
Temporal Logic Model Checking

Edmund Clarke,1 Ansgar Fehnker,2 Sumit Kumar Jha1, and Helmut Veith3

1 School of Computer Science, Carnegie Mellon University, PA 15213, Pittsburgh,
U.S.A.
{emc,jha+}@cs.cmu.edu

2 National ICT Australia, University of New South Wales, Australia
ansgar@cse.unsw.edu.au

3 Institut für Informatik, Technische Universität München, Munich, Germany
veith@in.tum.de

1 Introduction and Overview

Errors in safety-critical systems such as embedded controllers may have dras-
tic consequences and can even endanger human life. It is therefore crucially
important to verify the correctness of such systems in a logically precise man-
ner during system design itself. This chapter is an introduction to model
checking—an automated and practically successful approach for the formal
verification of the correctness of hardware and software systems.

The origins of model checking date back to the early 1980s, when Clarke
and Emerson [8] and, independently, Queille and Sifakis [26] introduced a new
algorithmic approach for the verification of computer systems. Their approach
amounts to checking the satisfaction of a logical specification over a system
model which is represented by an annotated directed graph; hence, the term
model checking. Prior to that, the use of temporal logic for the analysis and
specification of computer systems had been advocated by Pnueli [25], and
model checking has in fact been employing variants of temporal logic as the
predominant specification language ever since. Experiments with early model
checkers quickly made clear that the size of the model represents the crucial
technical barrier for realizing the full potential of model checking in practi-
cally relevant verification tasks. In turn, the state explosion problem is the key
to appreciating the technical achievements in model checking during the last
decades. At the time of this writing, model checking techniques have achieved
practical significance for the hardware and software industries, routinely an-
alyzing digital circuit designs and programs, with more than 10100 system
states in some cases.

The aim of this chapter is to introduce those important lines of research
which transformed model checking from a method of primarily theoretical
interest into a powerful tool for the analysis of computer hardware and soft-

540 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

ware. We shall focus in particular on those subjects which have shaped our
thinking about model checking in the verification group of Carnegie Mellon
University, most notably symbolic model checking and abstraction. The devel-
opment of symbolic model checker [6, 24] was arguably a turning point in the
formal methods field. Employing a combination of binary decision diagrams
and fixed-point algorithms, the symbolic model verifier (SMV) became the
first model checker to verify models with hundreds of Boolean variables and
a tool to benchmark new ideas for more than a decade. Thus, after a brief
theoretical introduction into logical foundations of model checking in Section
2, we will describe the methodology behind SMV in Section 3.1; we also cover
bounded model checking, a more recent orthogonal symbolic model checking
paradigm which is based on SAT solvers. Sections 3.2 and 3.3 finally are de-
voted to abstraction, the key principle underlying the big advances in software
verification during the last few years. The focus in these sections will be on
counterexample-guided abstraction refinement as well as predicate abstrac-
tion, both of which constitute key features of modern software verification
tools.

Most of the material included in this chapter is self-contained, requir-
ing only a general mathematical maturity. However, we explicitly advise the
reader that the space restrictions imposed by the handbook format render it
impossible to provide either a comprehensive coverage of the subject or even
an extended bibliography which gives full credit for all presented concepts
impossible. The papers and books cited here should serve mainly as entry
points to the literature, with an emphasis on newer papers not yet listed in
the standard literature. The most evident omission in this chapter is an ex-
tensive treatment of the automata-theoretic approach to model checking [30];
just like temporal logic model checking, the alternative automata-theoretic
approach has also produced powerful model checkers such as SPIN. A more
comprehensive survey on model checking including extensive citations can be
found in [12], more detailed accounts on logical questions in [13, 15], an in-
troduction to SPIN and the automata-theoretic method in [21], and an easily
accessible primer on logic and verification in [22].

2 Fundamentals of Model Checking

A model checker is an algorithm which determines whether a system K satis-
fies a specification Λ, formally K |= Λ. In contrast to stochastic methods such
as testing, a positive result of the model checker provides a logically precise
assertion of system correctness—albeit not in terms of a step-by-step-proof,
but by virtue of the construction and correctness of the model checking al-
gorithm. If the system K is found to violate the specification Λ, i.e., K !|= Λ,
then most model checkers will compute a diagnostic counterexample C which
helps to localize the source of the error.

Temporal Logic Model Checking 541

The fundamental notion of model checking has been adopted to diverse
application areas and formal methods even beyond verification; these areas
cannot all be treated in detail within the scope of this chapter. We shall
therefore concentrate on the classical model checking framework where the
system K is given as a Kripke structure, and the specification Λ is a temporal
logic formula.

Kripke structures

The notion of a state is at the center of model checking. A state is a momentary
description of a system at a given point in time, similar to a point in a physical
phase space. When a system has only a finite number of possible states, we
speak of a finite state system.

A Kripke structure describes the dynamics of a finite state system by a
finite directed graph whose vertices denote the states and whose edges denote
transitions between the states. The states are labelled by atomic propositions
which denote the properties of each state. For example, the states of the Kripke
structure can be taken to describe the di!erent states of a microprocessor, and
the labels describe the values of the registers associated with a state. In the
simple examples used in this chapter, the atomic propositions will typically
just have the form of Boolean variables; in practice, atomic formulas often
describe properties of the internal variables of the real-life system we model,
e.g., “counter == 5” or “x == -1”.

