
Shaping Noise for Robust Attributions in Neural Stochastic Differential Equations
Sumit Kumar Jha1, Rickard Ewetz2, Alvaro Velasquez3, Arvind Ramanathan4, Susmit Jha5

1 Computer Science Department, University of Texas at San Antonio, TX 78249
2 Electrical and Computer Engineering Department, University of Central Florida, Orlando, FL 32816

3 Information Directorate, Air Force Research Laboratory, Rome, NY 13441
4 Data Science and Learning, Argonne National Laboratory, Lemont, IL, 60439

5 Computer Science Laboratory, SRI International, Menlo Park, CA, 94709
sumit.jha@utsa.edu, rickard.ewetz@ucf.edu, alvaro.velasquez.1@us.af.mil, ramanathana@anl.gov, susmit.jha@sri.com

Abstract

Neural SDEs with Brownian motion as noise lead to
smoother attributions than traditional ResNets. Various
attribution methods such as saliency maps, integrated
gradients, DeepSHAP and DeepLIFT have been shown to
be more robust for neural SDEs than for ResNets using
the recently proposed sensitivity metric. In this paper, we
show that neural SDEs with adaptive attribution-driven
noise lead to even more robust attributions and smaller
sensitivity metrics than traditional neural SDEs with Brownian
motion as noise. In particular, attribution-driven shaping of
noise leads to 6.7%, 6.9% and 19.4% smaller sensitivity
metric for integrated gradients computed on three discrete
approximations of neural SDEs with standard Brownian
motion noise: stochastic ResNet-50, WideResNet-101 and
ResNeXt-101 models respectively. The neural SDE model
with adaptive attribution-driven noise leads to 25.7% and
4.8% improvement in the SIC metric over traditional ResNets
and Neural SDEs with Brownian motion as noise. To the
best of our knowledge, we are the first to propose the use of
attributions for shaping the noise injected in neural SDEs, and
demonstrate that this process leads to more robust attributions
than traditional neural SDEs with standard Brownian motion
as noise.

Introduction
Computing the attribution of input features for a prediction
made by a deep neural network (DNN) on an input has
been extensively studied over the last few years (Simonyan,
Vedaldi, and Zisserman 2013; Li and Yu 2015; Ribeiro,
Singh, and Guestrin 2016; Kim et al. 2018; Jha et al. 2017;
Sundararajan, Taly, and Yan 2017; Selvaraju et al. 2017;
Shrikumar, Greenside, and Kundaje 2017; Lundberg and
Lee 2017; Kapishnikov et al. 2019; Smilkov et al. 2017;
Sturmfels, Lundberg, and Lee 2020). These attribution
methods enable explaining decisions made by DNNs and
consequently improve their interpretability. Attributions
are also helpful in debugging DNNs for poor accuracy,
generalizability, and fairness. These different attribution
methods often rely on measuring the change in output with
change in input features such as gradients with respect
to the input or integrating gradients from a baseline to
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the actual input. While these approaches provide very
compelling results, the computed attributions are still far
from accurate. In this paper, we do not seek to develop yet
another new approach to compute attributions but rather
investigate whether we can train deep learning models
that produce better attributions using existing attribution
methods. We analyze the recently proposed Neural Stochastic
Differential Equations (Neural SDEs) framework and present
a new iterative training process that bootstraps the noise
injected in each iteration using attributions computed over
the previous iteration model. Such a Neural SDE model
with adaptive attribution-driven noise produces qualitatively
and quantitatively better attributions than the corresponding
residual neural networks. Further, the attribution produced by
adaptive attribution-driven shaping of noise in Neural SDEs
are more robust than those produced by traditional Neural
SDEs with Brownian motion as noise (Jha et al. 2021).

Figure 1: Integrated Gradients produces less noisy
attributions for our adaptive attribution-driven Neural SDE
model compared to the standard ResNet-50 model.

