devices and testing of the flow-based edge detection.   

C. Design of Flow-Based Computing for Edge Detection 

Flow-based computing refers to creating specific flow (or 

path) of current in a two-dimensional array to carry out a logical 

computation. The logic 1 and logic 0 are represented by a 

ReRAM cell in the turned-on (Ron) state, and the turned-off 

(Roff) state, respectively. The concept is that when a ReRAM 

is in the LRS or Ron state, or holds a logic 1, it promotes the 

flow of current whereas a ReRAM is in a higher resistance state, 

logic 0, it prohibits the flow of current. As each 1T1R device is 

integrated between a row wire and a column wire, the applied 

current flows from the row to column or vice versa when the 

memristor is turned on. The ReRAM array is configured to hold 

the input variables in terms of logic 0 and logic 1. This 

manipulates the current flow when an input pulse is applied at 

input node. The Boolean output of a computation is measured 

as low or high resistance between the input and output nodes. 

An edge detection computation kernel was developed using 

the flow-based computing approach. The edge detection design 

was generated by implementing an approximate ternary 

function on crossbar designs [4-5]. A pixel can have a gray-

scale value between 0 and 255, and an edge between two pixels 

would exist if the difference between their gray-scale values 

exceeds a pre-defined threshold value. If the measured signal is 

above a given threshold, then is it considered as a logical high 

whereas if it is below the given threshold then it is a logical low. 

The term “pixel pair” used in this work denotes the pixel and its 

right and top neighbors in an input image. This helps detect 

horizontal and vertical edges in an image. The mapping of a 

given pixel pair onto the 8x8 RRAM crossbar is illustrated in 

[5]. Eight-bit pixels have been used in this work because a gray-

scale pixel needs 8-bits to represent its complete range of values 

from 0 to 255. Decreasing this value might result in worse 

performance. On the other hand, increasing the bits beyond 8-

bits will not result in a performance increase since in a grayscale 

image all possible values can be represented using 8-bits. 

Hence, all the extra bits will contain no new information.  

An approximate ternary value function maps pixel pairs to 

true, false and a third value that has an uncertainty about the 

presence of an edge. The information about the presence or 

absence of an edge between a pixel pair, denoted as true or false 

values respectively, was obtained from human-annotated 

BSDS500 dataset [18]. Two conditions are set for the function 

to evaluate to true. Firstly, the frequency of an observed edge 

between a pixel pair, f1, needs to be above a threshold. 

Threshold is the minimum difference between the values of two 

gray-scale pixels needed to define them as part of an edge of an 

object in the image. Secondly, the ratio of f1 to the frequency 

of occurrence of same pixel pair in an image dataset, lies above 

a threshold.  Otherwise, the pixel pair is mapped to a false value.  

In other words, the threshold value and the selective nature of 

the edge detection function has been calculated using the 

training image data-set from BSDS-500. The frequency of each 

unique pixel pair found in the image dataset was calculated and 

a threshold was chosen accordingly. Moreover, pixel-pairs that 

rarely occurred were ignored by the edge detection algorithm 

even if their difference exceeded the threshold value. This 

ensures that one-off pixel pairs occurring in detailed objects and 

images are not picked up by the algorithm. This method of 

creating a thresholding function that is selective helps mitigate 

errors caused by highly detailed images and results in smoother 

edges. All of the pixel-pairs have been tested through 

simulation, and the crossbar array designs have been used to 

detect edges on all images. The peak signal-to-noise ratio 

(PSNR) of the ground truth images versus the images produced 

by our designs on 8x8 arrays for edge detection is 13.7 dB [5].  

The accuracy of the edge detecting algorithm is measured by 

comparing the signal-to-noise ratio and pixel difference of 

produced images with the ground truth provided in BSDS-500. 

The accuracy of this edge detection method on 8x8 arrays have 

been reported to be 72.8% [4]. Although our method used gray-

scale images, the original images were converted from colored 

images to gray-scale before detecting the edges. Fig. 3(a) shows 

an image from the BSDS-500 dataset (which is colored) and 

Fig. 3(b) shows the edges produced from our edge detection 

method. The figures in Fig. 3(b) are produced using crossbar 

designs as mathematical functions. The ideal crossbar designs 
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produce either a true (ON) value or false (OFF) value without 

ambiguity.  The performance of our algorithm was as good or 

better than the current state of the art using memristors [5]. 

