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ABSTRACT
Processing in-memory is a promising solution strategy for acceler-
ating data-intensive applications. While analog in-memory comput-
ing is extremely efficient, the limited precision is only acceptable for
approximate computing applications. Digital in-memory comput-
ing provides the deterministic precision required to accelerate high
assurance applications. State-of-the-art digital in-memory comput-
ing schemes rely on manually decomposing arithmetic operations
into in-memory compute kernels. In contrast, traditional digital
circuits are synthesized using complex and automated design flows.
In this paper, we propose a logic synthesis framework called LOGIC
for mapping high-level applications into digital in-memory com-
pute kernels that can be executed using non-volatile memory. We
first propose techniques to decompose element-wise arithmetic
operations into in-memory kernels while minimizing the number
of in-memory operations. Next, the sequence of the in-memory
operation is optimized to minimize non-volatile memory utilization.
Lastly, data layout re-organization is used to efficiently accelerate
applications dominated by sparse matrix-vector multiplication op-
erations. The experimental evaluations show that the proposed
synthesis approach improves the area and latency of fixed-point
multiplication by 77% and 20% over the state-of-the-art, respectively.
On scientific computing applications from Suite Sparse Matrix Col-
lection, the proposed design improves the area, latency and, energy
by 3.6X, 2.6X, and 8.3X, respectively.
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1 INTRODUCTION
Scientific simulation of complex physical models is essential for
application domains such as finance [5], biology [24], and climate
modeling [22]. The simulation of these models often requires mas-
sive amount of computational resources over periods of weeks
or months [17]. To further scale up the size of such simulations,
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Table 1: Area and Latency of 32-bit Arithmetic Operations.

Arithmetic Work in Approach Area Latency
Operation (# of Intermediate (Time Steps)

Storage)

Addition [29] manual 351 385
Addition (proposed) synthesis 62 322

Improvement 82% 16%

Multiplication [8] manual 507 12870
Multiplication (proposed) synthesis 126 10046

Improvement 75% 22%

substantial computing efficiency improvements are required. Unfor-
tunately, with the slow down of Moore’s law and the von-Neumann
bottleneck, only limited performance gains are expected from fur-
ther technology scaling [30]. This has resulted in a broad explo-
ration of alternative computing paradigms such as quantum com-
puting [26], optical computing [23], and in-memory computing
using non-volatile memory [12]. Processing in-memory computing
has attracted an increasing amount of interest due to the energy-
efficient computation and ability to break the von-Neumann barrier.
Promising non-volatile memory technology include phase change
memory (PCM) [3], spin-transfer torque magnetic random-access
memory (STT-RAM) [11], and Resistive random access memory
(RRAM) or memristor [27, 31].

Processing in-memory can be divided into analog and digital
in-memory computing. Analog in-memory computing is extremely
efficient but the precision is approximate by nature [10], which
is unacceptable for scientific simulation [13]. On the other hand,
digital in-memory computing is capable of evaluating logic with
deterministic precision. Digital in-memory computing has been ex-
plored using logic families such as IMPLY [2], MAGIC [18], Bitwise-
in-Bulk [20], and FLOW [15]. The logic styles have been used to
accelerate digital circuits and arithmetic operations such as addi-
tion, multiplication, and matrix-vector multiplication. The Bit-wise-
in-bulk and MAGIC paradigms are capable of executing bitwise
operations in parallel, which enables efficient acceleration of arith-
metic operations. The difference between the two logic styles is that
bitwise-in-bulk performs processing using the peripheral circuitry
while MAGIC is completely in-memory, i.e., both the inputs and
outputs are stored in memory. Many recent architecture level works
focus on MAGIC due to the smaller hardware requirements [13].

The MAGIC logic style is centered on performing NOR oper-
ations between data stored in parallel bitlines (or wordlines). To
execute elementwise multiplication operations, the elementwise
multiplication is required to be decomposed into NOR operations.
Manually designed template decompositions have been explored
in [8]. The multiplication operations were first decomposed into
partial products and multi-bit addition operations. Next, the multi-
bit addition operations were decomposed into single bit-addition
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and subsequently into NOR operations. The memory utilization
was reduced from square to linear by adding the partial products in
order. These templates have been used as the underlying building
block for numerous architecture level studies [9, 13, 14].

