Predicting Protein Folding Kinetics Via
Temporal Logic Model Checking
(Extended Abstract)

q Christopher James Langmead* and Sumit Kumar Jha

cjl@cs.cmu.edu

Department of Computer Science, Carnegie Mellon University

Abstract. We present a novel approach for predicting protein folding
kinetics using techniques from the field of model checking. This represents
the first time model checking has been applied to a problem in the field
of structural biology. The protein’s energy landscape is encoded sym-
bolically using Binary Decision Diagrams and related data structures.
Questions regarding the kinetics of folding are encoded as formulas in the
temporal logic CTL. Model checking algorithms are then used to make
quantitative predictions about the kinetics of folding. We show that our
approach scales to state spaces as large as 10?3 when using exact algo-
rithms for model checking. This is at least 14 orders of magnitude larger
than the number of configurations considered by comparable techniques.
Furthermore, our approach scales to state spaces at least as large as 1032
unique configurations when using approximation algorithms for model
checking. We tested our method on 19 test proteins. The quantitative
predictions regarding folding rates for these test proteins are in good
agreement with experimentally measured values, achieving a correlation
coefficient of 0.87.

1 Introduction

In the world of proteins, form usually follows function. Consequently, proteins are
often studied in terms of their atomic-resolution structures. A detailed analysis
of an enzyme’s active site, for example, may reveal the mechanism by which
it catalyzes a given reaction. Protein structures are not static, however, and
conformational changes often play important functional roles. Moreover, large-
scale conformational changes are also associated with a number of diseases, most
notably the prion-related diseases. For these reasons, and others, it is interesting
to study how a given protein moves between conformations. Such examinations
may provide valuable insights into basic biology and pathology, as well as to the
design of therapeutic or preventative interventions for certain classes of disease.

In this paper, we focus on what is typically the largest conformational change
a protein will exhibit — folding. By folding we refer to the act of moving from a
completely denatured form to the so-called native configuration. Unfortunately,

* Corresponding author.

R. Giancarlo and S. Hannenhalli (Eds.): WABI 2007, LNBI 4645, pp. 252 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

sumit jha

sumit jha

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 253

there is no experimental technology that can provide atomic-resolution detail
into the entire process of folding (or any other large-scale conformational change,
for that matter). For this reason, computational methods are used to study
large-scale conformational changes, including folding. Our work builds on prior
research on the protein unfolding problem. In contrast to the well-known pro-
tein folding problem, the unfolding problem assumes that the native structure
is already known. The computational challenge is to find low energy pathways
between the unfolded and folded states. More specifically, we consider the Go
theory of (un)folding [12] wherein the folding process is driven by the formation
of native contacts between residues (i.e, those present in the native structure).
Non-native interactions are deemed negligible, and are therefore ignored. Obvi-
ously, this is a highly simplified theory of folding. Nevertheless, this theory has
been shown capable of making accurate quantitative predictions regarding the
kinetics of folding (e.g., [TIRITIITA]).

Like previous algorithms for Go-like theories, our algorithms operate on finite-
state models of the protein’s energy landscape. The primary contribution of our
work lies in the observation that finite-state models of folding can be formally
analyzed using techniques from the field of model checking [10]. Model checking
refers to a family of algorithms for automatically verifying dynamic properties of
concurrent reactive processes. Historically, model checking has been used to ver-
ify the correctness and safety of circuit designs, communications protocols, de-
vice drivers, and other classes of software. More recently, model checking algo-
rithms have been introduced for analyzing the properties of stochastic systems.
Such model checking algorithms for stochastic systems have been used in the field
of systems biology to verify properties of biochemical and regulatory networks
(e.g., [18]). To our knowledge, however, model checking has not been applied to
any problem within the field of structural biology. This paper is the first to do so.

