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Abstract. Counterexample guided abstraction refinement, a powerful technique
for verifying properties of discrete-state systems [4, 9] has been extended recently
to hybrid systems verification [1, 3]. Unlike in discrete systems, however, estab-
lishing the successor relation for hybrid systems can be a fairly expensive step
since it requires evaluation and overapproximation of the continuous dynamics.
In [3] it has been observed that it is often sufficient to consider fragments of
counterexamples rather than complete counterexamples. In this paper we further
develop the idea of fragments. We extend the notion of cut sets in network flows
to cutting sets of fragments in abstractions. Cutting sets of fragments are then
uses guide the abstraction refinement in order to prove safety properties for hy-
brid systems.

1 Introduction

Model checking for hybrid systems requires finite abstractions [1–3, 13]. Since abstrac-
tions are conservative representations of the hybrid system dynamics, only positive ver-
ification results are conclusive: a universal specification that is true for the abstraction
is also true for the hybrid system. However, when the specification is not true for the
abstraction it could still be true for the hybrid system because there may be no behav-
iors for the hybrid system that correspond to the behaviors of the abstraction that violate
the specification. When model checking fails for the abstraction of a hybrid system, the
abstraction can be refined to create a less conservative approximation to the hybrid sys-
tem and model checking is repeated on the new abstraction. This paper presents a new
method for constructing refinements of abstractions for hybrid systems. The method is
developed for safety specifications, that is, for specifications that can be expressed in
terms of reachability conditions.

Abstractions of hybrid systems are usually quotient transition systems for the infinite-
state transition system that provides the semantics for the hybrid system. The two prin-
cipal issues in constructing these quotient transition systems are: (i) identifying and
representing the sets of hybrid system states that comprise the states for the abstraction;
and (ii) computing the transition relation for the abstraction. Step (ii) is usually the most
difficult and time-consuming step because it involves the computation of reachable sets
for the continuous dynamics in the hybrid system. Moreover, the time involved in com-
puting reachable sets for the continuous dynamics makes the time required to perform
model checking on the abstraction negligible in the overall time required to perform
the verify-refine iteration described above. The extensive time required to construct a
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refinement of an abstraction makes it desirable to find ways to construct effective re-
finements.

Counterexample guided abstraction refinement (CEGAR) has been proposed to
guide the refinement process. This refinement strategy, originally developed for discrete-
state systems, uses counterexamples in the abstraction (runs that violate the specifica-
tion) to determine how to refine the abstraction so that known counterexamples are
eliminated [4, 9]. This approach was successfully extended to deal with hybrid systems
[1, 3] as follows. For a given counterexample in the abstraction, which is a sequence of
sets of hybrid states, the reachable states are computed for the hybrid system starting
from the initial set of hybrid states in the counter example (which is a subset of the ini-
tial states for the hybrid system). This process is called validating the counterexample.
If there is a set of states along the counterexample that cannot actually be reached in the
hybrid system, the counterexample is refuted and is to be a spurious counterexample
in the abstraction. This provides the guidance for refining the abstraction: the sets of
reachable states computed along the counterexample are introduced as new states in a
new abstraction for subsequent model checking. For the hybrid system case (in contrast
to the discrete state case), not being able to refute a counterexample using reachability
computations does not guarantee there exists a trajectory for the hybrid system that vi-
olates the specification. When the counterexample is not refuted, one might explore for
possible validating counterexamples in the hybrid system using simulation or reacha-
bility computations with inner approximations. Alternatively, the information from the
overapproximated reachability computations can be used to construct a refined abstrac-
tion.

We made two important observations in our work on CEGAR for hybrid systems.
First, rather than refuting a complete counterexample, it is sufficient and often a lot
cheaper to refute a fragment of the counterexample. Second, coarse overapproximation
methods to compute reachable sets for hybrid systems are not only computationally
faster, but can also lead to smaller refinements that lead to conclusive results more
quickly than those obtained using more exact (but computationally expensive) meth-
ods. These observations are the basis for the new approach to abstraction refinement
proposed in this paper. The overall goal is to obtain as much information as possible
from an analysis of the structure of the graph representing all counterexamples for an
abstraction, and to use this information to minimize the amount of time devoted to
performing expensive reachability computations for the underlying hybrid system dy-
namics.

In this new procedure, rather than validating a single counterexample, the reachable
set computations aim to validate a cutting set of fragments for the graph of counterex-
amples for a given abstraction. We introduce the concept of the cutting set of fragments
as an extension of the standard notion of a cut set of links for a network graph. A weight
assigned to each fragment identifies the expected cost for validating the fragment. An
optimal cutting set of fragments is computed based on these weights to minimize the
time devoted to hybrid system reachability computations. The new scheme combines
ideas from computing cut sets for scenario graphs and network flows [10] with con-
cepts taken from counterexample guided abstraction refinement [3].
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The next section introduces transition systems, abstractions and the concept of cut-
ting sets of fragments for abstractions. Section 3 illustrates the purpose of considering
fragments of counterexamples and how fragments can be validated using methods for
computing reachable sets for hybrid systems. The proposed procedure for hybrid sys-
tem verification using fragments to guide abstraction refinement is then presented in
Sect. 4. Section 5 explains how to compute minimal cutting sets of fragments based on
an extension of standard cut set algorithms for network graphs. The procedure is illus-
trated with an example in Sect. 6, and the paper concludes a discussion of future work
in Sect. 7.

