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Abstract—We introduce a new computer-aided design ap-

proach based on Free Binary Decision Diagrams (FBDDs) for

implementing Boolean functions on crossbars using flow-based

computing. Our crossbar synthesis procedure uses generalized

FBDDs to design crossbars for a Boolean formula such that there

is a flow of current from an input nanowire to an output nanowire

through the sneak paths in the crossbar if and only if the Boolean

formula evaluates to true. Generalized FBDDs are more succinct

representations of Boolean formulae than traditional Reduced

Ordered Binary Decision Diagrams (ROBDDs) because they do

not require the same variable ordering along all paths of the

decision diagram. Our experimental results with the middle bit

of a multiplier show that our designs are 69.9% more succinct

than flow-based crossbar computing approaches designed using

ROBDDs.

Index Terms—FBDD, BDD, Memristor, Crossbar, Flow-based

Computing, Non-volatile Memory.

I. INTRODUCTION

J
OHN von Neumann’s “First Draft" defining a computer
architecture for the EDVAC system [1] has survived for

seven decades due to an exponential decrease in feature sizes
over this period. The end of Dennard scaling and the rise of
big data have led to a renewed interest in More-than-Moore
devices [2] and novel computer architectures [3], including
in-memory computing systems [4]. The ability to compute
without moving data across the von Neumann barrier between
the processor and the memory reduces both the energy and
the time needed to perform the computations.

A two-dimensional crossbar of nanoscale memristors forms
a desirable fabric for in-memory computing as memristors can
serve as non-volatile storage devices and the values stored in
the memristors can control the flow of current through sneak
paths in the nanoscale crossbar. We can perform arbitrary
Boolean computations on a nanoscale crossbar using the
flow of current through sneak paths in the crossbar [5]–
[8]. The critical step in this design process is the mapping
of memristors in a crossbar to the variables in the Boolean
formula being computed.

In earlier works [8], [9], it has been shown that Reduced
Ordered Binary Decision Diagrams (ROBDDs) can be used to
design nanoscale memristor crossbars capable of implement-
ing Boolean formulae using flow-based computing. However,
there exist Boolean formulae such that the size of their
most succinct ROBDD representations with the best variable
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ordering is exponential in the number of variables. In this
paper, we make the following new contributions:

1) We show how a bipartite variant of a Free Binary
Decision Diagram (FBDD) can be used to synthesize
a nanoscale crossbar that implements flow-based com-
puting for a given Boolean formula.

2) We demonstrate the efficacy of our approach by synthe-
sizing a nanoscale memristor crossbar for the middle bit
of a 4-bit multiplier that takes 69.9% less area than a
crossbar designed using ROBDDs [9].

A 4-bit multiplier designed using our approach needs 8.4%
less area than the ROBDD based approach [9], while a
multiplier designed using the best of both approaches needs
42.8% less area than the approach based only on ROBDDs.

II. BACKGROUND

A. Memristors

A memristor is a two-terminal device that keeps track of
how much current has flowed through it. Leon Chua postulated
the existence of this fourth fundamental circuit element in
1971 [10]. In 2008, the first nanoscale memristor was created
from doped titanium oxide by HP Labs [11]. Empirically,
the resistance of a memristor may be given by the following
equation: RMemristor = RON

d

L
+ROFF

L�d

L
. Here, RON is

the resistance when the entire channel consists of the doped
layer and ROFF is the resistance when the entire channel
consists of the undoped layer. L is the total length of the
conductive channel which consists of doped and undoped
layers, and d is the length of the doped layer. As current flows
through the memristor in one direction, the doped channel
length increases and its resistance drops. If the current flows
in the opposite direction, its doped channel length decreases
and the resistance of the device increases. The resistive state
of the device remains unaltered when no current is flowing.
Hence, a memristor can be used as a non-volatile memory
element. We note that ROFF and RON are the maximum
and the minimum values of resistance for this memristor. We
refer to a memristor with maximum resistance as a device
in its OFF state; conversely a memristor with minimum
resistance is considered as being in the ON state. Memristor
based in-memory computing has already resulted in energy
and area efficient implementations of Deep Neural Networks
(DNN) and machine learning systems [12] [13]. Our work
implements Boolean formulae on memristors fabricated in the
form crossbar architecture.
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B. Crossbars
Nanoscale memristors are naturally assembled in the form