Digital circuits are almost exclusively designed using automated
synthesis flows with hundreds of design steps [21]. The synthesis
tools map logic into a netlist of connected Boolean gates while min-
imizing the number of gates and interconnections. While custom
synthesis approaches for digital in-memory computing have been
explored, they are limited to rather simple circuits. In this paper, we
propose to leverage recent advancements within logic synthesis to
map arithmetic operations into digital in-memory compute kernels.
The use of automated synthesis instead of manually designed tem-
plates can potentially lead to remarkable improvements in terms of
power, latency, and area. We show the improvements in area and
time steps in Table 1.

In this paper, we propose a logic synthesis framework called
LOGIC for mapping arithmetic operations to digital in-memory
compute kernels. The framework approaches the mapping problem
by formulating and solving mathematical optimization problems
combined with software/hardware co-design. The contributions of
LOGIC can be summarized, as follows:

(1) We propose techniques to decompose element-wise arith-
metic operations into in-memory kernels while minimizing
the number of in-memory operations. Our experimental
investigations show that our in-memory compute kernel
synthesis can reduce in-memory operations by 20% for fixed-
point multiplication.

(2) We present a new graph-based approach to optimize the
sequence of the in-memory operation in order to minimize
non-volatile memory utilization. Our experimental studies
demonstrate that we reduce the size of the required non-
volatile memory by 36% for fixed-point adders.

(3) We present a data layout re-organization algorithm to con-
vert sparse matrix-vector-multiplication (MVM) operations
into dense blocks, to improve hardware utilization and re-
duce inter-crossbar data transfer for in-memory MVM oper-
ations.

(4) The LOGIC framework is evaluated on the Suite Sparse Ma-
trix Collection. Compared with state-of-the-art in [1], LOGIC
improves area, latency and, energy by 3.6X, 2.6X, and 8.3X,
respectively when accelerating scientific computing applica-
tions.

The remainder of this paper is organized as follows: Preliminar-
ies in Section 2. An overview of the framework is given in Section 3.
The synthesis steps are detailed in Section 4 and 5. Section 6 de-
scribes data layout re-organization algorithm for sparse matrices.
The architecture and experimental results are presented in Section 7.
The paper is concluded in Section 8.

2 PRELIMINARIES
In this section, we first briefly review basic concepts related to
digital in-memory computing. Next, we discuss the state-of-the-art
approach for decomposing arithmetic operation into in-memory
kernels using manually designed templates.

2.1 Digital In-Memory Computing
MAGIC [18] is one of the most prominent approaches to in-memory
computing. In this subsection, we discuss how MAGIC can be used
to perform logic NOR operations. Since the NOR logical operation
is functionally complete, any Boolean function can be represented
using a NOR-only netlist [7]. The MAGIC circuit that can perform
INV and NOR operations is shown in Figure 1(a). The memristors
𝑖𝑛1 to 𝑖𝑛𝑛 represent inputs of the NOR gate, and the 𝑜𝑢𝑡 memristor
realizes the output of the NOR operation. The MAGIC operation is
performed in two steps: one initialization step, and one execution
step, which are shown on top of Figure 1(b). In the initialization
step, the 𝑛 input memristors are set either to high resistance state
(HRS) which corresponds to logic “0", or to low resistance state
(LRS) which corresponds to logic “1". The 𝑜𝑢𝑡 memristor is set to
LRS. In the execution step, a controlled voltage 𝑉0 is applied to the
input memristors, and the output of NOR operation is realized in the
𝑜𝑢𝑡 memristor. Parallel NOR operations can be performed when the
memristors are arranged in crossbars. The execution of a parallel
INV and NOR2 operation is shown at the bottom of Figure 1(b).

(a) (b)

Figure 1: (a) Digital in-memory computing using MAGIC and,
(b) parallel MAGIC operations in a crossbar.

2.2 Manually Designed Templates for
Arithmetic Operations

In this subsection, we review the standard approach of decomposing
arithmetic operations into digital in-memory compute kernels. The
state-of-the-art in-memory computing paradigms use a manually
crafted template based approach. For instance, a 1-bit full adder
can be decomposed using NOR-only operations. The carry-out bit
can for example be written as three 2-input NORs followed by one
3-input NOR.