We formulate a new iterative approach in the technical
approach section to train Neural SDEs that employs
attributions from previous iterations to shape the injected
noise in each iteration. This makes the model more robust
over relevant features and also makes the attributions less
noisy and more robust. We relate the theoretical results on the
robustness of SDEs to the elimination of the saturation effects
in attributions (Miglani et al. 2020; Smilkov et al. 2017) and
alleviation of their sensitivity to irrelevant perturbations (Yeh
et al. 2019; Ghorbani, Abid, and Zou 2019). We also
empirically demonstrate the improved quality of attributions
computed over Neural SDEs. We evaluate our approach on
the ImageNet dataset in Table 1 and show that the attributions
computed over such Neural SDEs with attribution-driven
noise are consistently more robust to input perturbations



than those computed over neural SDEs with Brownian
noise (Jha et al. 2021) across different methods for computing
attributions. Figure 1 illustrates this improvement over a
popular attribution computation method, Integrated Gradient
(IG), for an example image. More qualitative results are
presented in the experiment section. While these qualitative
improvements are encouraging, systematically comparing
attributions to evaluate them quantitatively is challenging due
to the difficulty of knowing the ground truth. We address
this challenge in the quantitative evaluation section where
we summarize a list of quantitative metrics that formalize the
expectations from accurate attributions, such as robustness
to irrelevant perturbations, faithfulness and self-consistency
with the model, and consistency with human annotations of
foreground. Our results demonstrate that the Neural SDEs
trained using attribution-based noise outperform attributions
over ResNets across all these metrics for different attribution
computation techniques. Further, neural SDEs with our
attribution-driven noise are more robust and have lower
sensitivity metric than recently proposed neural SDEs with
Brownian motion noise (Jha et al. 2021). In summary, we
make the following key contributions in this paper:
• We propose a new iterative approach for training Neural

SDEs where attributions from the previous iteration are
used in shaping the noise injected during the next iteration.
This guided addition of noise on relevant features makes
the attributions of such models more robust, that is, less
sensitive to irrelevant perturbations compared to existing
neural SDEs (Jha et al. 2021). See Table 1.

• We show that theoretical results on the robustness of SDEs
help alleviate the saturation effect faced by attribution
methods. We also empirically analyze this improvement
and show that IG has a qualitatively different behavior over
Neural SDEs compared to ResNets. See Fig. 3 and Fig. 4.

• We experimentally demonstrate that Neural SDEs with
attribution-driven noise produce less noisy attributions than
traditional Neural SDEs with standard Brownian motion
noise using a number of different attribution methods: (i)
Integrated Gradients, (ii) Noise Tunnel, (iii) Saliency Maps,
(iv) DeepLIFT, and (v) DeepSHAP. See the section on
experiments.

• We use 3 different quantitative evaluation metrics and
demonstrate that the attributions over Neural SDEs
with attribution-driven noise in comparison to traditional
Neural SDEs with Brownian motion as noise show up
to 19.4% relative improvement in robustness to input
perturbations. Attribution-driven neural SDEs show better
self-consistency with model output yielding a 4.8% relative
increase in the SIC metric for the traditional Neural SDE
model with Brownian noise and 25.7% relative increase
with respect to ResNets. See Table 2.
Our results are a first step in studying the impact of shaping

the injected noise in stochastic DNN architectures using
the computed attributions on the qualitative and quantitative
robustness of model attributions, which can aid in selecting
the appropriate deep learning model to be used in applications
where the explainability of decisions and the computation of
accurate attributions is critical.

