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Abstract—We employ probabilistic causality analysis to study
the performance data of 301 students from the upper-level under-
graduate parallel programming class at the University of Central
Florida. To our surprise, we discover that good performance
in our lower-level undergraduate programming CS-1 and CS-
II classes is not a significant causal factor that contributed to
good performance in our parallel programming class. On the
other hand, good performance in systems classes like Operating
Systems, Information Security, Computer Architecture, Object
Oriented Software and Systems Software coupled with good
performance in theoretical classes like Introduction to Discrete
Structures, Artificial Intelligence and Discrete Structures-II are
strong indicators of good performance in our upper-level un-
dergraduate parallel programming class. We believe that such
causal analysis may be useful in identifying whether parallel
and distributed computing concepts have effectively penetrated
the lower-level computer science classes at an institution.

Index Terms—causality; data analytics; education; predictors;
parallel programming;

I. INTRODUCTION

Many application-level programmers have been immune
to revolutions in computer architecture and shifts in device
technologies for the last five decades. However, the end of
Dennard scaling and the consequent rise of dark silicon has
ended the exponential growth in processor clock speeds that
enabled the same program to run faster on newer generations
of computers. In order to compensate for this stagnant proces-
sor speed, chip manufacturers have designed general-purpose
processors with tens of cores and system builders have put
together computers with multiple processors. The consequent
rise in the availability of parallel computers now demands that
parallel computing should not just be a specialized graduate
course; instead, parallel programming ought to be a required
skill for all computer science undergraduate students.

Teaching parallel programming to undergraduate students
requires a deep understanding of the concepts that must be
taught before parallel programming is introduced to them.
There have been careful qualitative investigations through pilot
studies introducing some parallel programming concepts to
core undergraduate CS classes [1–5] and possible strategies for
introducing parallel programming to undergraduates have been
carefully crafted by expert committees [6–9]. Building upon

these foundational studies on parallel computing education, we
ask the following question:

• Does success in certain computer science classes cause
students to be more likely in succeeding at our under-
graduate parallel programming class?

Our results are based on a quantitative probabilistic causality
analysis of academic performance data of about 301 students.
In particular, we observe that success in systems courses such
as information security, operating systems, object-oriented
software, artificial intelligence and computer architecture leads
to good performance in our parallel programming class. Simi-
larly, a strong performance in courses reflecting mathematical
maturity such as topics in computer science, problem solving
techniques, introduction to discrete structures, and discrete
structures II leads to good performance in our undergraduate
parallel programming class.

We seek to explain the outcome of our quantitative causal
analysis by identifying parallel computing concepts covered
in core computer science classes from the computer science
body of knowledge and mapping them to exemplar courses in
the ACM Computer Science Curricula 2013 [10].

Our work may be used to empirically verify if early adop-
tion efforts at institutions have caused parallel programming
concepts to be embedded into introductory classes such as CS-
I and CS-II. Unlike validation approaches based on pre/post-
surveys and perusal of class syllabuses, our approach can
provide long-term third-party evaluation of the outcome of
early adoption efforts.

II. RELATED WORK

A. Predicting Success in Courses

Predicting student performance using quantitative methods
has been a subject of active interest for at least the last six
decades. In 1965, David Lavin put together a one-volume
summary [11] of the research in the area between 1953 and
1961. More recently, Willingham et al. have studied the impact
of SAT scores and high school GPAs on student performance
in college courses [12]. More recently, Belfield and Crosta
have shown that high-school GPA have a strong association
with college GPAs but other components of the high-school
transcript like number of Fs or number of Maths courses do
not have a strong impact on college GPAs [13].



Predictive factors for success in computer science classes
have also been investigated. Success in introductory CS-I class
has been attributed to three factors including comfort level
and mathematical background [14]. In another study, it has
been shown that SAT scores, high-school rank, and high-
school science/maths are determining factors for success as
a freshman computer science major [15]. A more recent study
has confirmed the importance of Calculus-I, Calculus-II and
CS-0 in predicting student’s success in the CS-I class [16].

To the best of our knowledge, we are the first to quantita-
tively investigate the impact of other courses on success in the
undergraduate parallel programming class.

B. Success in Parallel Programming Courses

A number of qualitative advisory and experience reports on
effectively teaching parallel programming to undergraduates
have been created due to the success of the recent NSF/TCPP
Early Adopter Program [6]. Introduction of parallel and dis-
tributed computing concepts in core computer science classes
has been validated using statistical analysis of pre/post surveys
and performance in examinations [17]. Parallel and Sequential
Data Structures and Algorithms now serves as an introductory
algorithms course at Carnegie Mellon [18], where sequential
programming is only taught as a special case of parallel
programming where number of processors is one. Strategies
and modules for introducing concurrency in undergraduate
classes have been extensively documented [2, 19–24].