2 Preliminaries

This section introduces the basic structures and concepts used in the proposed approach
for refinement of abstractions for hybrid systems using fragments of counterexamples.

Hybrid systems are a class of infinite-state systems that include both continuous and
discrete state variables. The standard model for hybrid systems is the hybrid automaton.

Definition 1. A hybrid automaton is a tuple HA = (Z, z0, zf ,X, inv ,X0, T, g, j, f)
where

– Z is a finite set of locations with initial location z0 ∈ Z, and final location zf .
– X ⊆ Rn is the continuous state space.
– inv : Z → 2X assigns to each location z ∈ Z an invariant inv(z) ⊆ X .
– X0 ⊆ X is the set of initial continuous states.
– T ⊆ Z × Z is the set of discrete transitions between locations.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to (z1, z2) ∈ T .
– j : T → (X → X) assigns to each (z1, z2) ∈ T and a reset or jump mapping from

X to X . The notation j(z1,z2) is used for j((z1, z2))
– f : Z → (X → Rn) assigns to each location z ∈ Z a continuous vector field

f(z). The notation fz is used for f(z). The evolution of the continuous behavior in
location z is governed by the differential equation χ̇(t) = fz(χ(t)). The differential
equation is assumed to have a unique solution for each initial value χ(0) ∈ inv(z).

We use the standard transition-system semantics for the hybrid automaton.

Definition 2. A transition system TS is a tuple (S, S
0
, S

f
, R) with a set of states S, a

set of initial states S
0 ⊆ S, a set of accepting states S

f ⊆ S, and a transition relation
R ⊆ S × S.

Definition 3. The semantics of a hybrid automatonHA is a transition systemTS (HA) =
(S̄, S̄

0
, S̄

f
, R̄) with:

– the set of all hybrid states S̄ = {(z, x)|z ∈ Z, x ∈ X,x ∈ inv(z)},
– the set of initial hybrid states S̄

0 = {z0}× (X0 ∩ inv(z0)),
– the set of accepting hybrid states S̄

f = {zf}× inv(zf )
– transitions R̄ with ((z1, x1), (z2, x2)) ∈ R̄, iff (z1, z2) ∈ T and there exist a trajec-
tory χ : [0, τ ] → X for some τ ∈ R>0 such that: χ(0) = x1, χ(τ) ∈ g((z1, z2)),
x2 = j(z1,z2)(χ(τ)), and χ̇(t) = fz1(χ(t)) for t ∈ [0, τ ], χ(t) ∈ inv(z1) for
t ∈ [0, τ ].
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The first step in model checking hybrid systems is to find a suitable finite abstrac-
tion, where the notion of abstraction for transition systems is defined as follows.

Definition 4. Given a transition system C = (S̄, S̄
0
, S̄

f
, R̄), a transition system A =

(S, S
0
, S

f
, R) is an abstraction of transition system C, denoted by A � C, if there

exist an abstraction function α : S̄ → S such that S0 = α(S̄0), Sf = α(S̄f ) (where α
is extended to subsets of S̄ in the usual way),and
R ⊇ {(s1, s2)|∃(s̄1, s̄2) ∈ E, α(s̄1) = s1, α(s̄2) = s2}.

In this paper, we are interested in constructing finite abstractions forC = TS(HA),
whereHA is a given hybrid automaton. This given infinite-state transition system is re-
ferred to as the concrete system. Note that the definition of abstraction above allowsA to
include transitions that have no counterpart in C. Such spurious transitions may arise
in abstractions of hybrid systems because sets of reachable states for hybrid systems
cannot, except for simple dynamics [8], be computed exactly, but have to be overap-
proximated. The computations of sets of reachable states required for our procedure are
represented formally as follows.

For an abstraction function α, let Sα denote the partition of the set of hybrid states
S̄ defined by the inverse mapping α−1. Our procedure requires a method for computing
the set of states that can be reached from one element of Sα in another element of Sα.
That is, given two sets of hybrid states, S̄1, S̄2 in Sα, we require a method for computing
a subset of states in S̄2 that contains the set of hybrid states that can be reached from
states in S̄1. We denote such a method by succ. Given a set of hybrid states S̄1 ⊂ S̄ the
set of successor states is denoted by succ(S̄1) = {s̄�|∃s̄ ∈ S̄1. (s̄, s̄�) ∈ R̄}. With this
notation, an overapproximation method succ is defined as:

Definition 5. Let HA be a hybrid automaton with TS (HA) = (S̄, S̄
0
, S̄

f
, R̄), and let

A = (S, S
0
, S

f
, R) and α as in Defn. 4. Let S̄1 = α−1(s1), and S̄2 = α−1(s2). Then

succ : Sα → 2S̄ is an overapproximation of the set of hybrid successors of S̄1 in S̄2 iff
succ(S̄1, S̄2) ⊆ S̄2 and succ(S̄1, S̄2) ⊇ succ(S̄1) ∩ S̄2.

