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Abstract—We design and fabricate a flow-based circuit for

edge detection in images that exploits device-level parallelism

in nanoscale memristor crossbars. In our approach, a corpus of

human-labeled edges in BSDS500 images is used to learn an edge

detection function with ternary values: true, false, and don’t-care.

A Boolean crossbar design implementing an approximation of this

ternary function using in-memory flow-based computing is then

obtained using a massively parallel simulated annealing search

executed on GPUs. We demonstrate the success of our approach

by fabricating the memristor circuit on a 300nm wafer platform

using a custom 65nm CMOS/ReRAM process technology. We

demonstrate that our flow-based computing approach is either

faster, more energy-efficient or produces fewer incorrect edges

than other competing approaches. We show that our design

has power and area requirements that are 3.3x and 2.5x lower,

respectively, than the previous state-of-the-art.

I. INTRODUCTION

M
ULTIPLE computer vision and AI algorithms rely on
edge detection as a preliminary step [1]. Fast and

efficient edge detection in images using dedicated hardware
can enhance the usability of these algorithms, specially in
edge computing and IoT. Flow-based in-memory computations
has been shown to be both time and energy-efficient for
simple arithmetic operations. These advantages of flow-based
computing are obtained by bypassing the memory bottleneck
of traditional von Neumann architectures and exploiting the
device-level parallelism of nanoscale memristor crossbars.

In this paper, we design and fabricate an edge detector
that leverages the time and energy efficiency of flow-based
computing on memristor crossbars. We create a ternary-valued
function derived from manually segmented images of the
BSDS500 dataset as the ground truth for edge detection [2].
The ternary function maps a pixel pair to a true, false, or
don’t-care value, which corresponds to an edge, not an edge,
and an uncertainty about the existence of an edge between a
pixel pair. A crossbar implementing this ternary function is
then found using simulated annealing on more than 4000 GPU
cores.
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(a) Schematic (b) TEM Cross-section

Fig. 1: A schematic and TEM cross-sectional image of the
HfO2 ReRAM device implementing our edge detection crossbar
design [3]. The custom ReRAM module was fabricated on a
300nm wafer using a 65nm CMOS process.

An objective function based on the human perception of
image similarity is used to control the simulated annealing
based search. A massively parallel simulated annealing search is
employed to find crossbar designs of multiple sizes with varying
accuracy and energy requirements. We design memristor
crossbars of sizes 5 ⇥ 5, 6 ⇥ 6, 7 ⇥ 7, and 8 ⇥ 8, and then
fabricate them on a custom ReRAM module on a 300mm
wafer platform using a 65nm CMOS process technology. We
experimentally demonstrate that our designs can be successfully
fabricated on physical devices. We make the following new
contributions in this paper:

1) We exploit a massively-parallel simulated annealing
search for the optimal crossbar design using two Tesla
V100s with more than 4000 GPU cores. We design a
new method to calculate the output of crossbar circuits
efficiently. This parallel approach combined with an
efficient calculation of crossbar output allows us to search
for smaller crossbars designs that have lower power
consumption. When compared to earlier work [4], our
design produces crossbars that are up to 2.5x smaller
and have up to 3.3x lower power requirements.

2) We employ the human perception of similarity between
two images as the cost metric for the search algorithm.
This allows us to create crossbar designs that generate
edges that are visually similar to the ground truth.
We compare the edges generated by our designs to
those generated by earlier work [4] and find a 2.78x
improvement in the perceptual difference score.
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3) We have fabricated and tested our designs on a physical
ReRAM module to show that our solution is both
feasible and practical. A single fabricated ReRAM device
implementing the edge detection crossbar design is shown
in Figure 1. Previous work to create a flow-based ReRAM
device was published in ISCAS 2016 by Alamgir and
others [5]. But, that work only fabricated a relatively
simple one-bit adder. Our work brings the advantages
of in-memory flow-based computing to a fundamental
computer vision problem.

II. RELATED WORK

There has been continued interest in logic design using
memristor crossbars [6]–[9]. Various techniques that leverage
the unique properties of memristor crossbars to perform neuro-
morphic computing have been proposed in literature [10]–[13].
These machine learning applications of memristor crossbars
are impressive, but rely on integration with CMOS devices
to perform computations. Flow-based computing on memris-
tor crossbars is a departure from the traditional computing
paradigm and uses device-level parallelism to enable in-memory
computations that can overcome the memory bottleneck of the
von Neumann architecture. A memristor crossbar implementing
a one-bit adder using flow-based computing was presented
in [14]. Subsequent work on flow-based computing used binary
decision diagrams (BDD) [15], free binary decision diagrams
(FBDD) [16], automated synthesis via satisfiability modulo
theory [17], and AI-based search procedures [18] to synthesize
memristor crossbar circuits. Alamgir and others presented a
full adder crossbar implementation on a ReRAM device [17].