There are three primary advantages of a model-checking approach to studying
protein folding pathways: First, model checking algorithms compute over sym-
bolic representations of finite state models, not explicit representations. The com-
putational complexity of model checking algorithms is polynomial in the size of
the encoding of the finite-state model. Thus, if a given finite-state model can be
compressed, extremely large state spaces can be considered. Unfortunately, find-
ing a minimal encoding for an arbitrary finite-state model is NP-hard. However,
good heuristics for finding compact encodings exist. For example, model check-
ing algorithms have been able to verify properties of systems having more than
1020 states since 1990 [7], and have been applied to systems with as many as 10*2°
states [Bl6]. In this paper, we show that using exact algorithms for model check-
ing, energy landscapes with as many as 1023 states are tractable. This is at least
14 orders of magnitude larger than has been attempted by comparable algorithms
for studying protein folding pathways. We also show that energy landscapes with
at least 1032 states are tractable when using approximation algorithms for model
checking. Second, model checking relies on formulas in a temporal logic to ex-
press precise queries about the behavior of the finite-state model. Temporal logics
are very expressive and can be used to ask many questions of interest to protein

254 C.J. Langmead and S.K. Jha

folding. Third, model checking algorithms are exact; they are not simply a means
for sampling or simulating the behavior of a system. There are, however, finite-
state models that are too large for traditional model checking algorithms. For
these, we use an algorithm for performing approximate model checking [19] which
provides a guarantee on the quality of the computed result.

The organization of this paper is as follows: In Section 2l we define our model
of protein folding. In Section [B] we briefly discuss model checking, and demon-
strate how to encode the protein folding problem in a form suitable for model
checking. In Section @ we report the results of applying our method to 19
proteins and show that our quantitative predictions of folding rates are well-
correlated with experimental values. We conclude with a discussion of ongoing
work in applying model checking to the study of protein folding pathways.

2 A Simplified Model of Protein (Un)Folding

In this section we describe our model of protein folding; it is identical to that
used in [16] and very similar to those reported elsewhere [TISITT].

The thermodynamics of folding is governed by the Gibbs free-energy: AG =
AE —TAS. Here, E is the energy (in kcal mole™!) of inter-residue interactions
(e.g., hydrogen bonds, hydrophobic interactions, etc), S is the configurational
entropy (in kcal mole™! K1), and T is the absolute temperature (in Kelvin).
Free energy is a balance between the stabilizing contributions of inter-residue
interactions and the destabilizing contributions due to the loss of configurational
entropy as the protein folds.

Definitions. Let P = (a1,as,...,a,) be a protein with n amino acids (aka
residues) and m atoms. Let C C R3™ be the set of possible configurations/
embeddings of P such that each C; € C is consistent with the laws of physics.
Let Cr € C be the native configuration of P as determined by, say, X-ray crystal-
lography. Following [16] we define a contact as two non-hydrogen atoms from two
different residues that are within 4 A of each othexll. Contacts between residues
(¢, i £ 1) and (¢, i + 2) are ignored because they tend to be present in every
configuration of P. A contact map, M, is an n x n matrix where element M(i,)
is the number of contacts between residues ¢ and j. We define a separate contact
strength map, Mg, that is the same size as M but whose elements are obtained
by mapping the elements of M as follows: 1-5 contacts — 1; 6-10 contacts +— 2;
11-15 contacts — 3; 16-20 contacts +— 4. Intuitively, Mg classifies contacts as
being weak, medium, strong, or very strong.

The Go theory assumes that folding is driven by the formation of the native
contacts, and that non-native interactions are negligible. Therefore, the state
space of the protein can be modeled using a binary string, B € {0,1}". Here,
B(i) is 0 if the ith residue is completely unfolded and 1 if it is folded. There
is an entropic penalty for each 1 in B which must be compensated for by the
stabilizing energies of the native contacts. In particular, if B(i) = B(j) = 1, then

1A =10"""m.

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 255

Fig.1. (Left) A toy example of the protein folding model. This finite-state model
corresponds to a 3-residue protein. The state variables and the energy (in parens) are
placed inside each node. The state labeled 000 is the unfolded state; the state labeled
111 is the folded state. In our experiments, we considered proteins with between 16
and 107 residues. (Right) A MTBDD of the function mapping the states of the model
on the left to their respective energies. Each level of the MTBDD corresponds to one of
the three bits/resiudes (B1,B2,Bs), and each path from the root to a leaf maps one (or
more) states to an energy. Notice that the MTBDD is smaller than a complete binary
tree encoding the same function from states to energies.