Formally, a Kripke structure is a tuple K = (S, S0, R, L,AP) where S is
a finite set of states, S0 ⊆ S is the set of initial states, R ⊆ S ≺ S is the
transition relation, AP is the set of atomic properties, and L : S → 2AP is
the labelling function. R is required to be total, i.e., for each s ∈ S there exists
t ∈ S such that (s, t) ∈ R. When the context is understood, S0 and AP are
often omitted. For simplicity, we will assume in this chapter that S0 = {s0}
contains a single initial state.

A path ς is an infinite sequence of states ς = p0, p1, . . . such that for all i,
(pi, pi+1) ∈ R. For i ≥ 0, we define ςi = pi, pi+1, . . . to be the path starting at
pi, and ς[i] = pi. Note that the totality of R guarantees that all finite paths
can be extended infinitely.

Example 1. The Kripke structure M in Fig. 1 shows a simple example of mu-
tual exclusion between two processes A and B. Label CX denotes that process
X is in the critical state, and label TX denotes that X is trying to enter its
critical section. By visual inspection, the reader will easily verify that mutual
exclusion is guaranteed, i.e., that no state can be reached where both CA and
Cb hold. Note that this example of mutual exclusion is very simplified: no
fairness guarantees are given and a process may stay in the critical section
forever.

Several remarks about the use of Kripke structures in model checking are
in place here:

542 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

A: Idle

A: Critical

B: Idle

A: Idle

B: Critical

A: Idle

B: Trying

A: Trying

B: Idle

B: Idle

Ta Tb

CbCa

Fig. 1. A Kripke structure modelling a trivial mutual exclusion protocol

(a) Kripke structures are a versatile mathematical model we consider in model
checking. Practical model checkers use specific programming languages and
not Kripke structures as their input language. The complexity issues arising
from direct compilation of a program into a Kripke structure constitute
the central algorithmic challenge of model checking (the “state explosion
problem”) and will be addressed in Section 3.1.

(b) Kripke structures are in general non-deterministic, i.e., from a given state
s there will be more than one outgoing transition. Non-determinism is a
natural way to describe the e!ects of external input to a system. In Sec-
tion 3.2 we will see that non-determinism also arises when we approximate
the behavior of large systems by relatively small Kripke structures.

(c) Kripke structures are closely related to finite automata, finite transition
systems, Moore machines, process algebraic expressions and similar con-
cepts whose di!erences are to a large extent rooted in pragmatic aspects
and tradition. In principle, every finite state system can be represented by
a Kripke structure. In Section 3.3 we will investigate extensions of model
checking to deal with infinite state systems.

Temporal logic

Given the atomic propositions of the Kripke structure, we can use Boolean
logic to describe compound properties of single states. For example, we write
K, s |= f ∃ ¬g to denote that state s of system K has label f , but not label
g. However, simple Boolean logic does not account for the temporal dynamics
of systems: In Boolean logic we cannot express properties such as “f is an
invariant”, “f always precludes g”, or “f will persist up to the time when g
occurs”. This is where the temporal logics LTL, CTL and CTL! come into
play.

We will first describe the linear time logic (LTL) which is defined over
paths of the system. LTL extends Boolean logic by two operators U and X.
Given a path ς = p0, p1, . . . , the Boolean and temporal operators have the
following recursive semantics:

Temporal Logic Model Checking 543

K,ς |= f i! f ∈ L(ς[0]) where f ∈ AP
K,ς |= Λ ∃ Ξ i! K,ς |= Λ and K,ς |= Ξ
K,ς |= ¬Λ i! K,ς !|= Λ

K,ς |= XΛ i! K,ς1 |= Λ
“ Λ is true in the next state”

K,ς |= ΛUΞ i! there is an i ≥ 0 such that K,ςi |= Ξ
and for all j with 0 ≤ j < i we have K,ςj |= Λ
“ Λ is true until Ξ becomes true”

K |= Λ i! for all paths ς starting in s0, we have K,ς |= Λ.

Disjunction Λ⊥Ξ and implication Λ → Ξ are as usual defined by ¬(¬Λ∃ ¬Ξ)
and ¬(Λ∃¬Ξ), respectively. Moreover, FΞ) and ¬(Λ∃¬Ξ), respectively. More-
over, FΛ is defined trueUΛ, and GΛ is defined ¬F¬Λ. With these definitions, FΛ
intuitively means “Λ will be true at some time in the future” and GΛ means
“Λ will always be true in the future.”

Note that LTL specifications describe properties of paths; an LTL specifi-
cation holds true on a Kripke structure, if it holds true on every path starting
at the initial state s0. Thus, an LTL specification contains an implicit universal
quantification over all paths starting at s0.

We will now introduce the computational tree logics CTL! and CTL which
enable us to quantify over paths explicitly. CTL! extends LTL by an operator
A as follows:

K,ς |= AΛ i! for all paths σ starting in state ς[0], we have K,σ |= Λ.

Existential path quantification EΛ is defined as an abbreviation for ¬A¬Λ. The
important specification logic CTL is the syntactic fragment of CTL! which
uses the LTL operators and the CTL operators only pairwise, i.e., CTL con-
tains exactly the following temporal operators: AX, EX, AU, EU, AF, EF, AG, EG.
For example, the CTL! formula AXXf is not in CTL, since the second occur-
rence of X is not preceded by E or A. Finally, ACTL (ACTL!) is the fragment
of CTL (CTL!) where negation is restricted to atomic formulas, and only the
path quantifier A is allowed.