Therefore, colored images can always be pipelined into our 

edge detecting algorithm by converting to gray-scale. It is worth 

noting, however, that one of the limitations of converting RGB 

color to gray-scale it may be possible for two RGB colors to 

have the same Y-value in YUV notation. Due to their same Y-

value, this would make it difficult to detect the edge between 

the two RGB colors in the gray-scale value if YUV notation is 

used and is a limitation of gray-scale itself. The optimal 

crossbar design that implements this function was found using 

a massively-parallel simulated annealing search [4-5]. It makes 

sense to test designs that yield either a true or false value, rather 

than an uncertain value, to assess the functionality of the design. 

To verify the correctness of the simulation, multiple selected 

pixel-pairs were tested experimentally on 8x8 arrays. The 

patterned Roff/Ron ratio of 28.6 used in this work showed that 

there is sufficient margin for the multiple pixel pairs tested.  
 

Fig. 3.  (a) An image from the BSDS-500 dataset and (b) the edges produced 

from edge detection using 8x8 ReRAM array. 
 

In this work, the design was implemented as a proof of 

concept of the detection of an edge between two 8-bit pixels on 

an 8x8 1T1R array, and the functionality of the design was 

analyzed with respect to the different combinations of binary 

resistance states used in pattering the array. The inherent 

variability associated with each of these resistance states are 

due to the characteristics of HfO2 ReRAM arrays. 

 

     
Fig. 4.  The 8x8 array design for edge detection between two 8-bit pixels.  The 

bits of the two pixels, are represented by variables A0-A7 and B0-B7. “!” is 
used to represent the negation of the variables A0-A7 and B0-B7. The cells at 

1 and 0 remain fixed at Ron and Roff resistance states respectively. 

 

D. Methodology of Flow-Based Edge Detection Experiment 

The implemented edge detection design is shown in Fig. 4.  

The bits of the two pixels are represented by variables A0-A7, 

and B0-B7 respectively. A0 and B0 denote the most significant 

bits of the two pixels, while A7 and B7 denote the least 

significant bit of the two pixels. The design consists of literals 

of these variables and their negations. The negations are 

represented by “!” preceding the input variables A0-A7 and B0-

B7. The rest of the cells in Fig. 4 do not depend on the input 

variables. These cells are assigned a permanent logic 1 or logic 

0, irrespective of the input configuration and are intended to 

lower the number of programmed cells per iteration. Each 

element in the design is represented by the binary resistance 

state of a 1T1R cell, in an 8x8 1T1R array as that shown in Fig. 

2. 

 In order to carry out flow-based computing successfully, the 

steps involved in the implementation of the flow-based edge 

detection design is outlined in the flow chart in Fig. 5. The first 

step involves generating a Boolean design consisting of the 

input variables, input bits A0-A7 and B0-B7, that can be 

configured in the array to hold the current inputs. The generated 

logic 1 and logic 0 are mapped to Ron resistive states and Roff 

resistive states respectively, on the 8x8 array. Then, a read and 
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verify scheme was used to verify the correctness of the 

patterned resistance. Finally, an input signal (read voltage or 

current) was applied to a specific nanowire and the output is 

  
 

Fig. 5.  The flow-chart of the sequence of steps required in the implementation of flow-based edge detection design. 

Fig. 6.  The mapping scheme of the input bits of two pixels, pixel A and pixel B, onto the 8x8 1T1R array and the subsequent flow-based computation. The green 

and gray cells denote turned-on and turned-off memristors respectively. The programmable cells change with the 16 input bits, while the non-programmable cells 

remain fixed at logic 1 and logic 0. After the mapping, an input voltage pulse is applied to bottom row and output is observed along last column. The resistance 

between the input and output nanowires was extracted by measuring current flow at the column nanowire. 

 

 

observed along a different nanowire during the computation. In 

all of these steps, the current is sensed by source measurement 

unit (SMU) of the parametric analyzer E5270. A current 

compliance of 1 mA is also specified for the SMU measuring 

the current. The output signal holds the result of the 

computation being performed in terms of a Boolean high or low 

output, according to the edge detection algorithm described in 

section III. C, which is a priori. The logic 1 output corresponds 

to the presence of an edge, while a logic 0 output corresponds 

to the absence of an edge. To validate the Boolean result in 

section III. C experimentally, edge detection was investigated 

on actual RRAM devices with different RRAM off/on 

resistance states to assess the impact of RRAM device 

characteristics on the output signal. The computation is then 

followed by another read and verify to check for read disturb. 