of uniform two-dimensional arrays or crossbars. Memristive
crossbars may be the architecture of choice for in-memory
computing as nanoscale memristors can be packed together in
a crossbar with high density. An n ⇥ m crossbar consists of n
horizontal nanowires and m vertical nanowires. Each horizon-
tal nanowire is connected with all vertical nanowires through
m distinct memristors. Similarly, each vertical nanowire is
connected with all of the n horizontal nanowires through n
different memristors. If a memristor is ON, the horizontal and
the vertical nanowires connected to its terminal will be shorted;
for an OFF memristor, the corresponding nanowires will not
be connected.

C. Flow-based Computing using Sneak Paths
A nanoscale memristor crossbar of n rows and m columns

has nm memristors. The plurality of memristive connections
among horizontal and vertical nanowires gives rise to the
phenomenon of sneak paths [14]. Sneak paths are trails of
low resistance paths between two nanowires which are not
directly connected with each other through an ON memris-
tor. The probability of sneak-path-based disturbance increases
exponentially with the length of the sneak path [15].

Our counter-intuitive approach leverages the abundance of
sneak paths in nanoscale memristive crossbars for implement-
ing Boolean functions. Our memristive crossbar design creates
a one-to-one correspondence between the value of the Boolean
function and the existence of a sneak path between the bottom
and the topmost nanowires of the crossbar.

Definition 1 (Crossbar Designs for Boolean Formula). Let
f : {0, 1}k ! {0, 1} be a k-bit Boolean function over
variables v1, v2 . . . vk and D : R ! {v1, v2, . . . vk}
be the design of the crossbar mapping memristors R =
{r11, r12 . . . r1n, r21, . . . , rmn} to the values of the variables
V . A crossbar design D is said to implement the Boolean
formula f if and only if the following two conditions hold:

• There exists a flow of current or a sneak path from the
bottom nanowire to the topmost nanowire of the crossbar
design D for a valuation of variables V if the Boolean
formula f evaluates to true for the given valuation of the
variables V .

• There is no sneak path connecting the bottom nanowire
to the topmost nanowire of the crossbar design D for
a valuation of variables V if the Boolean formula f
evaluates to false for this valuation.

The presence of a sneak path between the bottom and
the topmost nanowire may be verified by applying a small
voltage at the bottom nanowire and detecting the flow of
current through the topmost nanowire. The flow of current in
the topmost nanowire symbolizes that function is true while
the absence of a significant flow of current implies that the
function is false.

Figure 1(a) illustrates a simple flow-based in-memory com-
puting design that implements a 4-input AND gate on a 3⇥ 2
crossbar. Let A,B,C and D be the four inputs to the AND
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Fig. 1: (a) Crossbar design for flow-based in-memory comput-
ing of a 4-input AND gate on a 3⇥2 crossbar. The sneak path
is highlighting the flow of current from the bottom nanowire
to topmost nanowire. (b) Design for in-memory computing of
a 2-input XOR gate on a 2⇥ 2 crossbar.

gate. If A is true, the current flows from the bottom row to
first column through the memristor labeled by A in figure 1(a).
If B is also true, the current reaches the second row. If C
and D are both true, the current eventually reaches the top
nanowire through the sneak path shown in Fig. 1(a). Unlabeled
memristors in Fig. 1 are always turned off in our design.
Similarly, figure 1(b) shows a crossbar and its two sneak paths
that implement a 2-input XOR gate.