CTL and LTL specifications

Since CTL specifications can quantify repeatedly over paths, CTL and CTL!
are examples of branching time logics, while LTL is a linear time logic. It
can be shown that the expressive power of CTL and LTL is not comparable,
and both are strictly contained in CTL!. The algorithms and paradigms for
CTL and LTL model checking are sufficiently di!erent so as to provoke a
controversial discussion in the literature as to which is preferable, branching

544 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

time or linear time logic. Practical applications employ variants of either CTL
or LTL.

Example 2. In the example Kripke structure M used previously, the mutual
exclusion property is specified in CTL as AG¬(Ca ∃Cb). The liveness property
that each of the processes enters its critical region infinitely often is given by
the CTL formula AG(AF(Ca)∃AF(Cb)). The two properties are also expressible
in LTL by G¬(Ca ∃ Cb) and GF(Ca) ∃ GF(Cb), respectively.

To shed more light on the di!erence between CTL and LTL, let us consider
the equivalence relation between Kripke structures induced by CTL and LTL
specifications, i.e., we say that two Kripke structures are equivalent if there
is no CTL (or LTL) specification which holds true for one, but not for the
other. For LTL, this equivalence relation is known as trace equivalence, i.e.,
two Kripke structures are trace equivalent i! they have the same paths from
the initial state. For CTL, in contrast, the equivalence relation is bisimulation,
a central notion in process algebra which we describe in more detail below.

Bisimulation and simulation

Bisimulation can be defined by a combinatorial two-player game [28] where
one player (the spoiler) attempts to show that two Kripke structures A and
B are di!erent, and the second player (the duplicator) attempts to show that
the structures are equivalent. The game starts with two pebbles placed on
the initial states of the two structures. Each round of the game proceeds as
follows: (i) If the pebbles are located at states with di!erent labels, the spoiler
wins, and the game terminates. (ii) The spoiler chooses one Kripke structure,
and moves the pebble along an edge in this Kripke structure. (iii) In the
other Kripke structure, the duplicator moves the other pebble, and the game
continues at step (i). The Kripke structures are bisimilar if the spoiler does
not have a winning strategy.

If the spoiler has a winning strategy, i.e., if the Kripke structures are
not bisimilar, then the strategy can already be expressed by a CTL formula
which uses the temporal operators AX and EX and distinguishes A from B.
Conversely, a distinguishing specification gives rise to a winning strategy for
the spoiler.

Closely related to bisimulation is the notion of simulation, which orders
Kripke structures with respect to their behaviors. For two Kripke structures,
A and B, simulation A * B can be defined by a similar two-player game
as above, with the following restriction: the spoiler always plays on Kripke
structure A, and the duplicator always plays on Kripke structure B. If the
spoiler does not have a winning strategy, then A * B holds true. Intuitively,
in this case, B has more behavior than A, as the duplicator can duplicate
every move on B which the spoiler does on A. Simulation has the important
property that it preserves ACTL! specifications: If A * B and B |= Λ for an

Temporal Logic Model Checking 545

Delivered Soda

Start

Delivered Soda

Start

Another

Apple
Juice

$1.00

$1.00 $1.00$1.00

Delivered Apple Juice

Requested
Another

Juice
Apple

Soda Soda
Requested

Delivered Apple Juice

$1.00

Fig. 2. Simulation versus bisimulation

ACTL! specification Λ, then A |= Λ. We will see that this relationship has
crucial algorithmic applications in model checking.

It is easy to see that bisimulation equivalence implies trace equivalence:
suppose the Kripke structure A has a path ς1 not contained in B. Then there
exists a finite prefix ς′

1 of ς1 which is not present in B. It is now easy to
construct a CTL specification of the from EX(. . . ∃ EX(. . . ∃ EX(. . .))) which
stipulates the existence of ς′

1. Example 3 demonstrates a classical case where
we have trace equivalence, but not bisimulation equivalence.

Example 3. Fig. 2 demonstrates a case where two Kripke structures are trace
equivalent but not bisimilar. Both describe a simplified vending machine for
soda (at $1 per serving) and apple juice (at $2). In the right machine, money
is inserted in separate slots, and thus, the first dollar determines the purchase.
It is easy to see that both structures have the same traces, i.e., they are trace
equivalent, but not bisimilar. This is also reflected in the bisimulation game:
When the spoiler moves the pebble to the shaded state in the left structure he
keeps a future choice between juice and soda, but in the right structure, the
duplicator has to decide on his tastes at this moment. It is easy to see that
both structures have the same traces, i.e., they are trace-equivalent, but not
bisimilar. This is also reflected in the bisimulation game: When the spoiler
moves the pebble to the shaded state in the left structure, he keeps a future
choice between juice and soda, but the duplicator has to decide on his tastes
at this moment in the right structure.

Similar situations occur, for example, in computer security when instead of
coins we enter passwords which enable us to call operating system functions.
In such situations, the di!erence between bisimulation and trace equivalence
may become crucial.