Related Work
Model interpretability and attribution methods. A
number of explanation techniques (Simonyan, Vedaldi, and
Zisserman 2013; Li and Yu 2015; Ribeiro, Singh, and
Guestrin 2016; Kim et al. 2018; Sundararajan, Taly, and
Yan 2017; Selvaraju et al. 2017; Shrikumar, Greenside, and
Kundaje 2017; Lundberg and Lee 2017; Kapishnikov et al.
2019; Sturmfels, Lundberg, and Lee 2020) have recently
been proposed in the literature that compute the relevant
features or assign quantitative importance (attributions) to
input features for a given decision by a DNN. Many of these
methods are based on the gradient of the output with respect
to an input feature (Simonyan, Vedaldi, and Zisserman 2013;
Selvaraju et al. 2017; Sundararajan, Taly, and Yan 2017;
Kapishnikov et al. 2019), and either directly use gradients,
consider the product of gradients and activation, or integrate
gradients over one or multiple paths. Different attribution
methods are compared in (Adebayo et al. 2018). We do not
seek to develop any new method to compute attributions in
this paper. Instead, we demonstrate that a number of existing
methods produce better attributions on Neural SDEs that
are iteratively trained using attribution-based noise when
compared with attributions on ResNets. The attribution
methods are known to exhibit high sensitivity to irrelevant
perturbations in the input which do not change the model’s
output but substantially change the attributions (Ghorbani,
Abid, and Zou 2019). We show that the attributions on Neural
SDEs are less sensitive and more robust to such perturbations.
We theoretically and empirically show that Neural SDEs
also alleviate the recently reported saturation problem of
integrated gradients (Miglani et al. 2020). A number of
methods have also been proposed to modify attribution
methods to decrease the noise in attributions (Kapishnikov
et al. 2019). The use of multiple noisy variants of an
input during inference (Smilkov et al. 2017) and one-shot
injection (Jha et al. 2021) of a fixed noise into all the layers of
a neural SDE have been proposed in the literature. In contrast,
we iteratively inject noise at each layer of the Neural SDE
based on the attributions from previous iterations during
training, which enhances the robustness of high-attribution
features in the learned model. Our analysis of Neural SDE
models for producing better attributions is complementary to
the different attribution computation techniques.
Dynamical systems for neural networks. Dynamical
systems models of neural networks have been the subject
of several recent investigations with a particular emphasis
on residual networks. The theory of partial differential
equations has been used to obtain dynamical system models
of ResNets (Chen, Yu, and Pock 2015; Chang et al. 2017;
Sonoda and Murata 2017; Weinan 2017; Lu et al. 2018).
Our work builds on the stochastic variants of residual neural
networks modeled as Neural SDEs (Tzen and Raginsky
2019; Kidger et al. 2021; Wang, Shi, and Osher 2019;
Liu et al. 2018; He, Rakin, and Fan 2019). To the best
of our knowledge, we are the first to employ attributions
to shape the noise used in training a neural SDE and
show theoretically and experimentally that this leads to
qualitatively and quantitatively better attributions. Our results
will provide additional impetus to the study of Neural SDEs.
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Figure 2: We use an iterative approach to train Neural SDEs using noise based on the attributions from the previous iteration. We
start with uniform noise but iteratively reshape the noise to focus on features with high attribution. This makes the Neural SDE
models more robust with respect to relevant features and also makes the attributions robust.

Technical Approach
The dynamics of ResNets has been described using partial
differential equations (Chen, Yu, and Pock 2015; Chang et al.
2017; Sonoda and Murata 2017; Weinan 2017; Lu et al. 2018;
Chen et al. 2018) where each building block of ResNets
is modeled as one time-step of the dynamics. Formally, a
residual building block x(i+1) = F(x(i),W(i))+x(i) can
be interpreted as the Euler discretization of a corresponding
ordinary differential equation dx(t)

dt = G(x(t),W(t)) such
that G(x(t),W(t)) = F(x(t),W(t))

δt , where the input is x(0).
Let u(x, t) be a function that is constant along the trajectory
of this ODE. Then u(x, t) satisfies the following transport
equation:

du(x, t)

dt
=

∂u(x, t)

∂t
+ G(x(t),W(t))∇u(x, t) = 0 (1)

The term u(x, t) serves as the classifier with the model output
u(x, 0) = u(x, 1), and the velocity field G(x(t),W(t))
encodes the architecture and weights of the DNN model.
When G(x(t),W(t)) is very complex, u(x, t) can be very
irregular and a small change in the input can change the
classification, thereby making the DNN model not robust.