𝐶𝑜𝑢𝑡 = (𝐴 + 𝐵) + (𝐴 +𝐶𝑖𝑛) + (𝐵 +𝐶𝑖𝑛)

𝑆𝑢𝑚 = (𝐴 + 𝐵 +𝐶𝑖𝑛) + {(𝐴 + 𝐵 +𝐶𝑖𝑛) +𝐶𝑜𝑢𝑡 }
Here,𝐴 and 𝐵 are the input operands and𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 are the carry-
in and carry-out bits respectively. The in-memory adder operation
is performed in a single row of crossbar as shown in Figure 2(a).
This approach partitions the memristors cells in a row into three
groups [29]. The input and the output cells store the input and the
output of the adder respectively. The functional cells generate the
𝑆𝑢𝑚 and 𝐶𝑜𝑢𝑡 through sequential NOR operations.



Logic Synthesis for Digital In-Memory Computing ICCAD ’22, October 30-November 3, 2022, San Diego,CA, USA

Figure 2: State-of-the-art schemes for (a) MAGIC arithmetic
and (b)-(c) addition of partial products of multiplication.

The adder operation can be extended to 𝑛-input multiplication
operation [8] in a straightforward manner. This is done by applying
the adder operation on the partial products of multiplication. For
example, the workflow of multiplication of two multi-bit operands
𝐴 and 𝐵 is shown in (b) and (c) of Figure 2. The addition of first two
partial products 𝑃𝑃1 and 𝑃𝑃2 is shown in Figure 2(b). The addition
leads to the first intermediate solution, 𝐼𝑆 . In the next step, the
intermediate solution 𝐼𝑆 is added to the third partial product 𝑃𝑃3
which is shown in Figure 2(c). The process is continued until all
the partial products are covered.

3 THE LOGIC FRAMEWORK
In this section, we introduce the LOGIC framework. A high-level
overview of the framework is shown in Figure 3.

Figure 3: Overview of the LOGIC framework

The objective of the framework is to accelerate sparse matrix-
vector multiplication operations using digital in-memory comput-
ing. The framework consists of three parts: (a) synthesis of in-
memory compute kernels, (b) execution sequence optimization,
and (c) data layout re-organization. The synthesis of in-memory
compute kernels step takes an arithmetic operation as input and
synthesises it to in-memory kernels, which is equivalent to a tradi-
tional netlist. The objective of this step is to minimize the number
of in-memory operations. The execution sequence optimization
takes the netlist of in-memory kernels as input and provides an
execution sequence as the output. The objective of the optimization
is to minimize the required amount of non-volatile memory needed

for intermediate storage. The synthesis of in-memory compute ker-
nels together with the execution sequence optimization is used to
build a library of in-memory execution sequences for arithmetic
operations of different bitwidths. The data layout re-organization
takes a large sparse MVM operations as input and re-organizes the
computation into dense blocks that can be efficiently accelerated
with the pre-characterized library of arithmetic operations.

The components of the LOGIC framework are described in Sec-
tion 4, Section 5, and Section 6, respectively. The architecture of
the in-memory computing platform is given in Section 7.

4 SYNTHESIS OF IN-MEMORY COMPUTE
KERNELS

In this section, we explain how arithmetic operations such as ele-
mentwise addition and multiplication are compiled into INV and
NOR operations. The user specifies the maximum number of inputs
that the NOR operations support based on the specific technology.
The synthesis consists of a (i) hierarchical multiplier and adder
decomposition step, a (ii) traditional logic synthesis step, and a (iii)
technology mapping step. The flow is shown in Figure 4. The first
step hierarchically decomposes the elementwise multiplication into
partial product computations and adder operations. The second
step converts each hierarchical component into in-memory com-
pute kernels using traditional logic synthesis using ABC [21]. (We
omit the details of this step as it is performed directly using ABC).
The last step is to convert the initial netlist to an optimized netlist
with high fan-in gates.

Figure 4: Synthesis of in-memory compute kernels.