Our abstraction refinement procedure provides a framework to use the fact that dif-
ferent overapproximation techniques have different computational loads and accuracy.
It was observed in [3] that combinations of coarse and precise methods can improve
the efficiency of the verify-refine iterations significantly. In the following we assume
a series of overapproximation methods succ1, . . . , succn is given that provides a hier-
archy of coarse to tight approximations. This hierarchy will be used to assign weights
to fragments that reflect the computational effort required to apply the various overap-
proximation methods.

Our procedure is based on the analysis of sequences of states in abstractions called
fragments.

Definition 6. A fragment of a transition system TS = (S, S
0
, S

f
, R) is a finite se-

quence (s0, . . . , sn) such that (si−1, si) ∈ R for i = 1, . . . , n. A run is a fragment with
s0 ∈ S

0. A state s is reachable if the there exists a run that ends in s. An accepting run
is a run (s0, . . . , sn) with sn ∈ S

f . The set of all accepting runs of TS will be denoted
by R(TS). A run (s0, . . . , sn) is loop-free if for all i, j ∈ {0, . . . , n}, i �= j implies
si �= sj .
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This paper deals with safety properties. The set of states Sf should not be reachable,
that is, the transition system should not have any accepting run. We refer to S

f as the
set of bad states and to accepting runs as counterexamples. Our analysis of counterex-
amples for abstractions will focus on sets of fragments, using the following notions of
cutting fragments and cutting sets of fragments.

Definition 7. For n2 ≥ n1 ≥ 0, fragment �1 = (s0, . . . , sn1) cuts a fragment �2 =
(t0, . . . , tn2), denoted by �1 � �2, if there exists a i ∈ 0, . . . , n2 − n1 such that ti+j =
sj for j = 0, . . . , n1.

Definition 8. A set F1 of fragments cuts a set of fragments F2, denoted by F1 � F2, if
for each fragment �2 ∈ F2 there exist �1 ∈ F1 such that �1 � �2. Set F1 is minimal
if F1 � F2 and F1 \ � �� F2 for all � ∈ F1. Given a transition system TS, a set of
fragments F cuts TS if F � R(A).

In words, a fragment �1 cuts another fragment �2 if �1 is a subsequence �2. When
a transition system is an abstraction of a hybrid system, a set of fragments F that cuts
the abstraction covers all counterexamples for the abstraction, that is, any path from the
initial state to the bad state (a counterexample) is cut by one of the fragments in F .
Any set of fragments that cuts F also cuts the abstraction. The remainder of the paper
shows how the minimal cutting sets of fragments can be used to guide the refinement
of abstractions for hybrid systems.

3 Validating Fragments

Abstractions can be represented as network graphs, with states as nodes and transitions
as edges. The initial states can be considered as sources and the final states as sinks. A
cut set is a set of edges such that all paths from source to sink contain at least one edge
in the set. For example, for the graph in Fig. 1.(a) transitions (G, J) and (B,E) are a
cut set. All paths from source to sink pass through one of those edges. All accepting
runs are cut, if those edges are deleted from the graph.

This paper generalizes the idea of cut sets to sets of fragments that cut the abstrac-
tion. For example, fragments (D, H) and (C, G, J) in Fig. 1.(b) form a cut set since
all runs from source to sink contain either (D, H) or (C, G, J). If both fragments were
spurious, then there would exist no run in the concrete system that connects source to
sink. Hence, the concrete system would satisfy the safety property.

The process of determining whether or not a fragment is spurious is called validat-
ing a fragment. For a given fragment (s0, . . . , sn) of an abstraction A with abstraction
function α, the objective is to determine if there exists a fragment (s̄0, . . . , s̄n) of hy-
brid system C, such that si = α(s̄i), for all i = 0, . . . , n. Computation of hybrid
successors is the key step in the validation procedure. The validation procedure use
methods succ1, . . . , succm for the validation step. The procedure maintains a mapping
X : (F × N) �→ {1, . . . , m} that assigns method X ((s0, . . . , sn), i) to validate tran-
sition i of fragment (s0, . . . , sn). Initially X assigns to all transitions of in the initial
set F the computationally cheapest method. X will be updated in the augmentation and
refinement step, along with the set of fragments.
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Fig. 1. The initial state of this transition system is A, the accepting state is L. Figure 1.(a) depicts
a pair of transitions that cut the transition system. Cutting set can also contain fragments of length
greater than 2 (Fig. 1.(b)).

The validation is performed as follows, given abstraction A, concrete system C,
abstraction function α, and fragment (s0, . . . , sn):

valid := true, S̄0 := α−1(s0)
for i = 1, . . . , n− 1

S̄i := α−1(si)
S̄i := succX ((s0,...,sn),i)(S̄i−1, S̄i)
if S̄i = ∅

valid := false
break
end% if

end % for
This procedure computes the hybrid successors along the fragment. There exist no cor-
responding run to (s0, . . . , sn) if a set of successors S̄i becomes empty.

The need to consider fragments of length 2 or longer arises when all single-transition
fragments have been validated and some are found to be non-spurious. Suppose for ex-
ample, that (B,E) in Fig. 1.(a) has been shown to be spurious, while (G, J) has been
shown to be non-spurious. The next iteration has to choose a cutting set from the ab-
straction in Fig. 1.(b). Fragment (G, J) however can not be part of the next cutting set,
since it is known to be non-spurious. Suppose that (D, H) and (C, G, J) have not been
validated yet. The set of fragments (D, H) and (C, G, J) can then be chosen as next as
cutting set, and one must then checked if they are spurious.