Training Neural SDEs With Attribution-based Noise
Neural SDEs (Tzen and Raginsky 2019; Kidger et al. 2021;
Wang, Shi, and Osher 2019; Liu et al. 2018; He, Rakin,
and Fan 2019) have been recently proposed, and they
provide a systematic approach for improving the robustness
of ResNets. The key idea is to introduce an additional
diffusion term 1

2σ
2∆u, where ∆ is the Laplace operator∑

i
∂2

∂x2
i

. The corresponding convection-diffusion equation
after introducing the diffusion term that captures robustness
to small input perturbations is:

∂u(x, t)

∂t
+ G(x(t),W(t))∇u(x, t) +

1

2
σ2∆u = 0 (2)

The above convection-diffusion equation can be solved
using the Feynman-Kac formula over the following Itô

process: dx(t) = G(x(t),W(t))dt + ΣdBt. The diffusion
term makes the level sets of the transport equation more
regular and hence, the classifier u(x, t) more robust as
summarized in the following two theorems from the literature
on stochastic dynamics that are also applicable to Neural
SDEs (Ladyzhenskaia, Solonnikov, and Ural’tseva 1988;
Wang, Shi, and Osher 2019).

Theorem 1. If G(x(t),W(t)) is Lipschitz function in both
x and t, the target classifier being learned is a compactly
supported bounded function, and 0 < σ ≤ 1, then the
solution u(x, t) for the convection-diffusion equation in Eqn.
2 satisfies ∥u(x+ δ, 0)−u(x, 0)∥ ≤ α(∥δ∥2

σ )β for any small
perturbation δ, where β > 0 and α depends on the infinity
norm of G(x(t),W(t)).

Thus, increasing the noise σ added during the training
of the Neural SDE forces the learned classifier u to be
more robust. A similar robustness theorem holds for the
gradient ∇u(x, t) of the classifier with respect to the input
as summarized below.

Theorem 2. If G(x(t),W(t)) ∈ C1 in both x and t, the
target classifier being learned is a compactly supported
bounded function, and 0 < σ ≤ 1, then the solution u(x, t)
for the convection-diffusion equation in Eqn. 2 satisfies
∥∇u(x, 1)∥∞ ≤ αe−σ2+β , where β depends on ∇G and
α depends on the infinity norm of the target classifier and its
gradient.

We can thus bound the gradient magnitude of the classifier
model with respect to an input feature by adding more noise
while training the Neural SDE. These theoretical results
also motivated our use of attribution-based noise instead of
uniform noise. Intuitively, the addition of noise smooths the
learned classifier and regularizes its curvature. Our goal is to
learn models that have better attribution without a significant
loss in accuracy.

In traditional neural SDE models, one employs a scaled
standard Brownian noise Bt while training the Neural SDE
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Figure 3: IG over ResNets: The left plot shows that the model reaches 95% of its final logit value around α = 0.1. After this
saturation of logit, the expectation is that the gradient magnitudes should either become small so that they do not contribute to
the final IG, or the gradients are randomly aligned and hence, cancel out in the integration. But the center plot and the right
plot show that the gradients remain significantly high after saturation, and their directions remain aligned in ResNets. Thus, the
gradients after saturation significantly contribute to the Integrated Gradient in ResNets.
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Figure 4: IG over Neural SDEs: The left plot shows that this model also reaches 95% of its final logit value around α = 0.1.
After this saturation of logit, the magnitude of the gradients in attribution-driven Neural SDE drops below 0.1 and does not
significantly contribute to the final integration. The center figure shows the low magnitude of the gradients in Neural SDEs
after reaching logit saturation, and the right figure shows that the average gradient alignment drops to zero, that is, the small
gradients after saturation are randomly directed and will likely cancel each other out. Thus, the gradients after logit saturation
do not significantly contribute to the Integrated Gradient in Neural SDEs which is the desirable behavior and reduces noise in
attribution.

model: dx(t) = G(x(t),W(t))dt + ΣdBt. Here, Σ is not
dependent on the attributions of the model.