we assume that the contacts between residues ¢ and j (if any) are formed, and
that the energy of that interaction can be used to offset the entropic penalty.
Under the model, there are 2" possible states. Let By be the bit string con-
taining all 0’s, and let B be the bit string of all 1’s. By and Bp correspond to
the unfolded and folded states, respectively. Every other bit string corresponds
to a partially folded state. Each state can be mapped to its free energy as follows:

G(B) =3 > Ms(i,j)B(i)B(jla—T) B(i)8 (1)

i g>i

where « is the strength of a single contact and 3 is the entropic penalty for folding
a single residuefl. The Boltzmann factor (i.e., weight) for any given configuration
is a function of its energy, the gas constant (R) and the temperature, T; it is
given by: w(B) = exp (—G(B)/RT). Since we are only interested in changes in
free energy (i.e., AG), we arbitrarily set G(By) = 0.

A protein’s energy landscape is constructed by applying Eq.[Ilto every possible
configuration. In this paper, it can be thought of as an n-dimensional discrete
function. Computationally, our task is to find a low-energy path (or a set of
paths) between By and B in the energy landscape. Thus, we must define a set of
allowable transitions. Under the model, state s can only transition to those states
that are similar. In practice, this means that transition are only allowed between
pairs of states whose bit vector representations have small Hamming distance. In
this paper, we allow transitions between pairs of states with Hamming distance
1. A toy example of the model for a 3-residue protein is shown in FigurdIlA.

2 See [16] for more details on contact energies and entropic penalties.

256 C.J. Langmead and S.K. Jha

FKBP-12

2 / N N
\
or e
- \ —
o \
E 7| / \
= \
Q4
o v \
E \
S -6 \
i~ \
5 \
\\
-10- B
\
- LN
0 20 40 60 80 100 120
Path length

Fig. 2. Energy profile for FKBP-12, as computed by our method

2.1 Kinetics

The reaction kinetics of folding are described in terms of an energy profile along
a chosen reaction coordinate. A reaction coordinate is a projection of the en-
ergy landscape onto a lower-dimensional surface. Given an appropriately chosen
reaction coordinate, one can make quantitative predictions regarding the rate
of folding from the energy profile. There are a number of potentially relevant
reaction coordinates from which to chose when studying protein folding includ-
ing radius of gyration, solvent accessible area, number of folded residues, and so
forth. Following Munoz and Eaton [16], we will use the number of folded residues
(i.e., the number of 1’s in B) as our reaction coordinate.

For each position 0 < k < n, there are (2) binary strings, each with its own
energy. Let By = {B € {0,1}" | > | B(i) = k} be the set of bit strings with &
1’s and n — k 0’s. The Boltzman-weighted total energy for each position k along
the reaction coordinate is Gy = —RTIn(3_,cg, w(b)). The energy profile for
FKBP-12 is shown in Figure 2l In theory, it is possible to construct the energy
profile by explicitly enumerating all 2™ binary strings. In practice, it is common
to sample from the set of possible configurations. The algorithms reported in
[TISITTITE], for example, operate on state spaces ranging in size from 10* to 10°
configurations. In contrast, we seek to consider the entire space of binary strings
by adopting symbolic techniques from the field of model checking.

We note that because the Boltzmann weight of a configuration is exponentially
related to the negative energy of its configuration, we can compute an upper
bound for each G} by considering only the smallest-energy configurations for
each k. It is these low-energy configurations we identify via model checking.
Specifically, we seek to find the energy of the lowest-energy configuration for
each k[We will denote the lowest energy as Gy

Given the value of C:’;c for all 0 < k < n, there are a number of ways to predict
folding rates. Under a transition-state theory, for example, the folding rate, k o

3 It may be noted that our technique can be used to identify ¢ lowest-energy config-
urations, for arbitrary integer c. For ease of presentation, we only consider the case
of ¢=1 in this paper.

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 257

ko exp(—AG?*/RT) where kq is a constant and AG = argmax, G, — Gy. In this
paper, we use a more accurate way to predict the folding rate in terms of the rate of
decay of the average number of folded residues starting from the folded state [16].