Principle algorithmic aspects of model checking

In contrast to many other applications of logic in computer science, most ques-
tions related to temporal logics and model checking are decidable, and indeed

546 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

have often reasonable complexity. Quite surprisingly, the problem of deciding
K |= Λ can be solved in linear time O(|Λ| ≺ (|S| + |R|)) for CTL. This explicit
CTL model checking algorithm proceeds bottom-up on the formula structure
which yields the factor |Λ| above. For each subformula Λ′, the algorithm labels
the states of K which satisfy Λ′ in time O(|S| + |R|). For LTL and CTL!, the
model checking problem is complete for the complexity class PSPACE. De-
ciding the validity of specifications, i.e., determining whether a specification
is always true (independent of the Kripke structure) is EXPTIME-complete
for CTL, PSPACE-complete for LTL and 2EXPTIME-complete for CTL!.
In practice, however, the complexity bounds obtained from these general ab-
stract considerations are usually not sufficient to verify industrially relevant
systems. This question will be addressed in the next section.

3 State Explosion and Efficient Verification Methods

In most practical applications of model checking, the size of the state space is
too large by several magnitudes as to allow naive verification algorithms which
compile the input into a Kripke structure, and perform the model checking
algorithm thereafter. Even an extremely simple system containing three 32-bit
integer variables has a theoretical state space of (232)3. A quick calculation
shows that for a terahertz processor which can evaluate one state per system
cycle, it will take around 109 years to enumerate all states. Since the state
space is in general exponential in the memory a program uses, it is entirely
unrealistic to perform model checking on an explicit Kripke structure. This
principal problem, commonly referred to as the “state explosion problem,”
is the core issue in most scientific research in model checking. The practical
success of a model checking technique depends most crucially on its ability to
alleviate the state explosion. We distinguish several principal ways to address
state explosion.

• Symbolic verification: In this approach, which made model checking a
practical technique, the transition relation of the Kripke structure is en-
coded in a Boolean formalism (either plain Boolean formulas or specific
data structures such as ordered binary decision diagrams (OBDDs) [5]),
thereby obtaining a potentially exponential compression factor. Specific
“symbolic” model checking algorithms are devised to operate on such sys-
tem representations. We will describe symbolic model checking methods
for CTL and LTL below.

• State space exploration: Alternatively to symbolic representation, a
model checking algorithm may also attempt to explore the state space for
specification violations on the fly, i.e., by a systematic depth-first search
starting from the initial state. This method is based on the insight that
LTL specifications can be transformed into trace equivalent Büchi au-
tomata [12] which monitor the state space exploration. While the size of

Temporal Logic Model Checking 547

the state space sets a principal limit to this approach, it is successful in
finding errors, in particular in combination with abstraction and reduction
methods (described next).

• Abstraction and reduction methods: In this category we subsume
more aggressive methods which are typically orthogonal to both sym-
bolic and exploration techniques. Their common characteristic is their
attempt to restrict the state space by semantic considerations, i.e., prop-
erties known about the system or derived from its description. Typical
examples of such methods include abstraction [11], where system states
are partitioned into equivalence classes, partial order reduction [18], which
curbs the state space explosion incurred by concurrency, or symmetry re-
ductions [9, 16], which employ the natural symmetry between repeated
system components. In Section 3.2 we shall describe abstraction and
counterexample-based abstraction refinement in more detail.

3.1 Symbolic model checking

Recall from above that the characteristic step in symbolic model checking is to
represent the transition relation R of a Kripke structure K = (S, S0, R, L,AP)
in terms of a Boolean function fR in such a way that every state s ∈ S is
described by a unique Boolean vector s̄, and fR(s̄, t̄) = true i! (s, t) ∈ R.
Since for natural binary encoding the size of the Boolean vector is logarithmic
in |S|, the size of fR may—in principle—also be polynomial or even linear
in log |S|. While there is no mathematical guarantee for this compression to
occur (in fact, information theoretic counting arguments easily show that such
a compression is very rare), practical systems tend to have many regularities,
and often allow significant compression.

Note that in the computation of fR, the model checker does not have ac-
cess to the Kripke structure K (which is too large by assumption), but only
to the input program. In this setting, choosing binary representations s̄ for
states s is usually a very natural step, since each system state s describes a
program state at a given time, and thus corresponds to specific values of the
program variables; these program variables themselves have natural binary
representations which the model checker can reuse. In fact, a close correspon-
dence between symbolic variables and program variables is often advanta-
geous: knowledge about the semantic relationship between symbolic variables
can facilitate both compression and abstraction.

CTL verification: verification by fixed point computation

Recall that in the specification logic CTL, every LTL operator is immediately
preceded by either E or A. Since the semantical definitions of K,ς |= AΛ and
K,ς |= EΛ depend only on the first state ς[0] of path ς, formulas with a leading
A or E are called state formulas. A model checking algorithm can associate
each CTL state formula Λ with the set of states [[Λ]] where Λ holds true. For

548 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

CTL formulas Λ and Kripke structures K, the set [[Λ]] can be computed by a
fixed-point algorithm which can be implemented symbolically.

To illustrate the principles of symbolic model checking for CTL, let us
consider the specification EFΛ (“a state with property Λ is reachable”). Given
the set [[Λ]] of states where Λ holds true, [[EFΛ]] is inductively defined as
follows:

• If s ∈ [[Λ]], then s ∈ [[EFΛ]].
• If s ∈ [[EFΛ]] and R(t, s), then t ∈ [[EFΛ]].
• Nothing else is in [[EFΛ]].

This gives rise to the fixed-point characterization

EFΛ ≡ µY.Λ ⊥ EX Y

where µY.f(Y) denotes the least fixed-point of formula f(Y). The fixed-point
extension of temporal logic is called the µ-calculus, and has been studied
extensively, see [12] for detailed definitions and references. From the µ-calculus
characterization of EFΛ we can derive the following fixed-point algorithm to
compute [[EFΛ]].