4.1 Hierarchical Multiplier and Adder
Decomposition

In this section, we hierarchically decompose elementwise multipli-
cations into smaller components. Ideally, we would pass the entire
multiplication into a traditional logic synthesis tool such as ABC
in the next step. However, netlists of arithmetic operations scale
exponentially in size with the bit-width. Therefore, a hierarchical
decomposition approach is needed.

We decompose an n-bit elementwise multiplication operation
into partial products and m-bit additions, as shown in Figure 2.
The exact value of𝑚 is dependent on the number of partial prod-
ucts that have been added. However, instead of decomposing each

Figure 5: Decomposing arithmetic operations. (a) a 32-bit full
adder and, (b) 4-bit full adder chain.
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𝑚-bit addition into𝑚 1-bit additions, we explore using multi-bit
adders, which is shown in Figure 5. Moreover, instead of manually
decomposing the multi-bit adders into INV and NOR operations,
we utilize traditional logic synthesis such as ABC [21].

We compare the intermediate memory utilization/bit and num-
ber of operations/bit with respect to adders with different bit-width
in Figure 6. It can be observed that the intermediate memory uti-
lization grows linearly with the adder bit-width. On the other hand,
the number of operations/bit decreases until a bit-width of 8, next
the number of operations start to increase again with respect to the
bit-width. The noise in the plot is a result of that the ABC tool is
based on heuristics. Based on these observations, we select the tar-
get adder bit-width to 8 bits, in order to minimize expected energy
and delay.

(a) (b)

Figure 6: Intermediate storage and time steps with respect to
adder bit-width.

4.2 Technology Mapping
In this subsection, we describe the technology mapping step. In
this step, the synthesis tool converts the low fan-in NOR-gates of
the initial netlist into higher fan-in NOR-gates with the goal of
reducing area and latency.

The technology mapping step is explained with an example
netlist in Figure 7. First, the NOR-only netlist is converted into
a directed acyclic graph (DAG), 𝐺 = (𝑉 , 𝐸), which is shown in
Figure 7(a). The corresponding gate encoding of nodes of the DAG
are shown on the right of Figure 7(a). Next, a cell library of higher
fan-in NOR-gates are generated. Each cell of this library is a super-
set of the rudimentary NOR-gates of the initial netlist. A subset

Figure 7: Technology mapping: (a) initial netlist with gate
encoding, (b) library of in-memory compute kernels, (c) cover
of subject graph, and (d) optimized netlist.

of the cell library is shown in Figure 7(b). Next, the DAGON [16]
algorithm is used to cover the DAG using cells from the cell library.
An example cover is shown in Figure 7(c). The updated netlist
after technology mapping is shown in Figure 7(d). In this example,
the total number of nodes of the initial netlist is reduced from 16
to only 4 nodes in the updated netlist. Our approach translates
into improvement in latency due to the choice of our bit-width
resolutions and the reduction of the number of nodes in the netlist.

5 EXECUTION SEQUENCE OPTIMIZATION
In this section, we explain the execution sequence optimization
step. Next, we outline an optimal algorithm based on enumeration.
Lastly, we provide a practical greedy approach to solve the sequence
ordering.

5.1 Problem Formulation
The input is a netlist represented using a DAG, 𝐺 = (𝑉 , 𝐸), where
the nodes V correspond to in-memory operations and the edges
E correspond to predecessor constraints. The objective is to pro-
cess the operations while minimizing the required intermediate
storage. Let 𝑆 denote a sequence of the |𝑉 | operations. This can be
formalized, as follows:

min
𝑆

max
𝑖={0,..., |𝑉 | }

𝑐𝑜𝑠𝑡 (𝑆𝑖 ) (1)

𝑠 .𝑡 . 𝑛𝑖 ≤ 𝑛 𝑗 ∀(𝑖, 𝑗) ∈ 𝐸, 𝑛𝑖 , 𝑛 𝑗 ∈ 𝑉
where 𝑆𝑖 is the first 𝑖 nodes in 𝑆 . The 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) is the intermediate
storage required after 𝑖 nodes have been processed. The 𝑐𝑜𝑠𝑡 (𝑆𝑖 )
is computed by forming a set 𝑈𝑖 = 𝑉 \ 𝑆𝑖 . Next, let𝑊𝑖 be the set
of nodes in 𝑆𝑖 that have at least one edge connected to a node in
𝑈𝑖 . The nodes in 𝑆𝑖 with no connections to a node in 𝑈𝑖 have been
consumed and are not required to be stored. The 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) is finally
defined to be |𝑊𝑖 |.