3 Model Checking

The field of model checking was born from a need to formally verify the cor-
rectness of hardware designs. Since its inception in 1981, it has expanded to en-
compass a wide range of techniques for formally verifying finite-state transition
systems, including those with stochastic behavior. Model checking algorithms
are simultaneously theoretically very interesting and very useful in practice.
Significantly, they have become the preferred method for formal verification in
industrial settings over traditional verification methods like theorem proving,
which often need guidance from an expert human user. A complete discussion
of model checking theory and practice is beyond the scope of this paper. The
interested reader is directed to [I0] for a detailed treatment of the subject.

3.1 Modeling Concurrent Systems

Let AP be a set of atomic propositions. An atomic proposition, a, is a Boolean
predicate referring to some property of the system. A Kripke strucutre, M, over
AP is a tuple, M = (5,50, R, L). Here, S is a finite set of states, Sy C S
is the set of initial states, R C S x S is a total transition relation between
states, and L : S — 24F is a labeling function that labels each state with the
set of atomic propositions that are true in that state. Variations on the basic
Kripke structure exist. For example, if the system is stochastic, then we replace
the transition relation, R, with a stochastic transition matrix, T" where element
T'(i,7) contains either a transition rates (for continuous-time Markov models) or
a transition probability (for discrete-time Markov models).

Application to Energy Landscapes. The Kripke structure used in this paper
closely follows the model of protein folding described in Section 21 The set of
states, S, is isomorphic to the set of n-bit binary strings. The set of initial states,
So, corresponds to (By). The transition relation, R, allows transitions between
pairs of states whose bit-vector representations have Hamming distance 1.

The labeling function, L, maps each state to an energy and works as follows:
Recall that By, is the set of bit strings where k bits are 1 and n — k bits are 0. In
this paper, our atomic propositions are generally of the form: “is the minimum
energy of B € By = ¢7”. An interesting property of proteins is that that the
energies of folding are bounded to a relatively small, constant-size range. In
particular, the difference between G(By) and G(Bp) is generally 1 to 10 kcal
mol~!. The energy barrier which separates the unfolded and folded states is
also typically 10 kcal mol~! or smaller at room temperature. Indeed, the energy
barrier must be small, or else folding won’t occur. Thus, the domain of possible
energies is, in effect, bounded by a constant of around 20 kcal mol~!. This range
is not related to the size of the protein. The set of possible states, on the other

258 C.J. Langmead and S.K. Jha

hand, is exponential in the size of the protein. Due to the discrete nature of
our energy function and the fixed precision of the parameters o and 3 in Eq. [
we can then apply the pigeonhole principle and conclude that the number of
unique energy values is also constant. This will ultimately lead to a very efficient
representation of the labeling function, as discussed in the next section.

In summary, assuming a Go-like model of folding, we have shown that a
protein’s energy landscape can be encoded as a Kripke structure. In the model
checking literature, Kripke structures are not represented explicitly, but rather
symbolically. In the next section we discuss techniques for representing Kripke
structures symbolically.

3.2 Symbolic Encodings of Kripke Structures

The basis for symbolic encodings of Kripke structures, which ultimately fa-
cilitated industrial applications of model checking, is the reduced ordered Bi-
nary Decision Diagrams (BDDs) introduced by Bryant [4]. BDDs are directed
acyclic graphs that symbolically and compactly represent binary functions, f :
{0,1}™ — {0,1}. While the idea of using decision trees to represent boolean
formulae arose directly from Shannon’s expansion for Boolean functions, two
key extensions made to it were the use of a fixed variable ordering and the
sharing of sub-graphs. The first extension made the data structure canonical
while the second one allowed for compression in its storage. A third extension,
also introduced in [4], is the development of an algorithm for applying Boolean
operators to pairs of BDDs, as well as an algorithm for composing the BDD
representations of pairs of functions. Briefly, if f and g are Boolean functions,
the algorithms implementing operators APPLY (f,g,0p) and COMPOSE(f,g) com-
pute directly on the BDD representations of the functions in time proportional
to O(|fl|gl), where |f| is the size of the BDD encoding f. BDDs can be general-
ized to Multi-terminal BDDs (MTBDD) [9], which encode discrete, real-valued
functions of the form f : {0,1}" — R. Significantly, MTBDDs can be used to
encode real-valued vectors and matrices, and algorithms exist for performing
matrix addition and multiplication over MTBDDs [9]. These algorithms play an
important role in several model checking algorithms for stochastic systems [3].

