
Verification of Flow-Based Computing Systems
Using Bounded Model Checking

Sven Thijssen∗, Suraj Singireddy†, Muhammad Rashedul Haq Rashed‡, Sumit Kumar Jha§, and Rickard Ewetz‡
∗Department of Computer Science, University of Central Florida, Orlando, USA

†Department of Computer Science, University of Texas at San Antonio, San Antonio, USA
‡Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA

§Computer Science Department, Florida International University, Miami, USA
{sven.thijssen, muhammad.rashed, rickard.ewetz}@ucf.edu, suraj.singireddy@utsa.edu, jha@cs.fiu.edu

Abstract—Flow-based computing is a digital in-memory com-
puting paradigm with tremendous potential. Its favorable char-
acteristics, such as high robustness, low energy consumption
and small computational delay make it a strong contender for
integration into future computing systems. While most studies
on emerging computing paradigms are focused on synthesis, it
is crucial to develop methods to verify the functional correctness
of the resulting designs. Flow-based computing is based on
an undirected computational graph, which prevents equivalence
checking to be performed by solving SAT formulations. In this
paper, we propose a framework called XSAT for equivalence
checking of crossbar designs for flow-based computing. The
XSAT framework draws on bounded model checking (BMC)
to convert the undirected computational graph into a directed
acyclic computational graph (DAG). The conversion allows
traditional SAT-based equivalence checking techniques to be
used at the expense of increasing the size of the problem. We
further introduce a divide-and-conquer technique to accelerate
the verification process. The technique divides the main problem
into many subproblems of smaller size, which can be executed
in parallel using multiple cores or nodes. From the experimental
evaluation, it can be observed that the XSAT framework can
solve all nineteen MCNC benchmarks whereas previous SOTA
techniques can only solve eleven out of the nineteen benchmarks
within one hour, i.e., with speed-ups of one to two orders of
magnitude. Moreover, the divide-and-conquer technique results
in speed-ups of up to 93× on large benchmark circuits.

I. INTRODUCTION

The emergence of big data has given rise to a plethora
of applications that heavily rely on data for intelligent de-
cision making. This includes applications within fields such
as medicine [1], statistics [2], machine learning [3], [4], and
deep neural networks [5], [6]. Unfortunately, the acceleration
of data-intensive applications using today’s high-performance
computing systems is inhibited by the data transfer between
memory and computing units [7]. This bottleneck –the von
Neumann bottleneck– has ignited the field of in-memory
computing, where the data transfer is mitigated by merging
memory storage and computation on-chip [8], [9]. Over the
years, in-memory computing paradigms such as analog matrix-
vector multiplication [10], MAGIC [11], IMPLY [12], Bit-
wise-in-bulk [13], and flow-based computing [14], [15] have
been proposed. The different paradigms are advantageous for
applications with different properties. Flow-based computing
is a primary contender for efficiently accelerating Boolean
functions [16], [17]. This stems from the underlying properties

This work was in part supported by NSF awards # 2319399, # 2113307,
the University of Central Florida, and Texas STARs award to Sumit Jha.

of (i) deterministic precision, (ii) high-speed, and (iii) in-
situ computation [16], [18]. The deterministic precision is a
result of the clear distinction between the two logic states
zero and one. The high-speed comes from utilizing the flow of
electrical currents for evaluating Boolean functions. The in-situ
computation is enabled by compiling the desired functionality
into a crossbar design prior to execution.

The flow-based computing paradigm consists of two phases.
First, in the synthesis phase, a crossbar design is constructed
to realize a Boolean function. This design is an assignment
of Boolean literals and truth values to memristors. Second,
during execution, the memristors are programmed to a high
or low resistive state according to the truth values of the input
vector. To evaluate the Boolean function, the paradigm relies
on the presence (absence) of a path from input to output to
determine whether the function evaluates to true (false).

Noteworthy research efforts have been dedicated to de-
veloping design flows for synthesizing compact crossbar de-
signs [16], [17]. The design flows consist of a complex
hierarchy of small, intermediate synthesis steps. These steps
involve mapping the functional representation between differ-
ent data structures (e.g. NNFs [19], AIGs [20], BDDs [21])
and optimizing the size of the representations. Equivalence
checking is used to verify the functional correctness of each
of the intermediate steps. Formally, equivalence checking is
the problem of verifying the equivalence of two different
circuit representations. While effective synthesis techniques
have successfully been developed, the capabilities of equiv-
alence checking techniques for flow-based computing are
lagging behind. For example, the COMPACT synthesis tool
can synthesize functions into crossbars with dimensions up to
512×512 in seconds [17]. However, it takes hours for existing
equivalence checking techniques to verify the functional cor-
rectness of the designs [16], [17], [22]. The development of
scaleable verification techniques will open the door to further
advancing the frontiers of flow-based in-memory computing.