5.2 Enumeration of Execution Sequences
In this step, we outline a solution to the execution sequencing prob-
lem based on enumeration. The DAG representation of a half adder
is shown in Figure 8(a). All possible topological sortings of the nodes
are shown in Figure 8(b). 𝑎 and 𝑏 represents the primary inputs
and nodes c−g represents the gates of the netlist. We show the
𝑐𝑜𝑠𝑡 (𝑆𝑖 ) from Eq (1) for the left-most and the right-most sequences
in the figure. Note that, after a node 𝑛 is processed, the inputs of
𝑛 that are no longer needed for future processing are expired and
the corresponding functional memristors are released and ready

Figure 8: (a) DAG representation of a half adder and, (b) enu-
meration of all feasible execution sequences.
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Figure 9: Greedy algorithm for execution sequence ordering.

for reuse. In the figure, the 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) for sequence c→d→f→e→g is
3 and the 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) for sequence e→d→c→f→g is 4. The synthesis
tool selects the sequence that minimizes 𝑐𝑜𝑠𝑡 (𝑆𝑖 ).

While enumeration of all the sequences of a DAG would ensure
that an optimum cost sequence is selected, it becomes computa-
tionally impractical for DAGs with many nodes. For example, the
number of total sequences for a half adder, a 1-bit full adder and,
a 2-bit full adder are 8, 856 and, 26795 respectively. Therefore, for
adders with higher bit-width resolutions, we implement a greedy
algorithm to generate a relatively small number of sequences.

5.3 Greedy Algorithm
In this step, we propose a greedy algorithm for generating in-
memory execution sequences. To generate a sequence that has the
best chance of incurringminimum cost, the greedy algorithmmakes
informed decision before including a node into the sequence. To
achieve this, we define a new parameter called effective inclusion cost
(EIC), h(n). Here, ℎ(𝑛) = (memory cost of including 𝑛)−(memory re-
leased after processing 𝑛). The algorithm is presented in Algorithm 1.
For each expansion of a sequence, the algorithm first evaluates the
ℎ(𝑛) for each of the candidate nodes. Here the candidate nodes are
the nodes that satisfy the predecessor constraint. The algorithm se-
lects the candidate node that yields the minimum ℎ(𝑛). If there are
multiple candidate nodes with minimum ℎ(𝑛), the algorithm selects
one of these nodes in random. The algorithm concludes when all
the nodes within the DAG are covered. We illustrate the algorithm
with an example in Figure 9. The figure shows the generation of
a greedy sequence for the DAG of a half adder. The synthesis tool
memoizes the 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) of the generated sequence and applies a
branch-and-bound concept for the future sequence generations [4].
Whenever the 𝑐𝑜𝑠𝑡 (𝑛𝑖 𝑗 ) of a sequence exceeds𝑚𝑖𝑛(𝑐𝑜𝑠𝑡 (𝑆𝑖 )), the
expansion of the sequence is terminated and the algorithm starts a
new sequence generation.

Algorithm 1: Algorithm for Priority Traversal of the DAG
for Generating Executions
Inputs: DAG, 𝐺 = (𝑉 , 𝐸)
Output: Greedy execution sequence, S;
main {
S ← 𝜙 ; \\initializing
𝑀𝑒𝑚𝑜 (0) ← ∞; \\for memoization of sequence cost
𝑁 ← total nodes in G;\\excluding primary inputs
for i=0 to𝑀 do
P, C ← 𝜙 ; \\initializing
while size(P) ≠ N do
H , R ← 𝜙 ; \\initializing
C ← all candidate nodes;
for all 𝑗 ∈ 𝐶 do
H( 𝑗) ← ℎ( 𝑗);\\calculating EIC