As the resistance that is patterned dictates the flow of current 

during the computation, the second read/verify step ensures the 

patterned resistance have stayed the same during the 

computation to give the correct readout. A read voltage of -100 

mV was used for the computation. However, this second read 

and verify step is optional and may be skipped to reduce power 

consumption.   

A hypothetical mapping scheme for detection of an edge 

between the input pixels, A=00001110 and B=01001010 is 

illustrated in Fig. 6. The gray circles represent turned-off 

memristor while the green circles refer to turned-on memristor. 

As edge detection was investigated with different patterned 

Roff/Ron ratios, the gray circles were programmed with 

different resistance states for each ratio. For all patterned 

Roff/Ron resistance ratios, LRS 1T1R elements, represented by 

green circles, were programmed using a set voltage of 2 V and 

a current compliance of 245 µA. For the highest Roff/Ron 

resistance ratio, HRS 1T1R elements, represented by gray 

circles, were programmed using a reset voltage of -1.5 V and a 

current compliance of 140 µA. This set of conditions was 

chosen for reset because lower current compliance yields higher 

HRS states [14]. Additionally, for the lower Roff/Ron resistance 

ratios, the gray circles were programmed with a set voltage of 

2 V and current compliances of 60 µA and 110 µA, to yield 

lower resistance states for the gray circles. As RRAM cells hold 

their state, cells with permanent logic 1 and logic 0 in Fig. 6 

were programmed once and did not need to be re-programmed 

when the bits of pixels changed with each new set of input 

pixels. The cells that hold the input variables are re-

programmed if their bit changes with the input pixels. After the 

mapping scheme, the computation was carried out by applying 

a read pulse to the bottom row of the design and the output is 

observed along the last column.  

The red line shown in Fig. 6 is one of many possible sneak 
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paths in the array. As there are multiple sneak paths in the array, 

the paths will not be unique. The number of sneak paths existing 

do not affect the outcome if they do not connect the input to the 

output. Hence, only the sneak paths that connect the input to the 

output are significant for our computation. During the 

computation, all the gates of the transistors were fully biased to 

yield a crossbar array. The current flow observed between the 

input and output nodes when a read voltage is applied, denotes 

whether an edge between the two pixels was present or not. A 

low current measurement, which corresponded to the high 

resultant resistance readout, implied the absence of an edge, 

while a high current measurement implied the presence of an 

edge between the two pixels.  

E. Simulations of Flow-Based Edge Detection Computing 

To validate the experimental results from flow-based 

computing, simulations of the 8x8 array elements were carried 

out in LTSpice software for two scenarios, the ideal case and 

the non-ideal case. Firstly, we showed the effect of an ideal case 

for the different 8-bit inputs if no resistance variation were 

present in the resistance states. This was done by simulating an 

8x8 array of resistors with fixed binary resistance states, which 

were the extracted average LRS and HRS resistance states used 

in experiment. Secondly, the characterization of HfO2 devices 

revealed that different resistance states exhibit different 

variations, with HRS exhibiting the greatest variation in 

resistance. The variability in each resistance state was extracted  

 

 
Fig. 7.  Box-and-whisker plot for the die-to-die resistance variation in 8x8 1T1R 

array devices across a 300 mm wafer, with respect to current compliance (by 

varying Vg of the control transistor). The devices were switched for over 10,000 
cycles at each current compliance. The standard deviation of the LRS resistance 

decreased with increasing current compliance. 

 

from experimental characterization of HfO2 1T1R arrays, and 

this was incorporated into Gaussian distributions within 3 

standard deviations of respective resistance variability for each 

resistance state. The Gaussian simulation was run for 200 

cycles in LTSpice, and the resultant resistance readout for each 

edge detection output was compared for three different 

resistance states used for the Roff patterned resistance.  
 