Our methodology can be viewed as a validation mechanism
that can be used to test successful integration of parallel
and distributed computing concepts into core CS classes. For
example, our analysis shows that success in CS-1 and CS-2 is
not a prima facie cause for success in parallel programming.
The contents and examinations of the CS-1 and CS-2 course at
the University of Central Florida do not significantly include
parallel programming concepts. We conjecture that a tight
integration of parallel programming in core computer science
classes can be quantitatively validated by performing our
causality analysis on grades obtained over a period of time and
verifying that core CS classes have a strong causal relationship
with success in undergraduate parallel programming class.

III. APPROACH

A. Data

Our data set consists of grades obtained by 301 students in
about 15 courses each – producing a total of 12, 937 different
grades. The distribution of the grades in the undergraduate
parallel programming class is shown in Figure 1. About half
the class has obtained A or A- in the class and the rest of
the class has obtained B+ or lower grades. More than 13% of
the students enrolled in the class obtained a failing grade or
withdrew from the class. We are interested in understanding
the background of students who do well in the class obtaining
an A or A- grade, and relate this to performance in other
computer science classes.

The data also includes grades for other computer science
(CS) electives, CS core classes and other classes outside
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Figure 1. Grade Distribution in Undergraduate Parallel Programming Class

the computer science department. Computer science elective
classes taken by our students include CIS3362 Cryptogra-
phy and Information Security, COP4516 Problem Solving
Techniques, CAP4630 Artificial Intelligence, CAP4720 Com-
puter Graphics, CNT4714 Enterprise Computing, CIS 3360
Security in Computing, CAP4453 Robot Vision, COP4710
Database Systems, CAP4104 Human and Technology Inter-
action, COP4020 Programming Languages I, EEL4768 Com-
puter Architecture, COP4600 Operating Systems, CIS3362
Cryptography and Information Security, COT4810 Topics in
Computer Science and CAP4053 AI for Game Programming.

B. Causality

Since the ancient Hindus’ quest for a notion of causality [25,
p. 73] that suggested effect to have existed in the cause, a lot
of progress has been made in determining a more practical
definition of causality. Among the researchers who wrote
in English, Hume’s definition of causality [26] is a good
candidate. Hume argues that “repetition of any particular act
or operation” leads to the formation of a causal process that
“makes us expect for the future, a similar train of events
with those which have appeared in the past.” For example,
observing fire and smoke in constant conjunction leads us to
form the causal impression between fire and smoke.

Kant adds a temporal flavor to Hume’s idea of causality
as constant conjunction of events and requires that the causal
event must occur before the effect [27]. According to Kant,
“the succession is necessary” and further “the effect . . . follows
from it (the cause).” We employ constant conjunction with
temporal ordering as our definition of causality in this paper.

C. Probabilistic Causality

Hume’s idea of constant conjunction and Kant’s notion of
temporal ordering work well for natural or scientific facts. For
example, consider the observation: “when the sun shines on
a rock for more than five hours, the rock gets hot.” Since the



Table I
CONDITIONAL PROBABILITY OF OBTAINING AN ABOVE-AVERAGE SCORE IN PARALLEL PROGRAMMING COURSE GIVEN A STUDENT HAS SCORED AN

ABOVE-AVERAGE SCORE IN A DIFFERENT COURSE.

Course ID Course Name Conditional Probability P (E+|C+) of Confidence Score
Good Performance in COP4520 P (E+|C+)− P (E+|¬C+)

COT4810 TOPICS IN COMPUTER SCIENCE 0.877551 0.389456
CIS3362 CRYPTOGRAPHY AND INFO SECURITY 0.909091 0.37116
COP4516 PROB SOLVING TECH & TEAM DYN 0.833333 0.293541
COP4600 OPERATING SYSTEMS 0.722222 0.243549
COP4331 PROC OBJECT ORIENTED SOFTWARE 0.701754 0.241861
EEL4768 COMPUTER ARCHITECTURE 0.71 0.237363
CAP4630 ARTIFICIAL INTELLIGENCE 0.756098 0.236867
COT3100 INTRO TO DISCRETE STRUCTURES 0.616505 0.205979
COP3402 SYSTEMS SOFTWARE 0.621212 0.203736
CGS2545 DATABASE CONCEPTS 0.75 0.201178
COT4210 DISCRETE STRUCTURES II 0.669355 0.200428
CAP4720 COMPUTER GRAPHICS 0.727273 0.189638
COP3223 INTRO TO PROGRAMMING WITH C 0.643357 0.175002
COP3502 COMPUTER SCIENCE I 0.642336 0.166726
CNT4714 ENTERPRISE COMPUTING 0.714286 0.166667
COP4020 PROGRAMMING LANGUAGES I 0.65 0.163812
COP3330 OBJECT ORIENTED PROGRAMMING 0.617647 0.151998
COP3503 COMPUTER SCIENCE II 0.625 0.14849
CIS3360 SECURITY IN COMPUTING 0.634146 0.139764
CAP4453 ROBOT VISION 0.655172 0.114731
CDA3103 COMPUTER LOGIC AND ORGANIZATION 0.575419 0.0590256
COP4710 DATABASE SYSTEMS 0.580645 0.0367121