end
R ← all 𝑘 ∈ 𝐶 with𝑚𝑖𝑛(H);\\pruning
𝑛← rand(R);\\informed random selection
P ← P ∪ 𝑛;\\ordered execution set
if 𝑐𝑜𝑠𝑡 (𝑛) ≥𝑚𝑖𝑛(𝑀𝑒𝑚𝑜) then

break; \\branch and bound
end

end
if 𝑐𝑜𝑠𝑡 (P) <𝑚𝑖𝑛(𝑀𝑒𝑚𝑜) then
S ← P;

end
𝑀𝑒𝑚𝑜 (𝑖 + 1) ← 𝑐𝑜𝑠𝑡 (P); \\memoization

end
return S;
}
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6 DATA LAYOUT RE-ORGANIZATION
In this section, we develop a data layout re-organization algorithm
to decompose in-memory matrix-vector-multiplication (MVM) of
sparse matrices. The aim of the algorithm is to improve the hard-
ware utilization and to reduce inter-crossbar data transfer for in-
memory MVM operations.

State-of-the-art approach to decompose MVM into crossbar is
to arrange the matrix operands row-wise into the crossbar and
perform row-parallel arithmetic operations [1, 13]. This row-wise
layout ensures that all the arithmetic operands of an output vector
element are aligned in the same crossbar row and therefore no inter-
row copy operation is required. This approach works very well with
dense matrices like the 𝐽𝑜𝑢𝑟𝑛𝑎𝑙𝑠 matrix shown in Figure 10(a).

However, most matrices within physical systems are sparse. A
sparse matrix 𝑒𝑟𝑖𝑠1176 is shown in Figure 10(b). We make the obser-
vation that a naive row-wise data alignment of sparse matrix leads
to hardware under-utilization. For efficient utilization of hardware,
a denser data layout is desired. For instance, a row-wise shifting of
the operands of the 𝑒𝑟𝑖𝑠1176 matrix is shown in Figure 10(c). This
shifted alignment ensures that the matrix operands will achieve a
denser assignment in crossbars which would translate as less hard-
ware requirement and fewer inter-crossbar data communications.

(a) (b) (c)

Figure 10: Matrices from the Suitsparse matrix collection [6].
(a) Dense matrix 𝐽𝑜𝑢𝑟𝑛𝑎𝑙𝑠, (b) sparse matrix 𝑒𝑟𝑖𝑠1176 and, (c)
row-wise shifted 𝑒𝑟𝑖𝑠1176matrix

In this new approach with potentially extreme shifting, the rout-
ing of corresponding input vector operands become an interesting
problem as each row of the shifted matrix is multiplied with an
unique subset of the original input vector. Therefore, unlike a reg-
ular dense matrix, the routing resources cannot be shared among
the rows of a crossbar.

To improve the routability of the input vectors, we propose a
data layout re-organization algorithm. We explain the algorithm
with the example matrix segment of Figure 11(i). The aim of the
algorithm is to reorganize the matrix operands in a fashion that all
the rows of a crossbar can share the same set of routing resources for
the incoming input vectors. To achieve this, we first do a 𝑝𝑎𝑑𝑑𝑖𝑛𝑔
operation on the columns of thematrix that contain at least one non-
zero element. The 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 operation is shown in Figure 11(ii). Next
we perform a shifting operation on the matrix columns with non-
zero elements which is shown in Figure 11(iii). Finally, we clean
the padded elements from the matrix as shown in Figure 11(iv).
Note that, the set of shifted column indices for both rows is {2,4,6}.
Therefore, both the shifted rows are multiplied with 2𝑛𝑑 , 4𝑡ℎ and

Figure 11: Sparse matrix data layout reorganization

6𝑡ℎ elements of input the vector. For a crossbar dimension of 𝑃 ×𝑄 ,
the algorithm ensures that all 𝑃 rows of the crossbar share the same
subset of the input vector.