D. Binary Decision Diagrams
Binary decision diagrams (BDDs) are a natural choice

for designing nanoscale memristive crossbars that implement
flow-based computing using sneak paths. Lee was the first
to use them for representing switching circuits in 1959 [16].
BDDs are compact structural representations of Boolean func-
tions. Let f(x) be a k-bit function on the variable set V =
{v1, v2, v3....vk}. The BDD representation for the function is
a directed acyclic graph with one root node, two terminal
nodes and possibly multiple intermediate nodes. All nodes
except the terminal nodes have two outgoing edges. All non-
terminal nodes of BDDs are labeled by a variable vi 2 V ,
terminal nodes are labeled as 0 or 1. Each non-terminal node
is connected to either of its children depending on the value
of the variable vi. Each node of a BDD represents a Boolean
function, the root node represents the original function f(x),
the terminal node 1 represents true, the terminal node 0
represents false, while non-terminal nodes represent functions
which are co-factors of the function represented by their
predecessor. If the original function f(x) is true for some
x 2 {0, 1}k, there exists a path from the root node to the
terminal node labeled as 1; if f(x) is false, the path reaches
the terminal node marked as 0.

In our earlier flow-based computing approach using sneak
paths [9], we employed reduced ordered binary decision
diagrams (ROBDDs) for implementing Boolean functions on
nanoscale memristive crossbars. ROBDDs are a subclass of
BDDs where variable ordering has to be maintained on each
path from the root node to the terminal nodes. For example, if
⇡ = {v1, v2, . . . vk} represents the variable ordering, v1 should
always appear before v2 on each path from the root node to
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the terminal node. ROBDDs with a given variable ordering are
canonical representations of Boolean functions [17]. Efficient
inductive implementations of basic Boolean operations using
BDDs have been implemented in popular software pack-
ages [18]–[20].

III. FBDD BASED SYNTHESIS OF CROSSBARS

Our earlier approach that uses ROBDDs to synthesize flow-
based computing circuits can lead to large memristor crossbars
for functions whose ROBDDs are exponential in the number
of variables. In this paper, we seek to exploit the fact that there
are several interesting Boolean functions with exponential-
size ROBDDs but only polynomial-size Free Binary Decision
Diagrams (FBDDs) [21].

The requirement of a strict variable ordering along all paths
of a ROBDD is relaxed in Free Binary Decision Diagrams
(FBDDs); hence, different paths from the root to the terminal
nodes of a FBDD may represent different orderings of the
variables in the FBDD [21]. Like ROBDDs, FBDDs also do
not allow repeated occurrences of variables along any path
from the root node to the terminal nodes. In general, FBDDs
are more compact than ROBDDs because FBDDs do not
enforce the same strict variable ordering along all paths from
the root node to the terminal node of the decision diagram.

Simplify
DNF of f(x)

Synthesize
FBDD for f(x) Prune FBDD

Convert Pruned
FBDD into

Bipartite Graph

Map Bipartite
Graph onto

Crossbar

Verify
Crossbar

Functionality

Fig. 2: Flow diagram of our FBDD-based synthesis approach.

Figure 2 shows the flow diagram illustrating the steps of
our synthesis process. The first step transforms the given
Boolean formula f into a simplified Disjunctive Normal
Form (DNF). In the next step, we synthesize a Free Binary
Decision Diagram representation of the Boolean function f .
By definition of a FBDD, the functions represented by a
node and its children are related by the Shannon expansion:
f(x) = af(x|a=1) + ¬af(x|a=0). Here, f is the function
implemented by the parent node, f(x|a=1) and f(x|a=0) are
the functions implemented by the children nodes and a is
the binary variable around which f(x) is decomposed. In our
approach to the synthesis of FBDDs, the variable a is obtained
using a greedy heuristic. A Boolean variable a is chosen such
that it appears most often in the DNF representation of the
function f .

Figure 3(a) shows the free BDD synthesized for the second-
output-bit of a 4-bit multiplier using this heuristic. Incidentally,
the resulting graph is same as a ROBDD for this particular
function. As is clear from definition 1, we are interested in
only those paths that end on the terminal node 1; therefore,
we prune the FBDD and get rid of the edges that are connected
to the terminal node 0.