Traditional VLSI circuits are represented using directed
acyclic graphs (DAGs). SAT solving has been proven to be a
successful technique for combinational equivalence checking
(CEC) for such circuits. In CEC, the outputs for two circuits
are compared and verified to be the same for all input assign-
ments using a miter circuit (see more details in Section II-B).
One circuit is the so-called golden model (specification) and
the other is the circuit to be verified [23]. Then, the miter

circuit is converted into conjunctive normal form (CNF) using
Tseitin’s transformation [24]. Finally, the CNF formula is fed
to a SAT solver, such as MiniSAT [25]. The equivalence,
or non-equivalence of the two circuits is determined by the
solution to the SAT formulation. The outlined approach is
capable of verifying traditional CMOS circuits with tens of
millions of combinational gates.

Unfortunately, it is not straightforward to directly apply the
SAT-based approach to verify crossbars designs for flow-based
computing. This is due to the undirected nature of the underly-
ing computational graph. Cycles in the graph effectively break
the SAT formulation, which we show using a detailed example
(see Section III). While techniques to handle directed graphs
with some cycles have been investigated [26]–[28], none of the
techniques can directly be applied to undirected computational
graphs. Existing studies on equivalence checking for flow-
based computing are based on brute-force enumeration [16],
graph reachability [29], and recurrent neural network (RNN)
formulations [22].

Verification achieved by the means of brute-force enumer-
ation is unsurprisingly not very scalable. In [22], a crossbar
design was modeled as a RNN. This allows the exploitation
of massive parallel computations of GPUs to speed up the
brute-force enumeration. Subsequent work [29] relies on graph
reachability, which was demonstrated to perform better for
most circuits. However, none of the proposed techniques
can verify circuits of even moderate size. A window for
opportunity exists as these techniques do not exploit the full
potential of established verification techniques, which rely on
decades of advances within SAT solving [30]–[32]

In this paper, we propose a framework called XSAT for
equivalence checking of crossbar designs for flow-based com-
puting. The XSAT framework draws on advances within
bounded model checking (BMC), which is classically used
for property checking. The main idea is to use BMC to unroll
the circuit and discretize time, which effectively converts
the undirected graph into a directed acyclic graph. Next,
equivalence checking can be performed using traditional SAT
formulations. The limitation of the approach is the unrolling,
which substantially increases the size of the circuit. To handle
the larger problem size, XSAT uses a divide-and-conquer
approach to decompose the large problem into multiple smaller
subproblems that can be solved in parallel.
In this paper, we make the following contributions:

1) We propose to use bounded model checking (BMC)
to verify the correctness of a crossbar design using
traditional SAT solving techniques.

2) To improve scalability, we propose a divide-and-conquer
technique that exploits parallelism. By fixating input
variables, the problem can be split into two smaller
subproblems, which can be solved in parallel.

3) Our experimental evaluation on nineteen MCNC circuits
shows that our proposed framework is capable of solving
19/19 benchmarks, whereas the previous state-of-the-
art equivalence checking technique is only capable of
solving 11/19 benchmarks.

The remainder of the paper is organized as follows: prelim-
inaries are provided in Section II. The problem is defined in
Section III, and we give an overview of XSAT in Section IV.
We conduct experimental results in Section V and conclude
in Section VI.

II. PRELIMINARIES
A. Flow-based computing

Flow-based computing is a digital in-memory computing
paradigm that leverages memristor crossbar arrays to perform
in-memory computations. A memristor crossbar array is a
two-dimensional circuit of dimensions M × N , consisting
of wordlines, bitlines, and memristors. The wordlines (rows)
Ri, 0 ≤ i < M, are horizontal nanowires, and the bitlines
(columns) Cj , 0 ≤ j < N, are vertical nanowires. At each
intersection of wordlines Rj and bitline Cj is a memristor
mij , connecting both wordline and bitline. A memristor is a
non-volatile resistive device with either a high or low resistive
state.

Fig. 1. Overview of flow-based computing.

The first phase, the synthesis phase, produces a crossbar
design D for a Boolean function ϕ. The input of the syn-
thesis phase is a specification of ϕ in a hardware descriptive
language such as Verilog. In Figure 1(a), an example of a
specification for the Boolean function ϕ = a ∧ b ∧ ¬c
is provided. The output of the synthesis phase is a crossbar
design D. Let {x0, ..., xn} be the Boolean variables of ϕ,
then a crossbar design D is an assignment of these Boolean
variables {x0, ..., xn}, the negation of these Boolean variables
{¬x0, ...,¬xn}, and the truth values 0 and 1 to the memristors.
In Figure 1(a), the resulting crossbar design D is shown for
the Boolean function ϕ.