IV. RESULTS AND DISCUSSION 

A. Measurement of ReRAM Resistance Variability 

In order to efficiently perform computations on resistive 

memory arrays, the programming of multiple resistance states 

should be performed with reasonable accuracy. The role of 

integrated transistor on-chip is significant in decreasing the 

variability of resistance states programmed during the SET 

operation of the device, compared to arrays of nonlinear 

memristors [2] and arrays without selectors [21]. In the 1T1R 

configuration, the transistor can be used to set current 

compliance, helping to control the desired resistance state of the 

ReRAM before it reaches the SET switching dynamics [21]. 

Device-to-device repeatability was assessed through the 

accurate and repeatable programming of six distinct resistance 

states on multiple 8x8 1T1R arrays, using an endurance over 

10,000 cycles, across multiple die on a 300 mm wafer. The 

results for the die-to-die resistance is shown in Fig. 7. 

The multiple resistance states were achieved by a write and 

verify scheme, where the current compliance during the SET 

operation is modulated in the range of 60 µA to 400 µA, 

through the gate voltage of the control transistor of the device. 

Different current compliance values gave rise to distinct states 

across multiple die, with the higher resistance states having 

greater variability. The applied set and reset voltages were 2 V 

and -1.5 V respectively, with a rise/fall time of 10 µs. The hold 

time of each programming pulse is 0 seconds. The standard 

deviation of the resistance states was suppressed from 2 kΩ to 

less than 200 Ω, with a five-fold change in mean resistance from 

15 kΩ to 2.8 kΩ. This is explained as follows. As the gate 

voltage is increased, the NFET transistor lets more current 

through the memristor and increases its current compliance. 

This leads to an increase in the number of oxygen vacancies 

generated in the conductive filament and therefore widens the 

filament’s cross-sectional area. As the conductive filament 

becomes Ohmic in nature during the SET operation, its 

resistance, which is inversely proportional to its cross-sectional 

area, decreases with increasing current compliance. However, 

at the higher current compliance, the resistance saturates due to 

the finite size of the conductive filament [20]. Based on the 

results from Fig. 7, a current compliance of 245 µA was used 

to program the lower resistance state (logic 1) in the pattern as 

TABLE I 

THE VALUES OF PIXEL A AND PIXEL B IN EACH OF THE FIVE PATTERNS ARE 

SHOWN BELOW. THE EXPECTED OUTPUT LOGIC OF 1 CORRESPONDS TO THE 

PRESENCE OF AN EDGE BETWEEN THE 2 PIXELS AND IS EXPECTED TO 

CONTRIBUTE TO LOW RESISTANCE IN THE EDGE DETECTION TEST. SIMILARLY, 

THE EXPECTED OUTPUT LOGIC OF 0 IMPLIES THE ABSENCE OF AN EDGE AND 

THEREFORE WOULD RESULT IN HIGH RESISTANCE IN THE OUTPUT OF EDGE 

DETECTION TEST. THE PATTERNS CONSIST OF 3 LOW RESISTANCE PATTERNS 

AND 2 HIGH RESISTANCE PATTERNS. 

Edge 

Detection 

Pattern # 

Pixel A Pixel B Expected 

Output 

Logic 

Expected 

Resistance 

   

1 00001110 01001010 1 Low    

2 00110101 01001010 1 Low    
3 10110111 01110000 1 Low    

4 01101110 01111111 0 High    

5 01010010 11101011 0 High    
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this resistance state was still close to that of 400 µA due to the 

plateau observed in resistance at higher current compliance. 

The transistor’s resistance variation may contribute to the 

low resistance states (LRS), but the transistor’s resistance 

variation is irrelevant in the high resistance states (HRS). This 

is because HRS variability is dominated by RRAM. For LRS 

transistor resistance variation, we explain the following. During 

SET operation, the current compliance provided by the 

transistor controls the size of conductive filament of the LRS 

state. With lower current compliance, there are fewer oxygen 

vacancies in the filament, which results in more resistance 

variation of the LRS state. Therefore, as the measurements were 

performed at room temperature, the LRS resistance variation 

due to the size of the conductive filament may prevail over the 

transistor’s resistance variation. For a comparison of the 1T and 

1T1R resistance variation, we have characterized the transistor 

resistance and its standard deviation at the same gate voltage of 

the NFET that provided current compliance of 60 µA in Fig. 7. 