However, the pruned FBDD is not yet ready for mapping
onto crossbars. All memristors in crossbars establish connec-
tions between horizontal nanowires and vertical nanowires.
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Fig. 3: (a) Free Binary Decision Diagram (FBDD) for second-
output-bit of a 4-bit multiplier. A:D represent the first operand
and E:H represent the second operand. (b) Bipartite graph
of the pruned FBDD for the second-output-bit of a four bit
multiplier synthesized using our approach. Dark nodes are
dummy nodes used for converting the pruned FBDD into a
bipartite graph.

There are no direct connections between two horizontal
nanowires or two vertical nanowires in a crossbar. Hence,
the underlying graph corresponding to a nanoscale memristor
crossbar is bipartite. In the next step, we transform the pruned
FBDD into a bipartite graph by inserting dummy nodes to
eliminate odd-length cycles. It is well known that a graph
without odd-length cycles is bipartite. Figure 3(b) shows a
bipartite graph obtained after pruning and the introduction of
dummy nodes into the FBDD of Fig. 3(a).

In the final step, we map the pruned bipartite graph obtained
from the FBDD onto a nanoscale memristor crossbar. First,
we measure the distance of each node from the root node.
The root node is mapped onto the topmost nanowire, nodes
with even numbered distance from the root node are mapped
onto horizontal nanowires, and nodes with odd numbered
distance from the root node are mapped onto the vertical
nanowires. Since our graph is bipartite, no node can be at
both even and odd distance from the root node. Figure 4 shows
the synthesized crossbar for the second-output-bit of a 4-bit
multiplier.

IV. EXPERIMENTAL RESULTS

We have synthesized a 4-bit multiplier using our approach.
It has two input operands: the first operand is comprised of
bits A:D and the second operand is comprised of bits E:H .
Since the output of a 4-bit multiplier is an eight bit number, we
have synthesized eight crossbars. Table I presents the sizes of
the synthesized crossbars and configured memristors for each
output bit. In order to verify the correctness of the synthesized
crossbars, we have exhaustively applied all input combinations
on the synthesized crossbar designs. We verified that the sneak
paths between the bottom and topmost nanowires existed only
when the corresponding output was true; there was no path
whenever the function output was false.
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TABLE I: Comparison of ROBDD based approach [9] with FBDD based approach for output bits of a 4-bit multiplier

ROBDD based Synthesis FBDD based Synthesis Best of Both Approaches

Bit Index Crossbar Area Configured Crossbar Area Configured Crossbar Area Configured
Size Memristors Size Memristors Size Memristors

1 (LSB) 2 by 2 4 3 2 by 2 4 3 2 by 2 4 3
2 4 by 5 20 11 4 by 5 20 11 4 by 5 20 11
3 19 by 19 361 51 8 by 7 56 21 8 by 7 56 21
4 66 by 60 3960 186 35 by 34 1190 103 35 by 34 1190 103
5 42 by 40 1680 124 47 by 49 2303 136 42 by 40 1680 124
6 27 by 28 756 82 47 by 45 2115 129 27 by 28 756 82
7 17 by 20 340 55 28 by 28 784 80 17 by 20 340 55
8 (MSB) 7 by 9 63 22 10 by 11 110 30 7 by 9 63 22

Total 7184 534 6582 513 4109 421

1
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G G
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H 1 D

¬
D H D

C ¬
C

Vs

Rs

Fig. 4: Crossbar for the second-output-bit of a 4-bit multiplier
with A:D and E:H as operands. Memristors are labeled
with the values stored in them and unlabeled memristors are
always turned off. The highlighted lines show four sneak paths
emanating from the bottom nanowire and reaching the top
nanowire. These sneak paths are responsible for computation
of second-output-bit of the multiplier.