Application to Energy Landscapes. As previously mentioned, we can en-
code energy landscapes using Kripke structures. It follows, therefore, that energy
landscapes can be encoded symbolically using a combination of BDDs and MTB-
DDs. In particular, the transition relation, R, and the labeling function, L, can
be encoded using BDDs and MTBDDs, respectively.

In practice, the construction of the BDDs and MTBDDs is done automatically
from a high-level language describing the finite-state system and its behavior.
Here, we use the specification formalism of reactive modules [2] as provided in the
model checking tool PRISM [13]. Briefly, each residue is modeled as a separate two-
state process (i.e., folded or unfolded). Residues change state asynchronously,
and only one residue is allowed to change at any given time (thereby enforcing
the Hamming-distance rule). The set of possible states of the system corresponds

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 259

exactly to the set of n-bit strings. The set of allowable transitions is ultimately
encoded as a BDD and the labeling function is encoded as a MTBDD (Fig[IIB).

3.3 Temporal Logics

Temporal logic is a formalism for describing behaviors in finite-state systems.
They have been used since 1977 to reason about the properties of concurrent
programs [I8]. There are a number of different temporal logics from which to
chose, and different logics have different expressive powers. In this paper, we use
a small subset of the Computation Tree Logic (CTL). CTL formulae can express
properties of computation trees. The root of a computation tree corresponds to
the set of initial states (i.e., So) and the rest of the (infinite) tree corresponds
to all possible paths from the root. A complete discussion of CTL and temporal
logics is beyond the scope of this paper. The interested reader is directed to [10]
for more information.
The syntax of CTL is given by the following minimal grammar:

¢ i=a|true| (=¢) | (¢1V ¢2) | EXo | E[p1Ugs]

Here, a € AP, is an atomic proposition (e.g., “does state s have energy ¢?”);
“true” is a Boolean constant; = and V are the normal logical operators; E is
the existential path quantifier (i.e., “there exists some path from the root in the
computation tree”); and X and U are temporal operators corresponding to the
notions of “in the next state” and “until”, respectively. Given these, additional
operators can be derived. For example, “false” can be derived from “—true” and
the universal quantifier, AX¢, can be defined as “EX—¢.

Given some path m = (7[0],7w[1],...) through the computation tree, the se-
mantics of a CTL formula are defined recursively:

7 = a iff a € L(n[0])

T | true,Vr

7 g i i

7T):¢1\/¢2 iﬂ"ﬂ'):¢1 or T = ¢

m = EX¢ iff n[l] E ¢

7 = El61Uda] iff 3 > 0,1(i] b= g2 AV < i,lj] b= n

Here, the notation“r = «” means that 7 satisfies a.

Application to Protein Folding. Clearly, CTL formulas can express a rich set
of properties concerning reachability (e.g., “will the protein end up in a particular
configuration?”) and/or the logical ordering of events (e.g., “will the second
residue fold before the first one?”). Numerous extensions to CTL exist which
facilitate questions regarding explicit timings (e.g., “will the protein fold within
t milliseconds?”) or likelihoods (e.g., “what is the probability that the protein
folds within ¢ milliseconds?”). In this paper, we only consider CTL formulas of
the following form: let ar. € AP be an atomic proposition that asks “does the
state s have k folded residues and have energy ¢?”, the CTL formula E[true U q]

260 C.J. Langmead and S.K. Jha

asks “Is there a path from Sy to some other state, s € S, such that s = a?”
To find the minimum energy state for fixed k, we can perform a binary search
over different values of cﬁg Recall, that we argued that the range of energies
is bounded by a constant and that the number of unique energy values is also
constant. Therefore, the cost of the binary search is O(1).

3.4 Model Checking Algorithms

Having defined a Kripke structure and the CTL formula, we can then use existing
model checking algorithms for verifying the formula, given a symbolic encoding
of the Kripke structure. A model checking algorithm takes a Kripke structure,
M = (5,850, R, L), and a temporal logic formula, ¢, and finds the set of states
in S that satisfy ¢: {s € S | M,s &= ¢}. The complexity of model checking
algorithms varies with the temporal logic and the operators used. For the types
of formulas used in this paper (i.e., E[¢p1U¢s]), an explicit state model checking
algorithm requires time linear in the size of the finite-state model and in the
length of the formula ([10] p 35-36).