4 Using Sets of Fragments for Abstraction Refinement

Figure 2 presents our procedure for model checking hybrid systems using sets of frag-
ments to guide the abstraction refinement. The inputs to the procedure are: C, a given
concrete (hybrid) system;A, an initial abstraction forC;F , a set of loop-free fragments
that cuts A; and P : F → N, an assignment of weights reflecting the computational
effort required to validate each fragment. The concrete system is represented implicitly
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through the equations defining the underlying hybrid automaton and the available over-
approximation methods. The initial abstraction includes the abstraction function and a
representation of the the associated partition of hybrid states. In this paper we assume
the initial abstraction A = (S, S

0
, S

f
, R) is defined as in [3]. This initial abstraction

has one abstract state for each control location, with the exception of the initial location.
For the initial location the abstraction includes two states, one to represent the set of hy-
brid states z0 × (inv(z0) ∩X0), and one state to represent z0 × (inv(z0) \X0). Given
the initial abstraction A = (S, S

0
, S

f
, R), the initial set of fragments F is defined to be

the set of transitions R. We assume that P assigns initially the weight associated with
applying the computationally cheapest approximation method to a single transition.

In each iteration through the main loop, a new abstraction is constructed based on
the results of validating sets of fragments. If there are no accepting runs for the abstrac-
tion coming into the main loop (R(A) = ∅) the verification terminates with a positive
result: the bad state is not reachable in the hybrid system.

The first step in each iteration is to compute a minimal cutting set of fragments Fopt

for which the set sum of the weights is minimized (Fig. 2(i)). Section 5 describes the
algorithm for finding Fopt, which is a generalization of algorithms for finding minimal
cut sets of links in a graph.

input: C, A, F , P

whileR(A) �= ∅
Fopt := cutset(A,F ,P) (i)
while Fopt �= ∅ ∧ Fopt ⊆ F

(s0, . . . , sn) :∈ Fopt, Fopt := Fopt \ (s0, . . . , sn)
valid = validate((s0, . . . , sn), A, C) (ii)
if valid ∧ s0 ∈ S0 ∧ sn ∈ Sf

exit(“Found valid accepting run of A”)
elseif valid

(F ,P) = augment(F ,P, (s0, . . . , sn), A) (iii)
break
else

(A,F ,P) = refine(A,F ,P, (s0, . . . , sn)) (iv)
end % if

end % for
end % while

exit(“zf is not reachable for the HA”)

Fig. 2. Abstraction refinement loop that uses cutting sets of fragments Fopt to
guide the refinement.

Given the set of fragments Fopt, the inner loop iterates through the elements of
Fopt one at a time. Each fragment in Fopt will be validated (Fig. 2(ii)). This iteration
continues until all fragments have been validated (Fopt = ∅) or an abstraction has been
constructed for which the remaining fragments no longer constitute a subset of the frag-
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ments for the abstraction (Fopt �⊆ F ). If the current fragment is a valid accepting run
the procedure stops. Otherwise, if it is a valid fragment the procedure augments the set
of fragments and weights assignment (iii), leaves the inner while loop, and recomputes
Fopt. If the fragment is not valid, the abstraction, fragments and weights are refined
(Fig. 2(iv)). This refinement may change F such that Fopt �⊆ F . In this case the proce-
dure exits the inner while loop and recomputes Fopt.

To elaborate on the augment and refine functions in the procedure, the validation
procedure has two possible outcomes: either the procedure finds an empty set of suc-
cessors, i.e. there exists no corresponding fragment in C to (s0, . . . , sn), or the proce-
dure could not find an empty set of hybrid successors. The latter may be caused by the
overapproximation error of the selected methods. In this case there are two options on
how to proceed: Either, the overapproximation can be improved by using a different
approximation method, or the current fragment must be replaced by extensions of the
current fragment.

Choosing a different overapproximation method. The result of the validation might
be improved by a different approximation method in future iterations. Changing the
validation methods for fragment (s0, . . . , sn), is done by changing the mapping X for
at least one transition in (s0, . . . , sn). If the procedure changes the mix of methods used
to validate (s0, . . . , sn) it has to update function P accordingly.

Extending the fragment If the overapproximation cannot improve, the current fragment
(s0, . . . , sn) will be replaced by new, extended fragments. This becomes necessary if
the validation step uses for each fragment the best available overapproximation method.
The new fragments will extend (s0, . . . , sn) in both directions of the transition relation,
i.e. sets {(s�, s0, . . . , sn)|(s�, s0) ∈ R} and {(s0, . . . , sn, s

�)|(sn, s
�) ∈ R} are added to

F . Recall the requirement that for all �1, �2 ∈ F , �1 �� �2. The procedure enforces this
requirement by removing all fragments from F that are cut by some other fragment.
Finally, X and P are updated for all new fragments of F .