In attribution-driven neural SDE approach dx(t) =
G(x(t),W(t))dt+ΣnextdBt, we use attribution to identify
important features and inject noise Σnext = ΣÂ(x) based on
the unit-normalized attribution Â(x). Given the attribution
A(x), we obtain the unit-normalized attribution Â(x) by
dropping the outliers in the computed attributions A(x) and
normalizing the attribution values between −1 and 1.

Figure 2 illustrates this iterative approach which is repeated
until the training loss converges. We initialize the noise to a
Gaussian noise but over iterations, the noise is reshaped to
make the high attribution features more robust. Traditional
ResNets can be viewed as discretization of the inference in
the Neural SDEs with zero noise, and this enables us to use
the corresponding ResNets as a baseline for evaluation.

Saturation Effect of Integrated Gradient Recent
results (Miglani et al. 2020; Smilkov et al. 2017) have
shown that attribution techniques such as Integrated Gradient
(IG) produce noisy observations due to bias in selection of
baselines or gradient accumulation in saturated regions. The
IG attribution of feature xi using baseline xb is given by

(xi−xb
i )
∫ 1

0
∂F(xb

i+α·(xi−xb
i ))

∂xidα
. IG satisfies a set of axiomatic

properties, including completeness which guarantees that the
attributions sum to the difference between the model outputs
on input and baseline.

A particularly perplexing observation of IG attributions
over ResNets is that the contribution of the gradients in
saturated regions of α where the model output changes
minimally often dominate in magnitude and direction the
gradients in the unsaturated regions where the model
output changes substantially. This disproportionately larger
impact of gradients in the saturated region produces noisy
attribution. Splitting the integral and using attributions
from the unsaturated region (Miglani et al. 2020) partly
resolves this problem. We first demonstrate this problem
with Integrated Gradient over ResNet models using the
ImageNet dataset in Figure 3. We then illustrate how Neural
SDE models with attribution-driven noise do not exhibit
this limitation in Figure 4 and relate this to the theoretical
results on the robustness of gradients. This alleviation of the
saturation problem contributes to the overall improvement
in the quality of attributions produced by attribution-driven
Neural SDE models.



Experimental Results
We emphasize that our approach is not a new method for
computing attributions; instead, it uses attribution-based
iterative training of Neural SDEs to create models which
produce more robust attributions than traditional Neural
SDEs with Brownian motion noise (Jha et al. 2021) and also
create better attributions than the corresponding ResNets (He
et al. 2016). This improvement in interpretability of neural
SDEs with attribution-driven noise is observed across a
number of the state-of-the-art attribution methods. For
evaluating our Neural SDE models with attribution-driven
noise, we use both the corresponding Neural SDE models
with Brownian noise and ResNets which are created by
setting the noise to 0 and hence, form a fair baseline for
comparison. In this section, we experimentally demonstrate
that our attribution-driven Neural SDEs have quantitatively
robust attributions than Neural SDEs with standard Brownian
noise and the corresponding ResNets.

Our stochastic training and attribution analysis were
performed on the ImageNet benchmark using 8 A100
GPUs with 40GB RAM. ImageNet training was performed
using a learning rate of 0.0001 with a ReduceLROnPlateau
scheduler, the noise constant σ = 0.5, and the Adam
optimizer. Attribution analysis was performed on 1,000
examples from the ImageNet benchmark using the ResNet-50
model implemented in Pytorch. Training ResNet-50 on
ImageNet using attribution-driven noise is 36.1% slower
than training with Gaussian noise and is 38.7% slower than
training without noise. The computation of attributions from
a previous iteration can be computed in parallel with the
training of the model to accelerate the training. Evaluating
the efficacy of attribution is challenging due to the lack of
direct ground truth for attribution. While human annotation
of the qualitatively relevant and irrelevant part of an input is
feasible, it is impractical to have ground truth of quantitative
significance of different parts of the input. Thus, we consider
a variety of different quantitative evaluation metrics in
addition to qualitative comparisons.