sun shining for a long time on a rock always makes it hot,
Kant’s idea of causality is enough to capture the cause (sun
shines on a rock for more than five hours) leading to an effect
(the rock gets hot).

However, observations in social sciences or measurements
on stochastic systems cannot really benefit from the determin-
istic definitions of Hume or Kant. Consider the observation:
“people with SAT scores above 1200 graduate successfully
from CS undergraduate programs.” While the observation is
true for a vast majority of students, there do exist people
with SAT scores above 1200 who do not graduate from
CS undergraduate programs. Suppes’ theory of probabilistic
causation is a potential solution to this problem, Given an
event E and another event C, C is said to be a prima facie
cause of the event E only if P (E|C) > P (E).

In this paper, we use this probabilistic notion of causality
and call C to be a cause for E if event C raises the probability
of the event E and the event C occurs before event E.

IV. RESULTS

Course performance data from 301 students was partitioned
into three groups: above-average, below-average and with-
drawn. The top 50th percentile of students who completed
a course were assigned into the above-average group and the
remaining students who completed the course were assigned
to the below-average group. Those students who registered
for the course but did not finish the course were assigned to
the withdrawn group. For the parallel programming course,
students obtaining grades A and A− were assigned to the
above-average group, students with grade W were assigned
to the withdrawn group, and the rest were put into the
below-average group. These three groups for each course

were treated as individual events during causal analysis. In
the context of our empirical investigations, a student being
classified in the above-average group for a course corresponds
to the student doing well in that course.

A. Probabilistic Causal Analysis

We compute the impact of a student’s performance in
individual courses on performance in the parallel program-
ming course. We use E+ to denote the effect that a student
has scored above average in the parallel programming class.
Similarly, we use the notations C+ to denote that a student
has scored above-average in a course C. The notation C−

captures the event that a student has not scored above-average
in the course. The scenario that a student dropped out from
the course is captured by the notation C0. The impact of a stu-
dent’s performance in course C on the parallel programming
class is obtained by computing the difference of the probability
of P

(
E+|C+

)
and the probability P

(
E+|(C− ∪ C0)

)
.

Table I shows the top 22 classes that have a positive impact
on the outcome of our undergraduate parallel programming
class. The first column of the table contains the ID of the
courses, the second column is the course name, and the third
column denotes the conditional probability that an above-
average score in a course will lead to an above-average score
in the parallel programming class. The rightmost column in
the table is our probabilistic confidence in a course having a
causal impact on the parallel programming course.

Ideally, one would like to obtain a temporal sequence of
courses that leads to strong performance in our undergraduate
parallel programming class. However, our data set is limited to
301 students and different students have pursued sufficiently
different trajectories during their undergraduate coursework to
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relationships between courses such that performing above-
average on one course leads to an above-average performance in another
course.

make the determination of such an optimal sequence of courses
infeasible. Hence, we have relied on the pairwise causality
analysis between performance in individual courses and our
undergraduate parallel programming class.

B. Causal Graph

We create a Suppes-Bayes causal network [28] to under-
stand the causal relationship from different courses to the
undergraduate parallel programming course. The first layer
of the network consists of 2000 and 3000-level courses.
These courses are pre-requisites for the upper-level 4000-level
courses. The second layer consists of advanced 4000-level
courses that a typical student takes before enrolling for our
undergraduate parallel programming course. The third layer
consists of a single node representing the parallel program-
ming class. The course progression of few students is atypical;
there are a small number of students that take a 4000-level
course before a 3000-level course. We do not consider these
atypical cases for our computation of causal relationships. For
any given directed edge from node C to node E in the Suppes-
Bayes causal network, we only consider those instances of data
when the course C is taken before the course E. This does
not significantly alter the size of our data set.

We compute the probabilities P (E+|C+) and P (E+|¬C+)
for every course C and the parallel algorithms course E as
long as the course C occurs before the course E i.e. the pair
of courses follow the temporal ordering required for causality.
The pair of nodes corresponding to courses having a positive
value of P (E+|C+)−P (E+|¬C+) are connected by an edge
to create a Suppes-Bayes causal network.