To avoid fragments of unlimited length the augmentation might extend fragments
only up to a certain length. First experiments show that an upper bound of 2 to 4 is
reasonable. However, adding only a limited number of fragments may lead to a situation
in which there are no fragments that cut a certain counterexample. In this case the
procedure might add the complete counterexample to the cutting set, and validate it in
the next iteration.

Refinement. If the current fragment is not valid, the refinement step (iv) in Fig. 2
uses the sets S̄i that were computed in the validation step (ii), for i = 1, . . . , k. For
i = 1, ..., k − 1 the following steps are performed. If S̄i is a proper subset of α−1(si),
split si into two abstract states, one, sreach

i , to represent the states in S̄i, and one, scomp
i

to represent the states in α−1(si) \ S̄i (Fig. 3). The new states s
reach
i and s

comp
i will

have the same ingoing and outgoing transitions as Si, with one exception. The transition
from si−1 to s

comp
i can be omitted, since there exists no hybrid transition from any state

in S̄i−1 to some state in α−1(si) \ S̄i. All fragments from F that involve state si are
removed, and the new transitions of the abstraction are added toF .X assigns to the new
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Fig. 3. Left: Refinement by splitting states. Right: Refinement by purging transitions. For a formal
definition of the refinement operations see [3].

fragments the default method for single transitions, and P the weight that is associated
with this method. If S̄i is equal to α−1(si), then there is no need to refine the abstraction.

For i = k the transition (sk−1, sk) is omitted from the abstraction (Fig. 3), since
there exists no hybrid transition from any state in S̄k−1 to some state in α−1(si). Simi-
larly, all fragments from F that contain transition (sk−1, sk) are removed.

5 Optimal Cutting Sets of Fragments

This section describes the cutset operation in step (i) of Fig. 2. Assume a finite transition
system A (the current abstraction), a set of fragments F and a weight assignment P :
F → N. The fragments in F have not been validated and are candidate elements of the
optimal cutting set. By assumption for the initial abstraction, and by construction for
all subsequent abstractions, all fragments in F are loop-free. P assigns to each � ∈ F a
weight; this weight reflects the expected cost of validating this fragment. The weight of
a set F � ⊆ F is the sum of the weights of the elements. Furthermore, it is assumed that
�1 � �2 implies P(�1) ≤ P(�2). As a consequence it is required for all �1, �2 ∈ F
that �1 �� �2, i.e. no fragments in F cuts another.

Step (i) of the procedure in Fig. 2 computes a cutting set Fopt ⊆ F of A that is
minimal w.r.t. to P , i.e. it satisfies

�

f∈Fopt

P(f) = min
F�⊆F

F��R(A)

�

f∈F �
P(f) (1)

Example Suppose that we are given transition system A in Fig. 4 as abstraction. Sup-
pose furthermore that fragments (0, 4, 5), (1, 2, 4), (0, 1) and (4, 3) have not been vali-
dated, yet. Assume an associated weight of 2 with validating fragment (0, 4, 5), a weight
of 3 with (1, 2, 4), and a weight of 1 with fragments (0, 1) and (4, 3). What subset of
these fragments is the cutting set with the lowest sum of weights? Obviously, we have
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Fig. 4. Left: A finite transition system A. Right: The depth-first unrolling of A. The unrolling
stops if either the final state 5 is reached (solid), or if a loop has been detected (dashed).

to include fragment (0, 4, 5) in any cutting set. But is the set with fragments (0, 4, 5)
and (0, 1) sufficient? After all, this set cuts all loop-free accepting runs.

Somewhat surprisingly, there exist an accepting run that is not covered by fragment
(0, 4, 5) or fragment (0, 1). Neither cuts accepting run (0, 4, 3, 1, 2, 4, 5), although frag-
ment (0, 4, 5) cuts it trivially once we remove loop (4, 3, 1, 2, 4). This demonstrates that
the problem of finding cutting sets of fragments is not a simple cut set problem in a net-
work flow graph, for which it would be sufficient to concentrate only on loop-free runs.
�

Standard cut set algorithm cannot be applied directly, since fragments in F are not
represented by single transitions in A. To solve this problem this we define a collec-
tion of transition systems that observe A. This requires an extension of the notion of
transition systems to automata.

Definition 9. Given a set of labels Σ, an automaton A is a tuple (Σ, S, S
0
, S

f
, R, L)

where (S, S
0
, S

f
, R) is a transition system and L : R → 2Σ a labelling function.

Definition 10. Let Ai = (Σi, Si, S
0
i , S

f
i , Ri) be a finite number of automata, i =

1, . . . , n. The synchronous compositionA = A1|| . . . ||An is an automaton (Σ, S, S
0
, S

f
, R)

with

– Σ =
�

i∈{1,...,n} Σi, the union of all alphabets.
– S = S1× . . .×Sn, S0 = S

0
1 × . . .×S

0
n, and S

f = S
f
1 × . . .×S

f
n . The projection

s|Si will be denoted as si.
– (s, s�) ∈ R if

�
i∈{1,...,n} Li(si, s

�
i) is nonempty.

– L(s, s�) =
�

i∈{1,...,n} Li(si, s
�
i).