The data layout re-organization on the sparse matrix 𝑒𝑟𝑖𝑠1176
is shown in Figure 12. Figure 12(a) shows the 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 operation
on the matrix. The padding increases the number of nonzeros to
224,992 from the original number of nonzeros of 18,552. Next, the
𝑠ℎ𝑖 𝑓 𝑡𝑖𝑛𝑔 and 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 operations are shown in Figure 12(b) and (c)
respectively. After cleaning, the number of non-zeros are equal to
the number of non-zeros in the original matrix. Finally, a blocking
of the shifted non-zero operands is shown in Figure 12(d). In our
architecture, we consider crossbars of 128 × 128 dimension. In
Figure 12(d), each block has 128 rows which is equal to the number
of rows in the crossbar. Each of the block is multiplied with an
unique subset of input vector elements which are parallelly routed
to all the rows of the corresponding crossbars.

Figure 12: Data layout re-organization of 𝑒𝑟𝑖𝑠1176matrix.
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7 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of the LOGIC frame-
work. We first present the architecture for the LOGIC in-memory
computing platform. Next, we experimentally evaluate the perfor-
mance of LOGIC.

7.1 Architecture
An overview of the architecture of the LOGIC framework is shown
in Figure 13(a). The overall architecture consists of several acceler-
ator tiles. Each accelerator tile is equipped with several processing
elements (PE). Input registers (IR) and output registers (OR) are
used to convey input and output operands respectively. EDRAM
buffer is used to store intermediate results and routing indices of
MVM operands. High speed bus is used to communicate among the
PEs, the storage units and I/O interface. The components of a PE are
detailed in Figure 13(b). A PE consists of many memristor crossbars
arranged in a row-parallel fashion. The dimension of each crossbar
is 128 × 128. Drivers and routing blocks (RB) are used to program
the crossbars. Sense amplifiers (SA) and row-parallel-copying (RPC)
circuits are used to achieve inter-crossbar data transfer [13]. The
cross-section of a routing block is shown in Figure 13(c). Each in-
tersection of nanowire within the RB contains a memristor. The
memristors work as routing switches within the RB.

Figure 13: (a) Overview of the architecture, (b) components
of a processing element and, (c) routing block architecture

The architecture offers high order of parallelism for arithmetic
operations. For instance, all of the decomposed blocks of a MVM
operation can be performed in parallel where each of the blocks is
assigned to a set of row-parallel crossabrs.

7.2 Experimental Evaluation
In this section, we experimentally evaluate the performance of the
LOGIC framework. We use an octa core 3.60 GHz Intel Core i9 pro-
cessor with NVIDIA RTX 2070 and 64 GB RAM for our experiments.
The synthesis tool is developed using a combination of C++ and
MATLAB scripts. For converting decomposed arithmetic operations
into initial Boolean netlist, we use the ABC tool [21].

The per-unit cost of different architectural components are sum-
marized in Table 2. The area and power costs are appropriately
adapted from previous works [13, 14, 19, 25]. The cross architecture

Table 2: Area-Power Cost of Architectural Components

Component Parameter Specs Area Power

Crossbar size 128 × 128 25 𝜇𝑚2 0.30 mW
Sense Amp. # unit 128 7.14 𝜇𝑚2 0.29 mW
Controller # unit 1 400 𝜇𝑚2 0.65 mW

RB # unit 1 12 𝜇𝑚2 0.01 mW

eDRAM Buffer size 128 KB 0.17 mm2 41.40 mW
IR size 16 B 16.80 𝜇𝑚2 0.01 mW
OR size 16 B 46.88 𝜇𝑚2 0.02 mW

Bus bandwidth 128-bits 15.70 mm2 13 mW
Local Bus #wires 128 0.03 mm2 2.33 mW

data communication cost between crossbars is adapted from the
case study of [28].

We first evaluate the performance of the LOGIC framework
for elementwise operations in Section 7.2.1. Next, we evaluate the
performance of the framework for scientific computing application
on benchmarks of Suite Sparse Matrix Collection [6] in Section 7.2.2.
The overview of the benchmarks are listed in Table 3.

Table 3: Overview of benchmarks from the SuiteSparse Ma-
trix Collection.