In order to understand the impact of multiple paths of
different lengths on the correctness of our designs, we per-
form quantitative SPICE resistive network simulations for all
possible 256 input configurations of a 4-bit multiplier. We
focus on the middle fourth-bit of the multiplier and used
the values of RON = 50⌦, Rs = 100⌦, Vs = 1V and
ROFF = 500k⌦ for our simulations. Memristors with HRS
(high resistance state) to LRS (low resistance state) ratio of
107 have been reported in literature [22]. Figure 5 summarizes
our experimental observations. Flows corresponding to true
formulae (shown in blue) are clearly distinguished from flows
corresponding to the false formulae (shown in red). The
minimum output voltage for a true formula was 0.177V while
the maximum output voltage for a false formula was 0.053V;
hence, the two truth values are clearly distinguishable in all
cases.

We have investigated the impact of memristor variability
on the correctness of our designs by changing the resistance
values by 5%. We vary the resistance of each memristor in
the crossbar corresponding to the middle fourth-bit of the
4-bit multiplier by increasing (decreasing) its value by 5%.

The lowest voltage corresponding to true falls from 0.177V
to 0.170V while the highest value corresponding to false rises
from 0.053V to 0.056V; both the true and the false values are
clearly distinct from each other in all cases.

We also compare the performance of the current FBDD
based heuristic approach with our previous ROBDD based
approach [9]. For the first four output bits, heuristic based
variable ordering has produced either similar sized or smaller
crossbars. But for the last four bits, ROBDD based variable
ordering has has resulted in smaller crossbars. A 4-bit multi-
plier generated using our approach needs 8.4 percent less area
than the ROBDD based approach, while a multiplier designed
using the best of both approaches needs 42.8 percent less area
than an approach based only on ROBDDs.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new FBDD-based computer-aided
design approach for synthesizing compact crossbars that im-
plement Boolean formulae using flow-based computing [5],
[6], [23]. Free Binary Decision Diagrams are often more
succinct than ROBDDs as they do not enforce the requirement
of a strict variable ordering along all paths from the root
to the terminal nodes of a decision diagram. We have taken
advantage of this increased representational power of FBDDs
for designing compact nanoscale memristor crossbars. In our
experimental investigations, FBDDs designed using a simple
greedy heuristic have resulted in identical or more compact
crossbars for the first four output bits of a 4-bit multiplier.

The number of configured memristors in our crossbars
designed using the best of the ROBDD and FBDD approaches
varies according to the complexity of the Boolean function
being synthesize. The configured memristors occupy 75%,
55%, 37.5%, 8.66%, 7.38%, 10.85%, 16.18% and 34.92%
of the crossbar space for the first through eighth output
bits. Thus, our decision-diagram based approach produces
sparse crossbar designs. We have used model counting and
simulated annealing to synthesize highly compact flow-based
computing adders [7] where more than 90% of the crossbar
has been configured during the design process. An interest-
ing direction of future work would be to design compact
multipliers that configure and employ a large fraction of the
available memristors on a crossbar. Our current FBDD-based
approach relies on the availability of memristors with high
HRS-LRS ratios. An approach that uses smaller and more
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Fig. 5: Output for the fourth-output-bit of the multiplier. The
X-axis represents the index of truth table entries, and the
Y-axis is the voltage across Rs. Blue lines correspond to
input combinations with true outputs, red lines represent false
outputs for the Boolean function. Output voltage is at least
0.177 V when the Boolean formula is true. Voltage is no more
than 0.053 V when the Boolean formula is false.

dense crossbars is likely to reduce the need for memristors
with high HRS-LRS ratios. A deeper theoretical investigation
into the computational capability of flow-based computing
on crossbars and the size of Boolean formula that can be
computed on a memristor crossbar is merited.

Our FBDD based in-memory crossbar computing approach
is not specific to memristor crossbars. The methodology can
also be employed to design circuits using other resistive-RAM
devices [24], [25]. In future, we intend to explore decision
diagrams such as fixed type FBDDs [26], [27] that may result
in more scalable synthesis of compact crossbars for Boolean
functions with higher bit-widths [16].
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