The design of edge detection circuits using flow-based
memristor crossbars has been presented in [4]. However, they
did not demonstrate that their designs can be fabricated on
real-world memristors. Our designs are both more compact and
more energy-efficient that the designs reported in [4]. Pajouhi
and Roy designed a memristor circuit based on ant colony
optimization to perform edge detections [19]. Our approach is
both space and energy-efficient when compared to the input-
aware flow-based approach, while it is faster than the ant colony
optimization based approach. A comparison of our approach
to these approaches is presented in Table I. A flurry of recent
activity in memristor crossbars makes it difficult to enumerate
all related work in this area.

Designs PSNR PerceptualDiff Switching Time

Score Power

Input-aware [4] 8.9 20458 1.188mW -
Swarm-based [19] - - 0.220mW 68µS
8⇥ 8 crossbar 13.7 6563 0.858mW 16µS
7⇥ 7 crossbar 14.6 5359 0.528mW 16µS
6⇥ 6 crossbar 14.5 5401 0.440mW 16µS

5⇥ 5 crossbar 14.4 5818 0.352mW 16µS

TABLE I: Comparison of the performance of our approach to
input-aware flow-based [4] and swarm-based approaches [19].
The 8⇥ 8 to 5⇥ 5 crossbars have been generated using our
approach. Our design generates edges that are similar to the
ground truth, as demonstrated by the high Peak signal-to-noise
ratio (PSNR) values and lower perceptual difference scores [20].
Our design uses less power than [4], and it is faster than [19].

III. APPROACH

The design of our edge detection circuit is based on flow-
based computing [5], where an electric pulse is applied to
one nanowire, and the output current is observed from another
nanowire. The crossbar array consists of programmable and non-
programmable memristors. Programmable memristor contains
the current input value and can change depending upon the
input, whereas non-programmable memristors stay constant and
do not change. An illustration of this approach implementing a
full adder on a 4⇥ 5 crossbar is shown in Figure 2. The value
of the input determines the programming of the memristors.
Memristors in green have been set to ON, and memristors in
gray have been set to OFF. Current flow to calculate the sum
when the values of A = 1, B = 1 and C = 1 is shown by the
red path. Current flow in the top row implies that the sum is
1, whereas no flow implies that the sum is 0.
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Fig. 2: A crossbar design that implements a full adder. Each
memristor is labeled with an input. The states of the memristors
after receiving an input is updated according the input. For
inputs A = 1, B = 1 and C = 1 the memristors labeled A, B
and C are set to ON, shown by green, and memristors labeled
¬A, ¬B and ¬C are set to OFF, shown by grey. The red path
shows the current flow from the input wire (bottom row) to
the output wire (top row).

More complex boolean functions that perform edge detection
can be implemented on larger crossbars. Figure 3 shows a
crossbar synthesised by our approach to perform edge detection
in images. Each crossbar accepts a pixel pair and a flow in the
rightmost column indicates an edge between a pixel-pair. The
problem of finding the memristor design that can effectively
find edges between the pixel pairs in the image is solved in
two steps: (1) finding the ternary function which performs
edge detection, and then (2) finding a crossbar design that
implements the ternary function found in step (1).

A. Ternary Value Function for Edge Detection
The ternary function maps pixel pairs to true, false, and

don’t-care values. True value denotes the presence of an edge
between the pixel, false value denotes the absence of an edge,
and the don’t-care values denote pixel pairs where the human-
labeled data set does not indicate a consistent response. Edge
information obtained from the human-annotated BSDS500
dataset is used to calculate the pixel pair to value mapping
using the following equations:
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Fig. 3: A 8⇥ 8 memristor crossbar design for edge detection.
An electric pulse is applied to the bottom row, and the output
current observed from the right column. Current flow in the
column implies an edge between the pixel pair, whereas the
lack of a flow implies that no edge exists between the pixels.