Applications Systems Matrix Dimensions #Non-zeros

eris1176 Power Network Problem 1176 × 1176 18552
cegb2919 Structural Problem 2919 × 2919 321543
raefsky1 Computational Fluid Dynamics 3242 × 3242 293409
fxm3_6 Optimization Problem 5026 × 5026 94026
Na5 Theoretical/Quantum Chemistry 5832 × 5832 305630
EX5 Combinatorial Problem 6545 × 6545 295680
fp Electromagnetics Problem 7548 × 7548 834222
ex40 Computational Fluid Dynamics 7740 × 7740 456188
benzene Theoretical/Quantum Chemistry 8219 × 8219 242669
bcsstk33 Structural Problem 8738 × 8738 591904
graham1 Computational Fluid Dynamics 9035 × 9035 335472
net25 Optimization Problem 9520 × 9520 401200
bundle1 Computer Graphics/Vision 10581 × 10581 770811
Si10H16 Theoretical/Quantum Chemistry 17077 × 17077 875923
Goodwin_040 Computational Fluid Dynamics 17922 × 17922 561677

7.2.1 Elementwise Arithmetic. A performance comparison between
the proposed framework and the state-of-the-art in-memory arith-
metic paradigm SIMPLER [1] is shown in Figure 14. We compare
the area-latency overhead of the two paradigms for elementwise
arithmetic operation. The results show, the framework improves

Figure 14: Area-latency overhead comparison of the proposed
synthesis approachwith the state-of-the-art in-memory com-
puting approach SIMPLER [1].
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Figure 15: Area-latency-energy overhead evaluation of LOGIC and the state-of-the-art in-memory computing approach
SIMPLER [1] on 15 applications from the suite sparse matrix collection [6].

the area by 77% on average for fixed-point multiplication with
different bit-resolutions. The framework also achieves a latency
improvement of 20% on average. The improvements are achieved
in different steps of the synthesis. For instance, the technology
mapping step reduces the number of total gates on average by 4%.
This reduction in gates translates into reduction of MAGIC oper-
ation and therefore a reduction in latency. Also, compared with
random execution sequence, the greedy algorithm generated ex-
ecution sequence reduces the intermediate storage cost by 36%.
The experimental results validate that the proposed synthesis ap-
proach provides superior performance over manual decomposition
based in-memory computing paradigms for elementwise arithmetic
operations.
7.2.2 Evaluation of Scientific Computing Application. In this sec-
tion, we evaluate the LOGIC framework using scientific computing
applications dominated by sparse MVM operations. For this evalua-
tion, we select 15 sparse matrices in Table 3 from different domains
and sparsity patterns from the Suite Sparse Matrix collection [6].
We evaluate the area-latency-energy cost of the LOGIC framework
before and after data-layout reorganization. We compare the re-
sults with state-of-the-art paradigm for MVM operations [1]. The
comparative performance in terms of area, latency, and energy is
provided in Figure 15.

Compared with SIMPLER [1], LOGIC (without data layout re-
organization) improves the area, latency, and energy by 1.8X, 1.2X,
and 2.1X respectively. These improvements stem from that each
elementwise multiplication operation is performed using fewer
operations and with smaller area. Compared with LOGIC (without
data layout re-organization), LOGIC (with data layout organization)
improves area, latency, and energy with 2X, 2.2X, and 3.9X, respec-
tively. The improvements come form more efficiently aligning the

matrix data and input vectors within the in-memory computing
platform.

In summary, the proposed logic synthesis based approaches
demonstrate significant advantages over the state-of-the-art ap-
proach SIMPLER [1], which is based on manually designed tem-
plates. The improvements come from leveraging the advancements
within logic synthesis from the past decades.

8 SUMMARY AND FUTUREWORK
In this paper, we have proposed a framework called LOGIC for
mapping high-level applications to digital in-memory compute ker-
nels. The framework includes automated techniques to minimize
the number of in-memory computing operations. The ordering of
the execution of the in-memory operations are next optimized to
minimize the utilization of non-volatile memory for storage of in-
termediate data. Finally, a data layout re-organization technique is
proposed to compress sparse MVM operations into dense MVM op-
erations to minimize inter crossbar communication. Compared with
manually designed template based approaches, the area, latency,
and energy is improved with 3.6X, 2.6X, and 8.3X, respectively. In
our future work, we plan to extend LOGIC to automatically decom-
pose entire multiplication without a hierarchical approach. We also
plan to combine LOGIC with other digital in-memory computing
logic styles.
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