Note that this is a very restricted notion of composition. The composition automaton
can only take a transition if all automata can take a transition with the same label.
However, the observing automata will be constructed such that they can synchronize
always with any transition in the observed automaton. Given a transition system A and
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Fig. 5. The automata A(0,4,5),A(1,2,4),A(0,1), andA(4,3) observe the transitions in Al. The only
accepting state of Al is the state 5.

a set of fragmentsF ofA, the procedure first extendsAwith labels, and then introduces
for each fragment in F a small automaton that observes the occurrence of a fragment.
The steps to obtain the observing automata are the following:

1. Extend A = (S, S
0
, S

f
, R) to a automaton Al = (Σ, S, S

0
, S

f
, R) with Σ = R

and L mapping (s, s�) �→ {(s, s�)}.
2. For each � ∈ F , � = (s0, . . . , sn−1), introduce an observer automaton A� =

(Σ�, S�, S
0
� , S

f
� , R�, L�) with

– Σ� = Σ
– S� = {t0, . . . , tn−1}, where n is the length of fragment �.
– S

0
� = {t0} and S

f
� = S�

– R� is the set {(ti, ti+1)|i = 0, . . . , n− 2} ∪ {(ti, t0)|i = 0, . . . , n− 1}}
– and L� is the following mapping

(t, t�) �→






(si−1, si) if (t, t�) = (ti, ti+1), i = 0, . . . , n− 2
Σ \ (si−1, si) if (t, t�) �= (ti, ti+1), i = 0, . . . , n− 2
Σ if (t, t�) = (tn−1, tn)

The next step composes the labelled transition system Al with the observer automata
A� for all � ∈ F . This composition will be denoted as AF .

Example (Cont) Given the transition system A in Fig. 4, the first step is to obtain
Al by adding labels (Fig. 5). Recall that F = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)}, and
P(0, 4, 5) = 2, P(1, 2, 4) = 3, P(0, 1) = 1 and P(4, 3) = 1. The next step includes
a small observing automaton for each fragment (Fig. 5). The automaton for fragment
(0, 4, 5) has as many states as the fragment has transitions. In each state the automaton
can synchronize with any transition in Al.

If transition (0, 4) occurs in Al the observing automaton A(0,4,5) takes a transition
from state 0 to state 1. If transition (4, 5) occurs right after the first transition, the ob-
serving automaton will take a transition back to the initial state. This corresponds to
the transition from (4, 1, 0, 0, 0)T to (5, 0, 0, 0, 0)T in composition AF in Fig. 6. This
transition marks an occurrence of the fragment (0, 4, 5) in Al.
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Fig. 6. Composition automaton AF , and the tree of all loop-free accepting runs.

Figure 6 depicts the composition automaton AF , and the tree of all loop-free coun-
terexamples. Note that there are two transitions labelled (4, 3) in AF . Transition (4, 3)
is an element of the set of fragments F that have not been validated yet. If we one could
show that (4, 3) is spurious, it would eliminate both arcs in the graph in one go. Obvi-
ously, cut set algorithm for network flows cannot be used, since several arcs in AF can
represent the same fragment of Al.

The set with ((4, 1, 0, 0, 0)T
, (5, 0, 0, 0, 0)T ) and ((2, 1, 0, 0, 0)T

, (4, 0, 0, 0, 0)T )
cuts composition AF

1. These transitions in AF mark the occurrence of fragments
(0, 4, 5) and (1, 2, 4) in A. The overall weight of this set is 5. The tree also shows
that the set containing fragments (0, 4, 5) and (0, 1) does not cut Al, since transitions
((4, 1, 0, 0, 0)T

, (5, 0, 0, 0, 0)T ) and ((0, 0, 0, 0, 0)T
, (1, 0, 0, 0, 0)T ) do not cut AF . It

also shows that (0, 4, 5), (1, 0) and (4, 3) are a cutting set ofA, with an associate weight
of 4. This is the optimal cutting set for this example.

Note that the observers for the fragments (0, 1) and (4, 3) do not add anything and
could be omitted. Likewise, one observer for fragments that are equal except for the last
transition would be sufficient. However, maintaining those observers does not increase
the size of the composition, and we chose to maintain them in this paper to treat the
different fragments consistently. �

The construction ofAl ensures that each transition has a unique label. Consequently
Al is deterministic. All observers are deterministic, too, and can synchronize in each
state with any transition of Al. The behavior of Al is not restricted by the observers.
This yields a close relationship between AF and Al, and thus between AF and A. As a
matter of fact for each π ∈ R(A) there exist a πF ∈ R(AF ) such that πF |S = π, and
vice versa.

Lemma 1. Given a transition system A, a set of fragment F of A and the composition
automaton AF , the following holds.

1 Column vectors are used for elements of product state spaces to distinguish them from tuples
of states that are fragments.
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(i) A subset F � ⊆ F cuts transitions system A, i.e. F � R(A) iff for all πF ∈ R(AF )
there exists � ∈ F � such that � � πF |S .

(ii) Given � = (s0, . . . , sn) the following holds: � � πF |S iff the projection of the path
πF to S × S� contains a transition from (sn−1, tn−1)T to (sn, t0)T .