Qualitative Evaluation Demonstrating Improvement
Across Attribution Methods Is the improvement in
interpretability of neural SDE models trained using
attribution-guided noise limited to specific attribution
techniques, or does it generalize across attribution methods?
In this section, we use a few examples of qualitative results to
illustrate that neural SDEs create more interpretable models,
and different attribution methods such as DeepShap, IG,
DeepLIFT and Noise tunnel, produce better attributions with
neural SDEs than standard ResNets.

Original Image ResNet-50 Our Approach

Figure 5: DeepSHAP Attributions on Macaw

DeepSHAP. Figure 5 shows an example of attribution
obtained from our attribution-driven Neural SDE model using
DeepSHAP – a combination of DeepLIFT and Shapley values
implemented in the Captum library. DeepSHAP produces
visually sharper and qualitatively better attributions using
our Neural SDE model with attribution-driven noise than the
standard ResNet-50 model. Our model has identified both the
eye of the Macaw and its beak, while the ResNet-50 model
has a more diffused attribution with some emphasis on the
eye of the Macaw.

Figure 6: IG Attributions on Church

Integrated Gradient. Our Neural SDE model with
attribution-driven noise produces visually sharper Integrated
Gradient attributions than the standard ResNet-50 model.
Fig. 6 shows how our stochastic model can focus on the
watch tower with the spires (minarets) while the standard
ResNet-50 model is focusing mostly on the blue sky in the
center and right of the top of the image. This example also
brings up the challenge of qualitative evaluation of attribution
techniques and motivates our use of quantitative evaluation,
which complements our qualitative analysis here.

Original Image ResNet-50 Our Approach

Figure 7: DeepLIFT Attributions on Fountain

DeepLIFT. Our Neural SDE model with attribution-driven
noise leads to visually sharper DeepLIFT attributions than
those produced by ResNet-50. Figure 7 shows an example
of attribution obtained from ResNet-50 and our stochastic
trained model using DeepLIFT as implemented in the
Captum library. ResNet-50 has a very diffused attribution,
while our stochastic model trained using attribution-driven
noise is able to relatively focus on the water coming out of
the fountain in the attributions, which is intuitively expected
from an attribution approach.

Original Image ResNet-50 Our Approach

Figure 8: Noise Tunnel on Mosque



Model Attribution Sensitivity Metric

Standard Noise Attribution-driven Noise

ResNet-50

IG (Sundararajan, Taly, and Yan 2017) 0.576 0.450 0.420
IG + NT (Smilkov et al. 2017) 1.036 0.983 0.866
Saliency Map (Simonyan, Vedaldi, and Zisserman 2013) 0.596 0.551 0.478
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) 0.729 0.613 0.554
DeepSHAP (Lundberg and Lee 2017) 0.363 0.323 0.318

WideResNet-101

IG (Sundararajan, Taly, and Yan 2017) 0.561 0.494 0.461
IG + NT (Smilkov et al. 2017) 1.433 1.426 1.408
Saliency Map (Simonyan, Vedaldi, and Zisserman 2013) 0.577 0.548 0.501
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) 0.777 0.667 0.643
DeepSHAP (Lundberg and Lee 2017) 0.344 0.323 0.316

ResNeXt-101

IG (Sundararajan, Taly, and Yan 2017) 0.590 0.498 0.401
IG + NT (Smilkov et al. 2017) 1.443 1.443 1.440
Saliency Map (Simonyan, Vedaldi, and Zisserman 2013) 0.616 0.557 0.462
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) 0.775 0.713 0.546
DeepSHAP (Lundberg and Lee 2017) 0.379 0.330 0.321

Table 1: Lower sensitivity metric is desirable as it demonstrates robustness of attribution. For completeness, we consider different
attribution methods and different ResNet architectures to ensure the quantitative improvement exhibited by the Neural SDE
trained models generalize across different choices of models and attributions. The sensitivity of the corresponding ResNet models
are in the third column, the sensitivity of the Neural SDE model trained without iterative attribution-driven noise is shown in the
fourth column, and finally the sensitivity of our Neural SDE models is shown in the rightmost column.