Y := ⇒
repeat

Y ′ := Y ;
Y := [[Λ]] ∪ pre(Y);

until Y = Y ′

where pre(Y) denotes the pre-image operator

pre(Y) := {s | ∃t.(s, t) ∈ R ∃ t ∈ Y }.

A closer study shows that all CTL formulas can be expressed using fixed
points, propositional logic, and the temporal operator EX, i.e., pre-image com-
putation. It remains to be shown as to how the fixed-point algorithms can be
implemented symbolically.

The crucial idea is to represent not only R by fR, but also sets of states
by Boolean functions. A set Y of states is represented by its characteristic
Boolean function Y (z̄) :=

∨
s∈Y z̄ ≡ s̄ which is true i! z̄ is the binary repre-

sentation of a state in Y . For two sets Y and Z, its union Y ∪Z is represented
by Y (z̄)⊥Z(z̄), and similarly for other set operations. Pre-image computation
can also be expressed easily in this framework:

pre(Y (s̄)) = ∃t̄.fR(s̄, t̄) ∃ Y (t̄).

Since Boolean quantification can be eliminated, the result of pre(Y (s̄)) is
again a Boolean function. We conclude that all operations in the fixed-point
algorithm can be computed symbolically.

For a practical implementation, it is necessary to have a data structure
for Boolean functions which (i) facilitates good compression capabilities, but

Temporal Logic Model Checking 549

(ii) makes it easy to recognize that a fixed point has been reached. Ordi-
nary Boolean functions have the disadvantage that deciding the termination
condition Y (z̄) ≡ Y ′(z̄) of the fixed-point algorithm is coNP-complete, and
thus a computationally hard problem. A successful trade-o! is achieved by
OBDDs [5]. OBDDs are compact (although somewhat less so than Boolean
functions), and, importantly, they have canonical representations which makes
it easy to decide Y (z̄) ≡ Y ′(z̄) efficiently.

OBDDs

Let AP be the set of propositional variables, and < a linear order on AP1.
An OBDD O over AP is an acyclic graph (V, E) whose non-terminal vertices
(nodes) are labelled by variables from A, and whose edges and terminal nodes
are labelled by 0, 1. Each non-terminal node v has out-degree 2, such that one
of its outgoing edges is labelled 0 (the low edge or else-edge), and the other is
labelled 1 (the high edge or then-edge). If v has label ai and the successors of
v are labelled aj , ak, then ai < aj and ai < ak. In other words, for each path,
the sequence of labels along the path is strictly increasing with respect to <.

Each OBDD node v represents a Boolean function Ov. The terminal nodes
of O represent the constant functions given by their labels. A non-terminal
node v with label ai whose successors at the high and low edges are u and
w, respectively, defines the function Ov := (ai ∃ Ou) ⊥ (¬ai ∃ Ow). For every
variable order < and Boolean function f there exists a canonical minimal
OBDD O over AP which represents the Boolean function f . Given any OBDD
for f which respects <, the canonical OBDD O can be computed in polynomial
time. Thus, with OBDDs, set operations including equality testing of sets can
be efficiently complemented. Pre-image computation, however, is much harder;
in fact, it is one of the major bottlenecks in verification. Another problem
with OBDDs is the prevalence of state explosion: for certain functions, the
size of the minimal OBDD may be exponential in AP, and moreover the
size crucially depends on the variable order <. A simple example of a binary
decision diagram (BDD) is given in Fig. 3.

LTL verification: bounded model checking.

Bounded model checking [3] is a new method which leverages the surprising
power of recent SAT solvers, i.e., algorithms which on input of a Boolean
formula search for a satisfying assignment2. Recall that LTL specifications
express properties which have to hold over all paths; consequently, a coun-
terexample for an LTL property is given by a single path which violates the

1In this section we assume for simplicity that all states in the Kripke structure
are uniquely identified by their labels, i.e., that the labelling function L is injective.

2Note that Boolean satisfiability is a prototype NP-complete problem, and thus
we cannot expect a SAT solver to scale polynomially for all inputs. However, state-
of-the-art SAT-solvers are remarkably successful at a large portion of those formulas
which occur in practical verification tasks.

550 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

z

x

1

0

1

1

1

0

0

0

y

Fig. 3. A BDD for (y ∧ z) ∨ (y ∧ ¬z ∧ x). Note that the size of the diagram in this
case is linear in the number of Boolean variables.

specification. Consider for example a specification of the form Gb, i.e., “always
b”. Then a counterexample for Gb is a path where at some point ¬b holds.
Suppose that for a state s, b(s̄) is the Boolean formula expressing that b holds
at state s. Then the formula

fR(s̄0, s̄1) ∃ fR(s̄1, s̄2) ∃ · · · ∃ fR(s̄k−1, s̄k) ∃
∨

0≤i≤k

¬b(s̄i)

is satisfiable if and only if a counterexample of size ≤ k exists; consequently,
a SAT solver can be used to decide the existence of a counterexample. Sim-
ilarly, it can be shown that for any fixed counterexample length k, any LTL
specification can be translated into a SAT instance. Moreover, the satisfying
assignment computed by the SAT solver can be used easily to compute the
counterexample.