Correlation between predicted and experimental folding rates (k)
6 T T T T T T

o«
51 - i
4 _ 1
S ¢ —
2 3L _ 4
2 ®e o
T 2F L4 ../// e o 4
&
g * :
)< .
o ° - []
o- - ° 1
e i
[}
_ \ . , , , ,
=1 0 1 2 3 4 5 6

Experimental log,,(k)

Fig. 3. Scatter plot of log predicted (y-axis) and actual (x-axis) folding rates. The
correlation coefficient is 0.87, p < 0.001.

Of course, for very large state spaces, even linear time is unacceptable. Sym-
bolic model checking algorithms operate directly on BDD/MTBDD encodings of
the Kripke structure and CTL formula. Briefly, the temporal operators of CTL
can be characterized in terms of fixpoints. Let P(S) be the powerset of S. A
set S C S is a fixpoint of a function 7 : P(S) — P(S) if 7(S") = S’. Symbolic
model checking algorithms define an appropriate function, based on the formula,
and then iteratively find the fixpoint of the function. This is done using set op-
erations that operate directly on BDDs/MTBDDs. The fixpoint of the function

4 In our experiments, we make use of extensions to CTL provided in the tool PRISM
[13] that allows one to ask for the minimum energy value directly. Therefore, we do
not perform an explicit binary search.

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 261

corresponds exactly to {s € S | M, s = ¢}. The interested reader is encouraged
to read [I0], ch. 6 for more details.

Explicit-state and symbolic model checking algorithms are exact. There are
also approximation algorithms for model checking algorithms (e.g., [19]), which
employ sampling techniques and hypothesis testing. Such algorithms provide
guarantees, in terms of the probability of the property being true, and can scale
to much larger state spaces. These do not use BDDs/MTBDDs, but rather op-
erate on the high-level language description of the finite-state model (see Sec.
B2)). We explored the use of both exact and approximate algorithms for model
checking in our experiments.

4 Experiments and Results

We replicated the experiments of Munoz and Eaton [I6] who made predictions on
19 proteindd The largest protein in that set, FKBP-12 (PDB id 1FKB), has 107
esidues. Mufoz and Eaton consider state spaces in the range of size O(10%) to

0(107) states. In contrast. we have successfully performed exact model checking

on state spaces of size 275 ~ 10?3 using 2GB of memory on a single processor
of a 4-node cluster. The time taken for these experiments is shown in Table

[l For proteins up to 74 residues, the longest runtime was under 30 minutes.
Then, there is a jump to almost 7 hours for a 76-residue protein. The increase in
time is due to thrashing of virtual memory. In general, the computation time is
dominated by the time to construct the MTBDD. The actual cost of performing
the model checking is under 90 seconds. Both load time and model checking time
are correlated with the length of the protein for proteins up to 74 residues, with
a correlations of 0.77 and 0.78, respectively, (p = .02). However, these are not
monotonically related to length. No significant correlations between load times,
model checking time and actual folding rates were observed.

We were not able to perform exact model checking on proteins larger than
76-residues on a 2GB machine due to memory limitations. For this reason, we
also ran experiments with an approximation algorithm for model checking [19].
These all completed in under 11 minutes. The time to perform approximate
model checking is strongly correlated with protein length (R = 0.97,p < 0.001).
The largest state space we considered using the approximation algorithm has
2107 ~ 1032 states.