V (x, y) =

8
><

>:

T, if fe(x, y)/fp(x, y) � ✓
E and fe(x, y) � ✓

P

F, if fe(x, y)/fp(x, y) < ✓
E and fe(x, y) � ✓

P

Don’t-care, otherwise

Here, x, y are values of the pixel pair, fp(x, y) is the frequency
of occurrence of pixel having values x and y in the image
dataset, and fe(x, y) is the frequency of observing an edge
between pixel pairs x and y in the human-annotated dataset.
The parameter ✓P and ✓

E are the values of the threshold of fp
and fe, respectively, that determines the mapping from pixel
pair to the ternary value.
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(b) A 7x7 design

Fig. 4: Edge detection memristor crossbar designs implemented
using 7x7 and 6x6 crossbars.

B. Ternary Function to Crossbar Design
A massively parallel implementation of the simulated an-

nealing algorithm is used to search for crossbar designs that
implement the approximated ternary function. The cost function
of the simulated annealing algorithm is designed to penalize
disagreement between the ternary function and the crossbar
output, and the disagreement between the generated edges
and the human-annotated edges. Flow-based crossbar designs
produce Boolean values as output and generate a true or false

result on a given input, whereas the ternary function produces
a true, false, and don’t-care as output. The disagreement DT

between the crossbar output C(x, y) and the ternary function
V (x, y) is calculated using the following function:

d(x, y) =

8
>>><

>>>:

0, C(x, y) = V (x, y)

0, if V (x, y) = Don’t Care
2, if V (x, y) = T and C(x, y) 6= T
1, if V (x, y) = F and C(x, y) 6= F

DT =
X

x,y

d(x, y)

Here, x, y are values of the pixel pair, V (x, y) is the ternary
value function output for a given pixel pair, and C(x, y) is
the crossbar output. The disagreement DT is then combined
with an image similarity score that can capture the perception
of a human observer to find the final disagreement. In our
method, we have used the inverse of the perceptual difference
(PerceptualDiff) score to obtain the total disagreement D.
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Fig. 5: Edge detection memristor crossbar design implemented
using 5x5 and the corresponding circuit representation.

Obtaining the crossbar output C(x, y) to calculate the
disagreement between the ternary function and the crossbar
output in simulation can be time-consuming and can lead to
long search time. Evaluating the truth table entries from a
crossbar naively has a time complexity of O(2bRC), where
R and C are the numbers of rows and columns respectively
in the crossbar, and b is the size of the input. To quickly
calculate the output of crossbars circuits, we model the circuit
as a directed acyclic graph (DAG) and then only compute
incremental changes in the total disagreement D as the design
evolves during our search process.
Modelling crossbar circuit as a DAG: For a crossbar of size
R⇥C with R rows and C columns, a Directed Acyclic Graph
(DAG) G can be constructed to emulate the dynamics of the
crossbar. The DAG G is divided into components G

k arranged
temporally, where each component emulates the dynamics
happening within the time it takes for current to cross one
memristor in the crossbar. Each component G

k consists of
nodes r

(k)
i and c

(k)
j , which represent ith row and jth column

wires respectively, and directed edges e(r(k)i , c
(k)
j ) that can

capture the flow of current through a memristor from wire
ri to cj at time step k. The components G

k�1 and G
k are

connected by directed edges e(c(k�1)
i , r

(k)
j ) which capture the
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Fig. 6: The input and output nodes of the DAG are represented by r
(1)
1 and c

(2)
2 respectively. (left) Evidence E = {a7, a6,¬a5}

of true in the truth table. Knowing the values of three variables tells us that output of the crossbar is true. (right) Evidence
E

0 = {¬a7} of false in the truth table. Knowing the value of one variable tells us that the output of the crossbar is false.

flow of current through a memristor from wire ci to rj at
time step k-1. An edge between two wires exists if memristor
connecting the wires is a programmable turned-on memristor
or a non-programmable memristor that is always turned-on.
The total number of components K in the graph depends upon
the size of the crossbar and is equal to RC. The input pulse
is applied to the bottom row and is denoted by the node r

(1)
1

in the DAG. The output node is denoted by c
(K)
C .