For this gate voltage of the NFET, the average 1T1R resistance 

was 15 kΩ with a standard deviation of 2000 Ω. The transistor 

resistance is on average 2.4 kΩ with a standard deviation of 275 

Ω. Hence, the transistor contributes very little to the resistance 

variation observed in the 1T1R LRS resistance state for current 

compliance of 60 µA in Fig. 7.   

Although having transistors integrated with each ReRAM 

device increases the footprint of the array, they have an 

important role in making the flow-based computing possible, 

which is outlined as follows. Apart from serving as a current 

limiter, transistors block so-called current sneak paths in the 

array during the programming and reading of a 1T1R cell. 

Sneak current is an issue in memristor crossbar arrays without 

access devices, where the input signal flows through undesired 

path(s) of memristors with lower resistance, in parallel to the 

signal flowing through the device being programmed [19]. If a 

current path through three shorted memristors exists, then the 

input signal would bypass the device being programmed. This 

yields an incorrect reading of the programmed resistance state 

[19], and may also cause disturbance to the resistance states of 

the neighboring memristors during programming [12]. 

Therefore, using transistors as the access devices in an array is 

essential for the accurate programming and reading of a 

memristor cell. Furthermore, connecting an external transistor 

with crossbar arrays to provide current compliance gives rise to 

significant parasitic capacitance. This issue can be mitigated by 

having a transistor integrated on-chip. The on-chip transistor 

also helps to limit the overshoot current during reset operation 

and keeps it below the compliance current, hence giving a better 

control of compliance [20]. 

Although the low resistance states can be accurately tuned 

with access transistors, the high resistance states exhibit much 

greater variability and cannot be properly tuned to narrow 

resistance ranges like the low resistance states. The standard 

deviation in the HRS states can be as high as 25.3 kΩ for our 

device stack [14]. These variations are an intrinsic property of 

metal-oxide ReRAM due to the stochastic atomic motion under 

valence change mechanism (VCM) switching [22]. 

 

 
Fig. 8.  Comparison of experimental edge detection outputs of 5 pixel-pairs 

(each pattern denotes a pixel-pair) with their ideal case LTSpice simulation 
using HRS and LRS patterned arrays. The result confirms that an edge is 

detected in the first three pixel pairs, and no edge is present between the last 2 

pixel-pairs. The results were validated by LTSpice simulation assuming HRS 

of 100 kΩ and LRS of 3.5 kΩ, with no resistance variation. 

 

B. Implementation of Edge Detection Algorithm on 8x8 1T1R 

Arrays 

The edge detection design for flow-based computing needs 

the input to be mapped as binary resistance states. The 

performance of the design was validated by determining the 

existence of an edge between five pairs of 8-bit pixels. The 

values of each pixel-pair and their expected resistance and 

binary output is shown in Table I. For convenience, each pixel-

pair will be referred to by their respective pattern number in the 

following sections. The implementation of the first pixel pair is 

illustrated in Fig. 6. The remaining pairs were also implemented 

in a similar fashion. An edge is expected between the first three 

pairs of pixels, indicated by low resistance readout  

corresponding to logic 1. Meanwhile, the absence of an edge is 

expected for the last two pixel-pairs, which would be indicated 

by the high resistance readout corresponding to logic 0. 

The five patterns were implemented on the 8x8 1T1R arrays 

to validate the functionality of the flow-based computing edge 

detection design. The arrays were patterned with HRS as logic 

0 and an average LRS of 3.5 kΩ as logic 1 in the experiments. 

This gives a Roff/Ron patterned resistance ratio of ~28.6:1. The 

binary outputs were further validated by LTSpice simulation. 

The empirical outputs from the edge detection computation of 

the five patterns are reported in Fig. 8, along with their expected 

resistance readouts in an ideal case (without variation) from 

LTSpice simulation. The LTSpice simulation assumed the HRS 

and LRS values to be 100kΩ and 3.5 kΩ, respectively, in each 

of the five patterns and gave their expected resistance readout. 