Figure [21 shows one sample energy profile computed using model checking for
the protein FKBP-12. Using the technique described in [I6] for transforming the
free-energy profile into a quantitative prediction of folding time, we predicted
the folding times for each of the 19 proteins. The correlations between the log-
arithms of the predicted folding rates and the experimentally measured values
[14] are shown in Figure[Bl The correlation coefficient between predicted and ex-
perimental values is 0.87. By comparison, Munoz and Eaton achieve correlation

® The PDB ids of the 19 proteins are: 1APS, 1COA, 1CSP, 1FKB, 1FNF, 1HDN,
1LMB, 1MJC, INYF, 1PBA, 1PGB, 1PKS, 1SHG, 1SRL, 1TEN, 1URN, 2ABD,
2AIT, 2PTL.

sumit jha

sumit jha

262 C.J. Langmead and S.K. Jha

Table 1. Performance Statistics. MC = model checking. Column 3 indicates
whether exact or approximate model checking was used. MTBDD build times are
only relevant to exact MC because approximate MC does not use MTBDDs. The ap-
proximation error bound was set to 1% of the energy for these experiments. Due to
memory limitations (2GB), exact model checking was performed only on proteins up

to 76 residues.

MTBDD Build MC Time||Approximate MC
PDB Id|Residues| Time (seconds) | (seconds) Time (seconds)
1PGB 16 0.269 0.027 29.39
1SRL 56 313.546 18.083 188.69
1SHG 57 452.684 34.767 194.48
INYF 58 712.788 64.882 195.41
1COA 64 1331.58 110.99 226.80
1CSp 67 973.664 6.57 248.75
1IMJC 69 1963.879 86.139 267.32
2AIT 74 1753.331 85.205 318.15
1PKS 76 24647.21 10.55 319.61
2PTL 78 - - 328.98
1PBA 81 - - 335.82
1HDN 85 - - 388.19
2ABD 86 - - 378.94
1LMB 87 - - 373.36
1TEN 90 - - 415.54
1FNF 91 - - 447.37
1URN 96 - - 485.32
1APS 98 - - 511.56
1FKB 107 - - 611.59

coefficients between 0.83 and 0.87 on the same proteins, depending on which
approximation was used. Plaxco and co-workers developed a simple method for
predicting folding rates based on contact order (a length-normalized average se-
quential distance between contacting residues) [I7]. Their correlation coefficient
on 18 of the 19 proteins studied in this paper was 0.64. The mean absolute error
of our predictions is 1.55. In comparison, the mean errors reported for two dif-
ferent techniques on a similar, but not identical, set of proteins in [§] was 2.77
and 3.42, respectively.

5 Conclusions and Future Work

We have presented an a

roach to predict the rate of folding using technique
from the field of model checking. We believe this paper represents the first appli-

S

cation of model checking to a problem in structural biology. The key advantage
of this approach are that it scales to extremely large state spaces and that it is ex-

S

act. In terms of accuracy. our predictions of folding rate are well-correlated with

experimentally determined values. However, it remains to be seen whether such

levels of accuracy can be obtained when analyzing significantly larger proteins.

sumit jha

sumit jha

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking 263

There are numerous extensions to this work that we intend to pursue. First, we
have only begun to explore the kinds of queries that can be encoded in temporal
logics. Second, a more thorough analysis of the relationship between the answers
obtained via exact and approximate model checking is necessary. Finally, our
model does not actually include any stochastic behavior. We have developed
stochastic variants of our model of folding and we intend on applying model
checking algorithms for stochastic systems to these. A comparison between the
stochastic and non-stochastic techniques is planned.

Acknowledgments

We thank Dr. Edmund Clarke for helpful discussions on this topic. This re-
search was supported by a U.S. Department of Energy Career Award (DE-FG02-
05ER25696), and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award
to C.J.L.

References

1. Alm, E., Baker, D.: Prediction of protein-folding mechanisms from free-energy
landscapes derived from native structures. Proc. Natl. Acad. Sci. 96(20), 11305—
11310 (1999)

2. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15(1), 7-48 (1999)

3. Baier, C., Clarke, E., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430-440.
Springer, Heidelberg (1997)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677-691 (1986)

5. Burch, J., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transition relations. In: Proc. 1991 Conf. on VLSI, pp. 49-58 (1991)

6. Burch, J., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 3(4), 401-424 (1993)

7. Burch, J., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10?° states and beyond. In: Proc. 5th Ann. IEEE Symposium on Logic
in Computer Science, pp. 428-439. IEEE Computer Society Press, Los Alamitos
(1990)

8. Chiang, T.H., Apaydin, M.S., Brutlag, D.L., Hsu, D., Latombe, J.C.: Predicting
Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap
Simulation. In: Proceedings of the 2006 ACM International Conference on Research
in Computational Molecular Biology (RECOMB), pp. 410-424. ACM Press, New
York (2006)

9. Clarke, E., Fujita, M., McGeer, P.C., Yang, J.-Y., Zhao, X.: Multi-terminal binary
decision diagrams: An efficient datastructure for matrix representation. In: IWLS
’93 International Workshop on Logic Synthesis (1993)

10. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA (1999)

264

11.