Proof: (i) This follows straightforward from the observation that πF |S is in R(A) for
all πF ∈ R(AF ), and that for all path π ∈ R(A) there exists an πF , with πF |S = π.
(ii)”⇒” Transition (sn−1, tn−1)T to (sn, t0)T can only be taken if it was immediately
preceded by transitions synchronizing on labels (sn−i−1, sn−i)T , for i = 1, . . . , n− 1.
”⇐”. Let πF |S = (z0, . . . , zm) and πF |S� = (z�0, . . . , z�m). By definition, � � πF |S iff
there exists a k such that zk+i = si for i = 0, . . . , n.

First, we show that A� is in its initial state after the k-th transition of πF , that is,
z
�
k = t0. If k = 0, z

�
k = t0 holds trivially. When k > 0 we have the following:

(zk−1, zk) is a transition of Al, but it is not a transition of fragment �. The latter holds
because zk = s0 and � is loop-free. Since (zk−1, zk) is not in � it can synchronize only
with a transition of A� that leads to its initial state. This implies that z�k = t0. The tran-
sition (zk+i, zk+i+1) will then synchronize with (z�k+i, z

�
k+i+1) on label (si, si+1), for

i = 0, . . . , n−2. At this pointA� will be in state tn−1. In this state, transition (zn−1, zn)
of Al can only synchronize with transition (tn−1, t0) of A� on label (sn−1, sn), which
concludes the proof. �

On first sight little has been gained. Rather than selecting subsets of F that cut A,
the procedure can select subsets of RF , the transitions of AF , that cuts AF . But the
advantage of looking at transitions rather than fragments is that it becomes sufficient to
look only at loop-free accepting runs. A set R�

F ⊆ RF that cuts all loop-free accepting
runs, also cuts all accepting runs. Let Rlf (AF ) be the set of all loop-free accepting
runs.

Lemma 2. Given a transition system A, a set of fragment F of A and the composition
automaton AF . Let R�

F ⊆ RF , then R
�
F � Rlf (AF ) iff R�

F � R(AF ).

Proof: ”⇒” Suppose that we have an accepting run πF ∈ R(AF ). From this we
can obtain a loop-free accepting run π�F by eliminating all loops. According to the
precondition there exists a � ∈ R

�
F such that � � π�F , which means that transition �

appears somewhere in π�F . Since the transitions that occur in πF are a super-set of those
that appear in π�F we have � � π�F , too. ”⇐” If a set of transitions cuts all accepting
runs, it will cut all loop-free accepting runs. �

Lemma 2 allows the consideration of only loop-free accepting runs ofAF . However,
the example demonstrates that a cut set algorithm for network flows cannot be used to
find a cut set of AF , since certain fragments of A may be represented by multiple
transitions in AF . The cutting set problem can be solved by a translation to a set cover
problem. A similar approach has been used in [10] to find cut sets for attack graphs.
The cut set determines what actions of the attacker have to be disabled to prevent future
attacks.

Given a finite (universal) set U and a set of sets C = {C1, . . . , Cn} with Ci ⊆
U as input, a set cover algorithm computes the smallest subset Copt ⊆ C such that�
Ci∈Copt

Ci = U . The set cover problem is NP-complete, but a greedy approach is
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guaranteed to find an solution that is at most lg n as bad as the optimal solution in
polynomial time (where n is the number of elements of U) [11]. The greedy algorithm
picks in each iteration the set from S that covers the greatest number of uncovered
elements of U , until the complete set U is covered.

The problem of finding a cutting set of fragments is a set cover problem, where
the universal set is Rlf (AF ), and C contains for each fragment � in F set C� =
{πF ∈ Rlf (AF )|� � πF |S}. The problem is to find an optimal subset of C that covers
Rlf (AF ). We compute the sets C� by a depth-first exploration of AF , that starts back-
tracking if it either finds a loop, or reaches an accepting state. In the latter case it adds
the accepting run to C� if � � π.

We modify the greedy algorithm to accommodate the fact that we are not looking for
the smallest cover of Rlf (AF ), but for an optimal one. In each iteration this modified
greedy algorithm adds the set C� to Copt that has the smallest associated cost P(�) per
covered run. In the latter it considers only runs that have not been covered in earlier
iterations. When all runs inRlf (AF ) are covered the procedure tests if the set obtained
by removing some C� from Copt covers all runs. If this is the case, C� will be omitted
from Copt.

The overall procedure to compute cutting sets of fragments can be summarized as
follows. Given a finite transition systemA and a set of loop-free fragments F , construct
composition automaton AF . Then compute all loop-free accepting runs Rlf (AF ). For
each fragment � compute the corresponding set C�, which contains πF ∈ Rlf (AF ),
if � � πF |S . Finally, compute the optimal set cover Copt. The optimal cutting set of
fragments Fopt contains all fragments � with C� ∈ Copt.