The calculation of P (E+|¬C+) for the causal network
differs slightly from the results in Table I as we restrict our
consideration only to those instances of the data that are
present at that level of the network.

Full causal network containing causality relationship be-
tween all the nodes is not readily comprehensible to a human
expert. We use the Bayesian Information Criterion (BIC) [29]
to synthesize a subgraph of the original network that optimizes
the structural complexity of the network against the likelihood

of the data set. In our experiments, we initially create a random
subgraph of the causal network. Then, we perform a hill-
climbing search in the neighborhood of the graph such that the
Bayesian Information Criterion (BIC) increases. We stop the
execution of our algorithm after 100, 000 iterations or when
there is no increase in the Bayesian Information Criterion.

The result of our analysis is shown in Figure 2. The courses
that directly impact student performance include systems
courses such as COP4600 Operating Systems and CIS3362
Crytopgraphy and Information Security as well as theoretical
courses such as COT3100 Introduction to Discrete Structures
and COT4810 Topics in Computer Science.

C. Predicting Student Grades

We employ machine learning and insights gained from
probability causality analysis to predict student grades in
our parallel programming course. For grade prediction, we
use performance data from 10 courses having the highest
confidence scores from table I. We use support vector
classification implemented in the popular machine learning
toolkit scikit-learn to predict above-average or below-average
grades of students [30]. Even though there are a total of 301
students taking parallel programming course, the information
contained in each of these student profiles is only partial
as most student only take a subset of the 10 courses that
we are using for prediction. Hence, we choose the Leave
One Out Cross Validation (LOOCV) scheme for analyzing
the performance of our support vector classifier. We train
the support vector machine on all data points except one
and then use the trained algorithm to predict the outcome
of the left-out data point. The training algorithm is run n
times where n is equal to the number of data-points and the
average of the n performances is used as an overall measure
of the performance of the prediction system. We were able
to make the correct predictions about student grades 65.33%
of times. This prediction was obtained using a radial basis
kernel function with C = 13 and γ = 0.1 [31]. On training
the machine learning algorithm using the full data set, we
were able to get correct predictions for 85.33% of cases. This
performance was obtained using a polynomial function with
degree 3 and C = 1000. The results of this experiment are
shown in Figure 3.

D. Qualitative Analysis of Results

The Body of Knowledge (BoK) in the ACM Computer
Science Curricula 2013 [10] requires 5 core-tier-1 hours and
10 core-tier-2 hours of parallel and distributed computing. The
core topics covered by the ACM BoK include the following:

1) Goals of parallelism vs. concurrency
2) Synchronization constructs
3) Data races and higher-level races
4) Independence and Partitioning
5) Threads, SIMD and MapReduce
6) Shared memory and consistency
7) Message passing
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8) Atomicity and mutual exclusion using locks, semaphores
and monitors

9) Critical paths, work, span and Amdahl’s law
10) Speed-up and scalability
11) Embarrassingly parallel algorithms, patterns (divide &

conquer, map & reduce, master-workers)
12) Multicore processors
13) Shared vs. distributed memory
14) SIMD, SMP, and vector processing

Courses other than the upper-level parallel programming elec-
tive should cover these core topics. We analyze the exemplar
syllabi included in the ACM Computer Science Curricula 2013
to identify the number of topics covered by different courses.

Our qualitative analysis shows that systems courses such as
operating systems and computer architecture build the founda-
tions required to study an upper-level on parallel programming.
On the other hand, exemplar syllabuses of courses such as CS-
1 and CS-2 in the ACM Computer Science Curricula 2013 do
not yet share a significant overlap with the foundations of
parallel programming. Thus, our qualitative analysis supports
our quantitative findings that success in parallel programming
courses relies on good performance in upper-level systems
courses.

The dependence of above-average performance in parallel
programming on theoretical courses like discrete structures
may be explained by improved mathematical maturity and
a deeper understanding of different computing models such
as finite-state automata, push-down automata and Turing ma-
chines.

V. CONCLUSIONS

Our empirical analysis shows that success in certain systems
and theoretical computer science classes indeed has a strong
effect on good performance in our upper-level undergraduate
parallel programming class. Further, the inadequacy of par-
allel programming concepts in our CS-1 and CS-2 classes
is reflected in our empricial results as good performance in

these classes does not serve as a prima facie cause for good
performance in our upper-level parallel computing class.

Our causality analysis approach may be used to validate the
efficacy of early adoption efforts. A successful early adoption
effort can be identified by high causal probabilities linking
low-level courses to the upper-level undergraduate parallel
programming course.

Our analysis is based on data obtained from an upper-level
undergraduate parallel programming class at the University of
Central Florida (UCF). Deeper and possibly different insights
may be obtained by analyzing longitudinal student data from
different types of institutions at various stages of their early
adoption effort.
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