Bounded model checking has been used successfully for both hardware and
software, and has outperformed BDD-based methods on various examples.
The evident drawback of bounded model checking, however, is its inherent
incompleteness: unless the bound k is chosen to be significantly larger than
|S|, bounded model checking provides no assertion about the total absence of
counterexamples. Consequently, bounded model checking is mainly considered
a method to find errors rather than a complete verification tool.

3.2 Counterexample-guided abstraction refinement

Abstraction reduces the state space by removing irrelevant features of a Kripke
structure. Given a Kripke structure K, an abstraction is a Kripke structure
K̂ such that K̂ is significantly smaller than K, and K̂ preserves a useful class
of specifications for K. Consequently, the expensive task of model checking
K can be reduced to the more feasible task of model checking K̂. We know
from above that in order to preserve all CTL specifications, K and K̂ must
be bisimilar. But bisimilarity, by its very definition, expresses that K and K̂
are behaviorally equivalent. Consequently, K̂ still models a lot of irrelevant
behavior and will therefore be quite large in general.

Temporal Logic Model Checking 551

A more practical approach is to employ the fact explained in Section 2 that
simulation preserves ACTL! formulas, i.e., A * B and B |= Λ imply A |= Λ.
Consequently, for an abstract system K̂ where K * K̂ holds, a successful
run of the model checker over K̂ implies correctness over the original Kripke
structure K, without model checking K. The converse implication, however,
will not hold in general: an ACTL! property which is false in K̂ may still be
true in K. In this case, the abstract counterexample obtained over K̂ cannot
be reconstructed for the concrete Kripke structure K, and is called a spurious
counterexample [10], or a false negative.

An important instance of simulation-based abstraction is existential ab-
straction [11, 14] where the abstract states are essentially equivalence classes
of concrete states; a transition between two abstract states holds if there
was a transition between any two concrete member states in the correspond-
ing equivalence classes. Formally, an abstraction function h is a surjection
h : S → Ŝ where Ŝ is the set of abstract states. The surjection h induces an
equivalence relation ≡ on the state space S where d ≡ e i! h(d) = h(e). The
abstract Kripke structure K̂ = (Ŝ, Ŝ0, R̂, L̂,AP) derived from h is defined as
follows:

Ŝ0 = {d̂ | ∃d ∈ S0 . h(d) = d̂}
R̂ = {(d̂1, d̂2) | ∃d1, d2 ∈ S . h(d1) = d̂1 ∃ h(d2) = d̂2 ∃ R(d1, d2)}

L̂(d̂) =
⎛

h(d)=d̂

L(d)

We also write K̂ = K/≡ to express the dependence of K̂ on ≡. An atomic
proposition f ∈ AP respects an abstraction function h if for all d and d′ in
the domain S, (d ≡ d′) ⇒ (d |= f ⇔ d′ |= f). When the specifications con-
tain only atomic propositions respecting h, we can without loss of generality
assume that in both K and K̂, AP is restricted to the propositions occurring
in the specifications. Then existential abstraction indeed guarantees K * K̂
as intended.

However, determining a good abstraction function h is a difficult task: If
K̂ is too large, then verification remains infeasible. If, on the other hand, K̂
is too small, then spurious counterexamples are likely to occur, as illustrated
by the next example. The example also illustrates that abstraction typically
introduces non-determinism.

Example 4. Fig. 4 shows two abstract Kripke structures M̂1 and M̂2 obtained
from the original Kripke structure M by two di!erent equivalence relations
≡1 and ≡2. M describes a simplified bus arbiter that controls access on two
buses. The arbiter chooses one of the two buses for any request before giving
a grant. It asserts A, B and C to suggest the slave to use bus 1; otherwise,
it asserts D, E and F to suggest the slave to use bus 2 and then gives a
grant. The slave is supposed to probe which of the lines have been asserted

552 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

Request

A

Grant

F

E

D

C

B

A

B

C F

E

Request

Grant

A

B

C

Grant

F

E

D

Request

D

Fig. 4. The Kripke structure M on the left is existentially abstracted in two ways,
yielding abstract Kripke structures M̂1 (center figure) and M̂2 (right figure). Note
that M̂1 contains an infinite path which never reaches the state labelled Grant; being
unique to the abstract model, this path is called a spurious path.

when it receives the grant and use the appropriate bus. Let us consider the
specification AG(request → AFgrant) which says that every request is finally
granted. By manual inspection we see that the specification holds true for M.
The first abstraction M̂1 of the arbiter, however, is too coarse, and does not
allow us to prove correctness of the specification: we get a counterexample
involving a self-loop, as indicated by the dashed lines in the figure. A finer
abstraction M̂2 passes the specified property and hence, the property is also
true for our original Kripke structure M. Note that in both cases M * M̂1 and
M * M̂2, i.e., all universal properties on the abstract model are preserved.
In the case of M̂1, however, preservation does not help, since M̂2 exhibits too
much information loss for the specification to hold.

Counterexample-guided abstraction refinement (CEGAR) is a natural
approach which resolves this situation by using an adaptive algorithm which
starts with a coarse abstraction and gradually improves the abstraction func-
tion by analyzing spurious counterexamples. CEGAR-style approaches have
been investigated by several researchers beginning with the localization re-
duction of Kurshan [23] where the model is abstracted/refined by remov-
ing/adding variables from the system description. The first systematic ac-
count of CEGAR for CTL model checking was given in [10]. We describe the
CEGAR loop using the equivalence relation ≡ induced by h in Fig. 5.