Noise Tunnel (variant of SmoothGrad). Captum
implements a variant of the SmoothGrad algorithm that is
called the Noise Tunnel. A series of random perturbations of
the inputs are used to refine the computed attributions. The
performance of this approach on ResNet-50 on the mosque
example in Figure 8 is good, but it includes lots of attributions
up in the sky and on the ground. On the other hand, our Neural
SDE model with attribution-driven noise focuses sharply on
the minaret and the other architectural details of the mosque.

Original Image ResNet-50 Our Approach

Figure 9: Saliency Map using just gradients does not
produce visually sharp attributions on either our approach or
ResNet-50.

Saliency Map. Saliency map is a foundational approach
for explaining neural networks but does not compare well to
more recent methods. As shown in Fig. 9, the saliency map
does not produce visually sharp attributions using either our
attribution-driven neural SDE approach or using ResNet-50.
We include this as a failure case where our attribution-driven
neural SDE approach also fails to improve the attributions
of this particular approach; this could be due to the simple
nature of the saliency map approach which directly uses the
gradient of the input. This approach is known to exhibit a
number of issues such as gradient saturation which could
explain its failure on both approaches.

Quantitative Metrics for Evaluating Attributions over
ResNets and Neural SDE models In this subsection, we
focus on two questions.
• What are the quantitative metrics to evaluate attributions

beyond subjective qualitative judgements?
• Do our attribution-driven neural SDE models exhibit

better interpretability and produce attributions that are
quantitatively better than standard ResNet models?
For quantitative evaluation of the attribution methods on

standard ResNets, standard Neural SDEs, and those trained
using our Neural SDE approach with attribution-driven noise,
we use a number of metrics that formalize the following
desiderata:

• Robustness of attributions to input perturbations:
Perturbations to inputs that do not change the model output
substantially should not change the attribution significantly.
The computed attributions should be robust to such small
perturbations of the input (Yeh et al. 2019; Ghorbani, Abid,
and Zou 2019; Miglani et al. 2020).

• Self-consistency with model output: Attribution scores
should be faithful to the model - removing the top or
bottom features should lead to decrease or increase in
the model’s output (logit) for the class of the original
input (Miglani et al. 2020; Sturmfels, Lundberg, and Lee
2020; Kapishnikov et al. 2019).

• Consistency with weakly supervised localization:
The identified high-attribution features (pixels) of an
input (image) should correspond to human-annotated
foreground (Kapishnikov et al. 2019; Cong et al. 2018).

We next present results with each of these three
quantitative metrics.



Model Method Reference SIC

ResNet-50 Gradients (Simonyan, Vedaldi, and Zisserman 2013) 0.510
ResNet-50 IG (Sundararajan, Taly, and Yan 2017) 0.544
ResNet-50 IG + Noise Tunnel (Smilkov et al. 2017) 0.590

NeuroSDE Standard Brownian Noise IG (Jha et al. 2021) 0.652
NeuroSDE Attribution-Driven Noise IG Our Approach 0.683

Table 2: The IG attributions over Neural SDE models trained using attribution-driven noise have higher SIC metric than IG
attributions over traditional neural SDEs and standard ResNet-50 models.