The expected results from simulation of the 8x8 array conform 

to the empirical results for all five pairs of pixels. The first three 

pixel pairs yielded lower resistance readout than the final two 

pixel pairs. The binary outputs in the experiment are also 

distinguishable, with a  
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Fig. 9.  Effect of three different patterned Roff/Ron (Logic 0 / Logic 1) ratios 
on the binary outputs of edge detection of 5 patterns (3 low and 2 high patterns) 

is shown for over 50 cycles. The patterned resistance Roff/Ron ratios of 1.5:1, 

2.5:1 and 28.6:1 correspond to logic 0 being programmed with 110uA, 60uA 

and HRS respectively, shown from left to right. One-way ANOVA on the three 

datasets show that the high resistance and low resistance patterns can be 
distinguished for all three conditions. However, HRS used as logic 0 gives the 

best ratio of 3.08:1 between the binary outputs, as opposed to 1.16:1 and 1.44:1 

for the first two conditions. The variability of the high resistance patterns also 

increased with increasing logic 0 patterned resistance. 

 

high/low output ratio of ~3:1. The resistance difference 

between experimental and simulated results of the fifth pixel-

pair may be attributed to the inherent variability of ReRAM 

devices. 

C. Effect of ReRAM Roff/Ron Ratio and their Respective 

Resistance State Variability on Flow-Based Computing 

As ReRAM is known to exhibit significant variability in its 

resistance states (which we demonstrated in Fig. 7), three 

different ratios of patterned binary resistance states were 

evaluated on the 8x8 array, while keeping the programming 

conditions of logic 1 the same. In the three cases, the logic 0 

were programmed to be 6 kΩ, 9 kΩ and 100 kΩ while their 

corresponding logic 1 were about 3.5 kΩ respectively. This 

yielded three different Roff/Ron patterned ratios of 1.5:1, 2.5:1 

and 28.6:1 respectively. The logic 1 was programmed with LRS 

state at current compliance of 245 µA. For the low Roff/Ron 

patterned resistance ratios, the logic 0’s were programmed with 

LRS states at current compliance of 60 µA  and 110 µA . The 

highest Roff/Ron ratio has HRS state as logic 0.  The low 

resistance states have a much lower variability than high 

resistance states due to the Ohmic nature of the current-voltage 

characteristic of the device. The five patterns were repeated for 

the three patterned ratios for over 50 cycles to investigate the 

repeatability of the edge detection outputs. The respective edge 

detection binary outputs from the three different patterned 

Roff/Ron ratios of 1.5:1, 2.5:1 and 28.6:1, on the detection of an 

edge between 5 pixel pairs are shown for over 50 cycles in Fig. 

9. The upper and lower caps of each box plot represent the 

minimum and maximum output resistance. There are two 

important observations from Fig. 9. 

First, the 5 patterns (each containing a pixel-pair) consist  

 
Fig. 10.  LTSpice Gaussian simulation of the variability of the high resistance 

and low resistance patterns for the different patterned Roff/Ron ratios of 1.5:1, 

2.5:1 and 28.6:1 using the respective standard deviations of the patterned Ron 

and Roff resistance states. The greatest high/low output resistance ratio also has 

the highest variability in overall high resistance and low resistance patterns. 
Hence, there is a tradeoff between the variability of high resistance and low 

resistance patterns, and the high/low binary output resistance ratios. 

 

of three low binary outputs and two high binary outputs. An 

ordinary one-way ANOVA on the three patterned Roff/Ron ratios 

reveal that there is significant difference between the high and 

low binary outputs. Hence, the binary outputs can be 

distinguished for all three patterned Roff/Ron ratios. However, 

the high/low output ratio of the flow-based computing improves 

by three-fold from 1.16:1 to 3.08:1 when the highest 

programmed resistance is used as logic 0 in the pattern. This is 

because the lower Roff/Ron patterned resistance ratios 

significantly degrade the binary outcome of pixel pairs that do 

not have an edge (a high binary output), where a high resistance 

readout is expected. This is possibly caused by the overall 

resistance drop due to the decreased resistance in each of the 

multiple sneak paths that are created in the computation. This 

result shows that a high Roff/Ron patterned resistance ratio is 

vital for the successful implementation of the edge detection 

design. 

Secondly, the variability of individual low and high binary 

outputs increases with increasing resistance state used for logic 

0. This is possibly due to the increasing variability associated 

with Roff used for logic 0, since the resistance state of logic 1 

was maintained for all the three Roff/Ron ratios. In order to assess 

this hypothesis, a Gaussian LTSpice simulation was carried out 

for the five patterns in the next section. The pattern number 4 

used for the lowest Roff/Ron ratio seemed to have high variability 

due to the result consisting of multiple arrays for the 50 cycles, 

where some arrays have higher resistance readouts due to 

processing conditions. 