In the CEGAR loop, the abstraction is refined until the property is ei-
ther verified or disproved by a non-spurious counterexample. Note that the
CEGAR loop involves two crucial steps in addition to model checking: the
computation of the initial relation ≡, and the computation of the refined ab-
straction. The initial abstraction is usually obtained by static analysis of the
input program (cf. also Section 3.3), and the refinement is achieved by pro-
jecting Ĉ back onto K, determining where the spurious behavior occurs, and

Temporal Logic Model Checking 553

Counterexample Guided Abstraction Refinement

R≡ := initial state equivalence;
result := empty;
repeat

K̂ := K/R≡

call model checker for K̂ |= φ

if K̂ |= φ
then result := “specification true”;
else compute counterexample Ĉ;

if Ĉ is spurious
then R≡ := refine(K, Ĉ, R≡);
else result := Ĉ;

until result not empty;

Fig. 5. General scheme for CEGAR. For better readability, the relation ≡ is written
R≡ in the program text.

locally refining ≡ to eliminate Ĉ. Since Ĉ typically is much smaller than K̂, the
projection of Ĉ back onto K involves only a small portion of the state space
of K, and is therefore feasible in many practical cases. CEGAR frameworks
have become a widely used paradigm in verification, and are routinely used
for both hardware and software.

3.3 Model checking for infinite state systems

Model checking was originally designed for the verification of finite state sys-
tems. Although the first practically useful applications of model checking were
oriented towards hardware verification, where the finite state restriction comes
naturally, the method was conceived of as an approach to software verification
as well. The early papers on model checking clearly drew their motivations
from the software area, focusing in particular on concurrency properties to be
verified over the synchronization skeleton of a program, i.e., a finite abstract
model which preserves the relevant behavior for interprocess communication.
It is still the case that abstraction is one of the key methods to be used for
software verification; in fact, model checking and abstract interpretation [14]
share many common techniques which deserve further exploration. In this sec-
tion, we will concentrate on predicate abstraction [19], a particularly impor-
tant abstraction method which underlies the recent advancements in software
verification exemplified by tools such as BLAST, SLAM and MAGIC [2,7,20].
We present a variant of predicate abstraction as it is used in MAGIC.

Predicate abstraction

For the analysis of software, the simplest abstraction which arguably repre-
sents the program behavior in a meaningful way is the control flow graph

554 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

(CFG) which can be viewed as a Kripke structure where the states are pro-
gram counter positions, and the transitions denote non-deterministic changes
of the control flow. Note that the CFG can be seen as an existential abstract
model where the abstraction function h abstracts away everything except the
program counter information. It is evident that for many properties of interest,
the CFG does not contain sufficient information for verification.

The technique of predicate abstraction [19] is based on the observation that
what often counts in the analysis of a program is not so much the actual values
of the variables, but rather their relation to each other. Important relations
between variables are expressed, for example, in the control conditions which
occur in if-statements and in loop headers. Thus, instead of keeping 64 bits for
two integer variables x, y in our global state, we may have a single bit which
keeps the truth value of the predicate x > y if this is the property of interest.
In predicate abstraction, we define k such predicates, and extend the CFG by
the di!erent evaluations of the predicates. The state space of the new system
is 2k times the size of the CFG, and by choosing the number k of predicates,
we can obtain a trade-o! between preciseness and state explosion. Thus, in
our model, each state of the extended CFG can be described by a formula Ψ
of the form

(ProgramCounter = i) ∃
⎝

1≤i≤k

Ξi,

where the Ξi are predicates or negated predicates ranging over the vari-
ables of the program. Such a formula Ψ can be identified with an abstract
state representing all concrete states (i.e., memory contents) which satisfy
Ψ . However, the tricky part in predicate abstraction is to define the transi-
tion relation: Suppose that we have a transition in the CFG between program
counter positions i and j through a simple statement statement, and 2k

abstract states each for i and j, i.e., Ψi,1, . . . ,Ψi,2k and Ψj,1, . . . ,Ψj,2k . Poten-
tially, the single transition in the CFG gives rise to up to (2k)2 transitions in
the extended CFG. We actually include a transition from Ψi,a to Ψj,b if the
weakest precondition required for Ψj,b to hold after execution of statement is
consistent with Ψi,a, i.e., if

Ψi,a ∃ WP[statement,Ψj,b]

is logically satisfiable. Deciding satisfiability is in general a hard question, and
is often delegated to an automated theorem prover or a decision procedure.

It is not hard to prove that the model obtained by predicate abstraction
fits into the simulation-based approach to abstraction; in fact, it is not even
necessary for the theorem prover to always terminate. When a theorem prover
does not produce a definite answer in due time, we can overapproximate the
result by pretending that the theorem prover asserted consistency. It can be
shown that the resulting model is still a sound abstract model in this case;
if this happens too often, however, the quality of the model will deteriorate
towards a very coarse model with extensive spurious behavior. Importantly,

Temporal Logic Model Checking 555

predicate abstraction provides a natural and clean interface between model
checking and theorem proving, playing to the strengths of both methods.
Predicate abstraction is very successful when verifying control-intensive soft-
ware such as device drivers or many embedded programs. For complicated
data structures, in particular dynamic data structures, predicate abstraction
is potentially applicable, but the logics and corresponding decision procedures
are in most cases still beyond the state of the art.