Robustness of Attributions The robustness of attributions
to perturbations that do not change the output model
significantly can be computed over dataset D as the following
sensitivity metric, where the magnitude of attribution-change
is normalized by the original attribution magnitude:

Sr(A,D) =
∑
x∈D

max∥δ∥∞≤r∥A(x+ δ)−A(x)∥2
∥A(x)∥2

such that ∀∥δ∥∞ ≤ r, F (x+ δ) = F (x)

This metric has been used previously in the literature (Yeh
et al. 2019; Ghorbani, Abid, and Zou 2019; Miglani et al.
2020), and many state-of-the-art attributions (Sundararajan,
Taly, and Yan 2017; Smilkov et al. 2017; Simonyan, Vedaldi,
and Zisserman 2013; Shrikumar, Greenside, and Kundaje
2017; Lundberg and Lee 2017) have been found to be not
robust for the standard ResNet models.

We demonstrate that models trained using our
attribution-driven Neural SDE approach are more robust
than both traditional Neural SDEs with Brownian noise and
ResNets. Our approach is orthogonal to those improving
robustness by averaging over multiple baselines, neighboring
pixels, or different computation paths (Smilkov et al. 2017;
Kapishnikov et al. 2019; Miglani et al. 2020), and can
be combined with these approaches. For completeness,
we consider different attribution methods and different
architectures for the standard ResNets to ensure that the
quantitative improvement exhibited by the Neural SDE
trained models is not due to these choices. Our results are
summarized in Table 1. Neural SDEs with attribution-driven
noise have lower sensitivity across architectures and
attribution methods.

Self-consistency with model output This self-consistency
metric (Miglani et al. 2020; Sturmfels, Lundberg, and Lee
2020; Kapishnikov et al. 2019) is motivated by the need
for the attribution method to be faithful to the model. For
measuring this self-consistency, we adopt the Performance
Information Curves (PIC) (Kapishnikov et al. 2019) where
contents are re-introduced in a blurred (bokeh) version of the
image to avoid sharp boundary effects (Dabkowski and Gal
2017) and the output is monitored. We use the proportion
of the original input’s label output or softmax score as the
performance – such a PIC curve is also called the Softmax
Information Curve (SIC) (Kapishnikov et al. 2019). The area
under this SIC curve gives us a quantitative evaluation metric
for the computed attributions. We evaluate the SIC metric on

both the ResNet-50 model and our Neural SDE model trained
using attribution-driven noise. We used 1,000 random images
from the ImageNet validation data set. Our attribution-driven
Neral SDE model has IG attributions with 4.75% higher SIC
metric (Kapishnikov et al. 2019) than those obtained using
traditional Neural SDEs and 25.7% higher SIC metric than
those obtained from the standard ResNet-50.

Consistency with Weakly Supervised Localization Using
human annotations such as those available from the PASCAL
challenge, we identify a relevant part of the input denoted
by GF and an irrelevant background of the input denoted
by GB . We threshold the computed attributions to define
binary masks over the input images that identify the high
attribution relevant parts of the input R. The false positive
rate and the true positive rate can be then computed as TPR =
|R∩GF |
|GF | , FPR = |R∩GB |

|GB | , The area under the TPR and FPR
curve gives the AUC score. We compute the AUC metric
on 1,000 images from a subset of the ImageNet data set
whose bounding boxes are available from the PASCAL VOC
challenge. Our approach of injecting attribution-driven noise
in Neural SDEs produces a slightly higher AUC score than
the same IG approach applied to traditional Neural SDEs and
the standard ResNet-50 model.

Conclusions
We developed a new iterative approach for training Neural
SDEs where attributions from the previous iteration are
used in shaping the noise in the next iteration. This shaping
of noise using attributions while training Neural SDEs
makes their attributions more robust than traditional SDEs
with Brownian motion noise and ResNets. We show that
SDEs alleviate the saturation effect faced by attribution
methods and empirically demonstrate this. In future efforts,
one can explore how such neural SDEs can lead to more
robust confidence metrics (Jha et al. 2019) and enhance
out-of-distribution detection algorithms (Kaur et al. 2022).
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