12.

13.

14.

15.

16.

17.

18.

19.

C.J. Langmead and S.K. Jha

Garbuzynskiy, S.O., Finkelstein, A.V., Galzitskaya, O.V.: Outlining folding nuclei
in globular proteins. J. Mol. Biol. 336, 509-525 (2004)

Go, N., Taketomi, H.: Studies on protein folding, unfolding and fluctuations
by computer simulation. IV. Hydrophobic interactions. Int. J. Pept. Protein
Res. 13(5), 447-461 (1979)

Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441-444. Springer, Heidelberg
(2006)

Jackson, S.: How do small single-domain proteins fold? Fold. Des. 33(4), R81-R91
(1998)

Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., Gaffney,
E.: Simulation and verification for computational modelling of signalling pathways,
pp. 1666-1675 (2006)

Munoz, V., Eaton, W.A.: A simple model for calculating the kinetics of protein
folding from three dimensional structures.. Proc. Natl. Acad. Sci. 96(20), 11311-
11316 (1999)

Plaxco, K.W., Simon, K.T., Baker, D.: Contact order, transition state placement
and the refolding rates of single domain proteins. J. Mol. Biol. 277(4), 985-994
(1998)

Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE.
Foundations of Computer Science (FOCS), pp. 46-57. IEEE Computer Society
Press, Los Alamitos (1977)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223-235. Springer, Heidelberg (2002)

@ Springer www.springer.com

Computer Science - Theoretical Computer Science | Algorithms in Bioinformatics

2] Algorithms in Bioinformatics

7th International Workshop, WABI 2007, Philadelphia, PA, USA, September 8-9, 2007, Proceedings
Series: # Lecture Notes in Computer Science, Vol. 4645
Subseries: # Lecture Notes in Bioinformatics

Giancarlo, Raffaele; Hannenhalli, Sridhar (Eds.)

2007, XIII, 432 p.

Softcover
ISBN 978-3-540-74125-1

Online orders shipping within 2-3 days.
(net) $89.95

EiLike W Tweet <0 K +1 < 0

About this book

This book constitutes the refereed proceedings of the 7th International Workshop on Algorithms in Bioinformatics, WABI
2007, held in Philadelphia, PA, USA in September 2007.

The 38 revised full papers presented together with the abstract of a keynote talk were carefully reviewed and selected from 4—
133 submissions. All current issues of algorithms in bioinformatics are addressed, ranging from mathematical tools to

experimental studies of approximation algorithms and reports on significant computational analyses. Numerous biological

problems are dealt with, including genetic mapping, sequence alignment and sequence analysis, phylogeny, comparative

genomics, and protein structure. Furthermore the papers feature high-performance computing approaches to

computationally hard learning and optimization problems in bioinformatics and cover methods, software and dataset

repositories for development and testing of such algorithms and their underlying models.

Content Level » Research

Keywords » algorithmics - approximation algorithms - bioinformatics - clustering - combinatorial optimization - computational
biology - data analysis - data mining - discrete mathematic - functional genomics - gene networks - genetic mapping -
genome analysis - genomic indexing - graph computations - machine learning - molecular biology - pathways - pattern
searching - protein analysis - proteomics - searching algorithms - segmentation - sequence analysis - string matching -
structure prediction

Related subjects » Bioinformatics - Theoretical Computer Science

DOWNLOADS

7days 30days 90 days

sumit jha

sumit jha

	Predicting Protein Folding Kinetics Via Temporal Logic Model Checking
	Introduction
	A Simplified Model of Protein (Un)Folding
	Kinetics

	Model Checking
	Modeling Concurrent Systems
	Symbolic Encodings of Kripke Structures
	Temporal Logics
	Model Checking Algorithms

	Experiments and Results
	Conclusions and Future Work
	References