Given a pair of input pixel, an edge exists between the pixels
if there is a flow from the input node to the output node. Such
a path is called evidence E for a true truth table entry for the
input. We avoid the explicit calculation of flow from the input
to the output for a given crossbar by utilizing a special case of
the max-flow min-cut problem, where the flow of each edge
is equal to unity, and the source and sink nodes are the input
and output nodes respectively. The set of edges that form the
min-cut of DAG is the evidence E

0 for a false entry of the
truth table. There exists a set of evidences E = {E1, E2.., Et}
and E 0 = {E0

1, E
0
2.., E

0
t0} which account for all the output of

the crossbar. Knowing the input value of only a few variables
that satisfy an evidence can allow us to know the output of the
whole crossbar and removes the need for expensive calculations.
An example of this approach is shown in Figure 6. For an 8-bit
input, observing a false value of input a7 allows us to know
that the output of the whole crossbar is false irrespective of
other values of the input.

IV. RESULTS

We synthesized memristor crossbar designs of sizes 5⇥ 5,
6⇥6, 7⇥7 and 8⇥8 using our approach. Our approach of using
a ternary function with a don’t-care condition allowed us to
skip 54% of the input pixel pairs while searching for crossbar
designs. The crossbar designs are presented in Figures 3, 4
and 5. We tested our design on the BSDS500 dataset and show
that the edges computed by our design have lower power to
signal noise ratio (PSNR) and higher perceptual difference
(PerceptualDiff) score when compared to earlier results [4].
We use the memristor programming circuits provided in [19]
and [5] to compare the performance of the fabricated devices
and designs. We compare the speed of edge detection by our

crossbar-based memristive computing design to the swarm-
based approach presented in [19], and show that our memristor
crossbar design takes less time to compute edges than the
swarm-based approach.

In Table I, we observe that the best PSNR and PerceptualDiff
score between the ground truth and the computed edge are 14.6
and 5359 respectively, whereas the PSNR value of the input-
aware method is lower at 8.9, while the PercetualDiff score
is higher at 20458. A higher PSNR and a lower perceptual
difference (PerceptualDiff) score denote higher conformance of
the ground truth with the computed edge. Similarly, we observe
in Figure 7 that the edges computed by our method have less
noise and are closer to the ground truth when compared to
the input-aware crossbar design. Our 5⇥ 5 design is 2.5 times
smaller than the designs produced by the input-aware method,
and requires 0.418mW of power, which is 3.3 times less than
the power required by the input-aware crossbar design.

Pixel A Pixel B Expected Observed

logical output output

01100000 01101001 0 3.5V
00110110 00100110 0 3.5V
01101111 10010100 1 1.7V
10011110 01111100 1 1.6V
10010000 01111100 1 1.7V
01001100 01110111 1 1.5V

TABLE II: Outputs on an 8⇥ 8 1T1R device using randomly
selected pixel pairs. Logical 0 corresponds to about 3.5V and
logical 1 corresponds to 1.5V – 1.7V.

The synthesized designs have been verified experimentally
on an 8⇥ 8 1T1R device array fabricated on a 300nm wafer.
We chose input pixel pairs, programmed them on the ReRAM
device, applied a current of 2µA to the input, and observed
the output voltages difference across the input and the output.
A high resistance state (HRS), leading to an observed high
voltage implies no edge, while a low resistance state (LRS)
leading to a low voltage implies the existence of an edge. The
result of the experiments is presented in Table II. We observe
a voltage difference of 1.9V between high and low resistance
states. These results experimentally verify the correctness of
the first flow-based edge detection design implemented on a
ReRAM device.
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(a) (b) (c) (d) (e) (f)

Fig. 7: (a) Original image, (b) Human annotated ground truth, (c) Edges generated using input-aware crossbar design [4], (d),(e)
and (f) Edges generated using our 5x5, 6x6 and 8x8 crossbar designs respectively. The number of pixels contributing to noise
in (c) is greater when compared to our designs. For example, in (c), there is a lot of noise on the roof of the house; our designs
generate edges that are similar to the ground truth.

V. CONCLUSIONS AND FUTURE RESEARCH

We present the design and fabrication of an edge detection
circuit using flow-based computing in nanoscale memristor
crossbars. Our work is the first to experimentally fabricate a
flow-based computing for a practical application, such as edge
detection. We demonstrate that our approach produces designs
that are 2.78x better in the perceptual difference score, 2.5x
smaller and 3.3x more energy-efficient that the state-of-the-art
in flow-based computing using memristor crossbars [4].

Crossbar design for a broader distribution of images is an
important direction we are going to pursue in the immediate
future. We will focus on crossbar synthesis for other relevant
applications like convolution, clustering, regression and pattern-
matching.
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