Example (cont) The composition automatonAF has only three loop-free counterexam-
ples (Fig. 6). The following tables shows which of these, projected to S, is cut by what
fragment:

(0, 4, 5) (1, 2, 4) (0, 1) (4, 3)
(0, 4, 5) x

(0, 4, 3, 1, 2, 4, 5) x x

(0, 1, 2, 4, 5) x x

Given the setF = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)} there are two sets of fragments that
cover all accepting runs: {(0, 4, 5), (1, 2, 4)} and {(0, 4, 5), (0, 1), (4, 3)}. The latter is
optimal with an overall weight of 4. �

6 Example

This section uses an adaptive cruise control system to illustrate the fragment-based ap-
proach. This example was used in [3] to illustrate counterexample-guided abstraction
refinement. The results in [3] show that fragments can reduce the computation time by
an order of magnitude. However, in [3] validating fragments is in addition to a coun-
terexample guided abstraction loop. This paper generalized the concept of fragments
to guide the abstraction. This section describes what sets of fragments will be selected,
but omits in most cases to list the new fragment in F for brevity.
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The adaptive cruise control system is part of a vehicle-to-vehicle coordination sys-
tem [6]. This system comprises two modes: cruise control mode (cc-mode), and an
adaptive cruise control mode (acc-mode). In acc-mode the controller tries to keep a
safe distance to the vehicle ahead. The acc-controller switches into acc-mode whenever
the distance between the car and a vehicle ahead falls below a certain threshold. This
threshold depends linearly on car speed.

The hybrid automaton is a composition of an automatic transmission with 4 gears,
an acc-controller with two modes (acc and cc), and an error state for collisions. Figure
7.A depicts the initial abstraction of the hybrid automaton.

Initially, the set of fragments contains all transitions. From this set we select the
first cut set; it contains transition (1, 2) and (1, 5) (labelled i in Fig. 7.A). Two differ-
ent methods methods are used for validation. The first method succcoarse formulates
the question if a trajectory between S1 and S2 exists as an optimization problem. The
second method succtight computes polyhedra that enclose all trajectories that origi-
nate in S1. This overapproximation with polyhedra is based on work presented in [2].
Both methods were also presented in [12]. The default method for single transitions is
succcoarse . It has an associated weight of 1.

Validation of (1, 2) shows that this fragment is valid. It will be removed (1, 2) from
F , but we cannot add the extension (1, 2, 10), (1, 2, 6), (1, 2, 3), and (5, 1, 2) since
(2, 10), (2, 6), (2, 3), and (5, 1) are still in F . Otherwise it would violate the restriction
that no fragment in F should be cut by another. The second fragment (1, 5) is spurious.
Transition (1, 5) is removed from the abstraction A and from the set of fragments F .
The next cutting set is the set of transitions labelled ii in Fig. 7.A. Fragment (2, 6) is
spurious, this transition can be removed from the abstraction. We also remove (2, 6)
from F , and can replace it by (1, 2, 6), since (1, 2) was removed in the previous itera-
tion. There is no � ∈ F with � � (1, 2, 6). We proceed in the same way with transition
(2, 10) which is also spurious. The next cutting set is computed (iii). It contains no
spurious transitions, and the next cutting set will be selected (iv). From this set only
fragment (7, 6) is spurious, and A and F will be refined accordingly.

Figure 7.B depicts the abstraction after the first four iterations. At this stage the
abstraction cannot be cut by single transitions. We select fragment (1, 2, 3) (labelled v).
Given a pair of transitions we use first method succcoarse for validation. We associate a
weight of 2 with this operation. Fragment (1, 2, 3) is valid and we select a new cutting
set with fragments (3, 4) and (2, 3, 7) (vi). Both of them are valid. The next cutting set
(vii) has two spurious fragments, (7, 8) and (3, 7, 9). Hence we refine the abstraction
accordingly, and add new fragments for the new transitions. Figure 7.C depicts the
abstraction after refinement.

Fragment (4, 8, 9) of the next cutting set (viii) is spurious. We refine the abstraction
by splitting state 8 (Fig. 7.D). The next cutting set (ix) is the single transition from the
newly created state 14 to state 11. This transition is not spurious. Next we try to refute
fragment (14, 11, 9), (4, 14, 11), and (2, 3, 4), which are cutting sets x, xi, and xii,
respectively.

Up to now, only succcoarse was used to validate fragments. The next cutting set is
(14, 11, 9). We validated this fragment before with succcoarse, but we use this time the
second method succtight. This validation has an associated weight of 6. Using the more
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Fig. 7. Adaptive cruise control example. The initial sate is state 1, the final state, that models
collision, is state 9. Fragments labelled with bold-face, roman numerals have been shown to be
spurious.

accurate method we find that (14, 11, 9) is spurious. Since it is the only fragment of the
cutting set, the verification is done and state 9 proven to be not reachable.

7 Conclusions and Future Work

This paper presents a method for guiding abstraction refinement for hybrid systems
using sets of fragments of counterexamples, building on the notion of fragments that
was introduced in [3]. We use the novel concept of cutting sets of fragments. These
cutting sets of fragments focus the analysis, very much like cut sets in networks flows
focus on bottlenecks. The aim is to refute as many counterexample as possible while
minimizing the expected computational effort.

The notion of optimal cutting set of fragments may also be useful to obtain diagnos-
tic information from counterexamples [7]. This area of research tries to identify parts
of counterexample that occur frequent and are causal to the error.

We are currently working on a prototype implementation that build on the imple-
mentation used in [3] and will apply them to benchmarks presented in [5]. The proce-
dure presented in this paper leaves room for many heuristic choices, for example what
mix of overapproximation methods is useful for what fragments, and how to assign
weights to validations. Proper heuristics will be further developed as soon as a pro-
totype becomes available. We plan to provide first results for the final version of the
paper.
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