Other approaches to infinite systems

Let us finally discuss the question of verification of infinite systems on a
broader scale. Precisely speaking, most of the systems we consider are not
infinite, but rather parameterized: they are described by a finite program
text, and the actual size of the state space depends on a parameter (e.g.,
the memory size) which is not known in advance, and is often assumed to be
arbitrarily large. Besides memory size, other sources of unbounded behavior
include recursion depth, the preciseness of floating-point operations, dynamic
thread creation, protocols with unlimited number of participants and hybrid
systems where parts of the system or the environment are modeled by di!eren-
tial equations as in control theory. The di!erent flavors of infinity we encounter
in applications clearly need to be matched by a correspondingly rich set of
tools, each tailored for a specific source of infinity. However, in contrast to
finite state verification, we cannot realistically expect to find methods which
apply uniformly to all kinds of infinite state systems. Due to space limitations,
we will just briefly mention some of the promising current approaches.

Classically, Petri nets have been used to model concurrent processes using
a single transition graph. More recently, verification methods for pushdown
systems have been described [1, 17] which enable the direct modelling of un-
bounded calling stacks. An approach mainly geared at parameterized systems
is regular model checking [4] where the infinite transition relation is described
by finite automata, rendering many reachability properties decidable. Impor-
tant progress in modelling dynamic data structures has been made in a three-
valued framework [27]. A promising special form of predicate abstraction for
hybrid systems has recently been proposed by Tiwari [29] who suggested the
use of predicates describing analytical properties of functions such as dg

dx > 0.

4 Conclusion

In the twenty-five years since its invention, model checking has developed into
a highly active research area of its own right which combines algorithms, logic,
(discrete) mathematics and of course application knowledge. Although model
checking is usually simpler to apply than theorem proving, it is still not always
easy for engineers with the right application knowledge but without formal
training in verification to use model checking to its full capability. As expressed

556 E. Clarke, A. Fehnker, S.K. Jha, and H. Veith

in Rushby’s notion of “disappearing formal methods,” we expect that for
many settings model checking will finally become a push-button technology
similar to compilers in which the trade-o! between the preciseness and the
computational cost of the correctness analysis can be controlled by a few
simple parameters. Generally though, the principal undecidability of virtually
all questions in software verification makes clear that there is no silver bullet
for verification, and there will always be a need to design model checking
methods specific to problem classes.

While verification of hardware and software systems will evidently remain a
core concern of model checking, there are also exciting new avenues of research
which often involve the combination of traditional model checking techniques
with continuous mathematics, most notably the verification of stochastic, hy-
brid and biological systems.

Acknowledgments

The authors extend their gratitude to Stefan Katzenbeisser for his careful
proofreading.

References

1. R. Alur, K. Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls
and Returns. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2988 of LNCS, pages 467–481, 2004.

2. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Prop-
erties of Interfaces. In Proc. Model Checking Software, 8th International SPIN
Workshop, volume 2057 of LNCS, pages 103–122, 2001.

3. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proc. 36th Conference on Design
Automation (DAC), pages 317–320, 1999.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking.
In Proc. 12th Int. Conf. Computer Aided Verification (CAV), volume 1855 of
LNCS, pages 403–418, 2000.

5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), pages 677–691, 1986.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, 1990.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of
Software Components in C. In Proc. 25th Int. Conference on Software Engi-
neering (ICSE), pages 385–395, 2003. Extended version in IEEE Transactions
on Software Engineering, 2004.

8. E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logics of Programs: Workshop, volume
131 of LNCS, pages 52–71, 1981.

Temporal Logic Model Checking 557

9. E. Clarke, T. Filkorn, S. Jha. Exploiting Symmetry In Temporal Logic Model
Checking. Proc. Computer Aided Verification (CAV), volume 697 of LNCS,
pages 450–462, 1996.

10. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. 12th Int. Conf. Computer Aided Verification
(CAV), volume 1855 of LNCS, pages 154–169, 2000. Extended version in J. ACM
50(5): 752–794, 2003.

11. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994.

12. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

13. E. Clarke and H. Schlingloff. Model checking. In J. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 1367–1522. Elsevier, Amster-
dam, 2000.

14. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. Symposium on Principles of Programming Languages (POPL), pages 238–
252, 1977.

15. E. Emerson. Temporal and modal logic. In J. van Leeuven, editor, Handbook of
Theoretical Computer Science, Vol. B., pages 995–1072. Elsevier, Amsterdam,
1990.

16. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Proc. Computer
Aided Verification (CAV), volume 697 of LNCS, pages 463–478, 1996.

17. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient Algorithms for
Model Checking Pushdown Systems. In Proc. 12th Int. Conf. Computer Aided
Verification (CAV), volume 1855 of LNCS, pages 232–247, 2000.

18. P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. Computer Aided Verification (CAV), volume 531 of LNCS, pages 176–185,
1990.

19. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proc.
Computer Aided Verification (CAV), volume 1254 of LNCS, pages 72–83, 1997.

20. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proc. ACM SIGPLAN-SIGACT Conference on Principles of Programming
Languages, pages 58–70, 2002.

21. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading, MA, 2003.

22. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, London, 1999.

23. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Prince-
ton University Press, Princeton, NJ, 1994.

24. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, Dordrecht, 1993.

25. A. Pnueli. The temporal logic of programs. In Proc. 18th Symposium on Foun-
dations of Computer Science (FOCS), pages 46–67, 1977.

26. J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Symposium in Programming, volume 137 of LNCS,
pages 337–351, 1982.