Regarding power consumption of the flow-based 

computation, a read voltage is applied to obtain the edge 

detection output. The time needed for output to stabilize would 

depend on the testing equipment or read-out circuit that is 

employed. For the work presented herein, it would take a 
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minimum of 1us for the edge detection output to stabilize. 

Hence, the power of computation for highest Roff/Ron ratio 

would be about 10 pJ for the low resistance edge detection 

outputs, and 3.3 pJ for the high resistance edge detection 

outputs. As for programming the array to hold the data, we have 

used pulses of 10 us rise/fall time, which consumes 480 pJ-850 

pJ.  However, we have demonstrated the ability to program our 

1T1R ReRAM cells with 100 ns rise/fall time, which would 

reduce energy for programming at 100 uA SET to 20 pJ. Thus, 

in the worst case scenario, this approach would consume ~960 

pJ in programming 48 of the devices in the array for each new 

pair of 8-bit pixels. 

 

D. Benchmarking 

The impact of variability of the Roff and Ron resistance 

states on the five patterns were assessed using Gaussian 

LTSpice simulation of the patterns with the respective Ron and 

Roff standard deviations extracted from experimental data. For 

the case where HRS is used as logic 0, the standard deviation 

for HRS was taken as 0.5 of the mean HRS value of 100 kΩ.  

The Gaussian simulation results for the three patterned Roff/Ron  

 
Fig. 11.  The Pearson correlation coefficient of the experimental edge detection 

outputs for 5 patterns and their LTSpice Gaussian simulation for the three 

patterned Roff/Ron ratios of 1.5:1, 2.5:1 and 28.6:1. The coefficient r of 0.9547 

shows a strong positive correlation between the experimental data and the 
simulation. 

 

ratios on the outputs of edge detection computation is shown in 

Fig. 10. The ratio of the edge detection outputs between the high 

resistance and low resistance patterns improved significantly 

with increasing patterned Roff/Ron ratio due to greater absolute 

resistance for high resistance patterns, as observed from 

experiment. Also, the variability of the resistance states used for 

Roff clearly increased the variability of the edge detection 

outputs for all five patterns, where the outputs of patterns 4 and 

5 give the most variability when HRS is used for logic 0. This 

is also consistent with the experimental data. However, the 

absolute resistance readouts of patterns 4 and 5 appear to be 

much higher. Although there is no change in HRS resistance 

after a random HRS value from the Gaussian distribution is 

used in simulation, the HRS resistance in the experiments could 

be reduced partially by a few kΩ (still in the HRS regime) due 

to sneak paths in the array rubric. This may have resulted in 

lower experimental resistance outputs for these patterns.  The 

read noise is normally higher for HRS regime which could have 

also contributed to the experimental data. Nevertheless, there is 

a trade-off between the edge detection output ratio and the 

variability associated with the five patterns in both experiment 

and simulation. 

To get more insight of how the Gaussian simulation results 

compare to the experimental data for the five edge detection 

patterns, a Pearson correlation coefficient was extracted from 

the results for the three patterned Roff/Ron ratios of 1.5:1, 2.5:1 

and 28.6:1. The x-axis of Fig. 11 shows the average of 50 cycles 

endurance experiment for edge detection patterns (from Fig. 9). 

The y-axis shows the average of 200 Gaussian simulation 

cycles (from Fig. 10). The correlation between the experimental 

data and the simulated data is shown in Fig. 11. The correlation 

coefficient r of 0.9547 shows a strong positive correlation 

between the experimental data and the simulation. Due to 

higher resistance variation of HRS used as logic 0, the data for 

patterns 4 and 5 for the highest Roff/Ron ratio of 28.6:1 have 

drifted from the simple linear regression line. This is because 

the experimental results average is lower than the simulated 

average of 200 cycles. This could be attributed to the fact that 

patterns 4-5 have higher variability than patterns 1-3 for 28.6:1, 

and patterns 1-5 from other Roff/Ron ratios (1.5:1, 2.5:1). As 

mentioned previously, this may be caused by the reasons 

outlined in previous paragraph. The rest of the data in Fig.11 

follows the regression line due to the lower variability present 

in their edge detection output resistances.   

In terms of application of flow-based edge detection using 

HfO2 ReRAM arrays, one needs to take into account the binary 

high/low edge detection output ratio and their associated 

variability. For instance, low edge detection output ratio may 

be tolerated by systems with high sensitivity, as it would benefit 

from the more consistent binary outputs. On the other hand, 

applications that are more robust would require better 

distinction between the edge detection outputs (i.e. higher 

output ratio), where a loss in accuracy due to greater variability 

of binary outputs is acceptable.  Improvements in the 

processing conditions of HfO2 ReRAM can help reduce the 

variability of the high resistance state to be used for logic 0, 

which would lower the variability of the edge detection outputs 

to give the best results for flow-based edge detection 

computing. Alternatively, changing the switching material of 

the metal-oxide ReRAM to tantalum oxide for instance, that has 

a higher memory window (Roff/Ron ratio) may also improve the 

performance of flow-based edge detection computing. 

For future work on flow-based edge detection, optimization 

of circuit architecture is needed for real-time processing. These 

circuit architectures could include a combination of 8x8 array 

modules, with shared DACs and ADCs with multiplexers, and 

circuitry to measure flow-based current at the output node, 

which could be shared between the array modules as well. The 

system could be controlled using FPGA. For the output node 

circuitry, a multiplexer (mux) may be used to interface the 

output node of array to either trans-impedance amplifier (TIA) 

and ADC to measure current when programming devices, or to 

TIA and a threshold comparator (could be an op-amp 

comparator circuit) with a reference voltage to give high/low 
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Boolean output of edge detection for flow-based computing. As 

such, flow-based computing could be performed using the same 

biasing scheme used in this work for 8x8 RRAM array modules.  

An alternative approach that could be used for real-time 

processing would be to leverage a large 1T1R array/ crossbar 

array, where 8x8 sub-arrays can be used for flow-based edge 

detection. This would require testing systems that can provide 

multiple driving voltages, along with probe cards, switching 

matrix, a microcontroller to control the signals applied to 

arrays, ADCs and DACs which could be shared, and threshold 

comparators.  

V. CONCLUSIONS 

Metal oxide ReRAM has shown great promise in flow-based 

computing to overcome the bottleneck of von Neumann 

architecture. Edge detection between pairs of 8-bit pixels has 

been implemented using flow-based computing on 8x8 1T1R 

HfO2 arrays, and the effect of different HfO2 resistance states 

and their variability on edge detection computing is 

investigated. Flow-based computing requires the 

reconfiguration of an array according to a design consisting of 

Ron (the lower resistance state) and Roff (the higher resistance 

state). The functionality of the flow-based edge detection 

design was investigated using different patterned Roff/Ron ratios, 

and the respective variability of these Ron and Roff resistance 

states used in the pattern. Arrays of 1T1R were first 

characterized for binary switching, and optimal programming 

conditions were suggested for the Ron resistance state, and two 

of the Roff resistance states in the pattern, apart from HRS. The 

arrays were patterned with  Roff/Ron ratios of 1.5:1, 2.5:1 and 

28.6:1 for all the pixel-pairs and repeated for over 50 cycles to 

assess the variability of these binary edge detection outputs. A 

one-way ANOVA on the experimental data shows that the 

binary low and high edge detection outputs are distinguishable 

for all the patterned Roff/Ron ratios. However, the results show 

that the ratio of binary high/low edge detection outputs improve 

by three-folds from 1.16:1 to 3.08:1 when the patterned 

resistance ratio is increased from 1.5:1 to 28.6:1. The variability 

of all the binary outputs also increases with the variability of 

the patterned Roff resistance state. A Gaussian simulation of the 

respective variability of each resistance state used in pattern 

validates the experimental data with a correlation coefficient r 

of 0.9547. Therefore, there is a trade-off between the flow-

based edge detection output ratio and the variability of the edge 

detection outputs. The trade-off may be improved by changes 

in processing conditions of HfO2 ReRAM stack to reduce HRS 

variability, or using a different metal oxide ReRAM that has 

greater Roff/Ron ratio and less HRS variability, to lower the 

variability of edge detection outputs and increase their binary 

output ratio. 
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