The second phase is the execution phase. In this phase,
the crossbar design is leveraged for computation. During
execution, an input vector is provided where the Boolean
variables are assigned a truth value. Based on these truth
values, their corresponding memristors are programmed to the
respective resistive states. This is illustrated in Figure 1(b)
where the input vector −→x = {a = 1, b = 1, c = 0} is provided.
The memristors are programmed accordingly. Finally, a high
input voltage is applied to the input wordline and the output
wordline is grounded. For this step, the crossbar array is
modeled as a bipartite graph G = (V,E) where V is a set
of nodes and E is a set of edges, as shown in Figure 1(c).
Observe that the nodes V correspond to the nanowires Ri

and Cj . The edges correspond to the memristors mij . There
exists an edge between two nodes Ri and Cj if and only if

the memristor mij is in a low resistive state (1). Otherwise,
when the memristor mij is in a high resistive state (0), there
is no edge between Ri and Cj . When a high input voltage is
applied to the input wordline, this will result in an electrical
current flowing through the crossbar from the input wordline
to the output wordline. When an electrical current is present
on a wordline Ri (bitline Ci), and a connected memristor
mij is in a low resistive state, the electrical current will
dissipate onto the connected bitline Cj (wordline Rj). When
the electrical current reaches the output wordline, the Boolean
function ϕ evaluates to true. Otherwise, when no electrical
current can be sensed, the Boolean function ϕ evaluates to
false. In Figure 1(c), we observe that there is a path in the
bipartite graph from the input wordline to the output wordline,
and thus the Boolean function ϕ evaluates to true.

Fig. 2. Overview of equivalence checking using SAT solving.

B. Formal verification

Formal verification is categorized into two broad classes:
model checking and equivalence checking [33]. While the
former tends to concern itself with regard to properties, the
latter concerns itself with verifying whether specification and
final design are functionally equivalent. However, solving
techniques from one class may be used to alleviate solving
a problem from the other class. We will first provide a short
review of both SAT solving and bounded model checking.

1) SAT solving: One of the most well-known approaches
for equivalence checking is by transforming the problem into
a SAT problem. In a SAT problem, we are provided a Boolean
function in conjunctive normal form (CNF), and we ask the
solver whether there is at least one input vector for which the
Boolean function evaluates to true. When one such input vector
can be found, the problem is SAT, which entails that the circuit
and the specification are not equivalent. Otherwise, when no
such input vector can be found, the problem is UNSAT and
both circuit and specification are equivalent. This existential
problem is NP-Complete [34]. To transform the problem into
SAT, a miter is constructed of the specification and the circuit.
A miter is an exclusive or (XOR) operation on the output
of both the specification and the circuit. In case of multiple
outputs, a XOR operation is applied to the respective outputs,
which are all captured by an or (OR) operation. A miter
construction of the specification and circuit is illustrated in
Figure 2. Traditionally, the next step is to convert the Boolean
function into conjunctive normal form (CNF) using Tseitin’s
transformation. However, some intermediary data structures,
such as And-Inverter Graphs (AIGs), may be employed [23]. It
has been shown that doing so can result in great improvements.

2) Bounded model checking: A complementary approach
to SAT solving for equivalence checking is model checking.
In model checking, the circuit is transformed into a finite
state machine where the transitions between states are defined
using temporal logic [35]. In essence, the circuit is unrolled
for a number of time steps. Bounded model checking is a
subset of model checking where an upper bound is placed
on the number of time steps. An important concept is the
completeness threshold. When a property does not violate the
model up until this completeness threshold, then the model
and the property are equivalent. Lastly, a temporal model for
bounded model checking can be reduced into SAT. We will use
this reduction to verify the correctness of a crossbar design.
More specifically, we will first translate the crossbar design
into a finite state machine with an upper bound on the number
of time steps, and then show equivalence/non-equivalence
between the model and the specification by solving a SAT
formulation.

III. PROBLEM FORMULATION AND CHALLENGES

The problem this paper addresses is defined as follows:
given a crossbar design D and a specification ϕ, verify if D
and ϕ are equivalent:

D ?≡ ϕ

The objective is to minimize the overall runtime of the
verification.

We explain why the standard combinational equivalence
checking using SAT formulations cannot be applied in Fig-
ure 3. An undirected crossbar is shown in Figure 3(a). The
logic expressions for the rows and columns are shown in
Figure 3(b). Ri and Cj denote row i and column j in
the crossbar, respectively. It can be observed that R0 is a
function of R0 in Figure 3(c). This results in that even if
no input voltage is applied, R0 can potentially drive R0

due to the cyclic dependency. This cyclic dependency breaks
the correctness of CNF-based SAT formulations using miter
circuits.

Fig. 3. Example of cyclic dependency.

Several investigations have been performed into CMOS
circuits with directed computational graphs with cycles [26]–
[28]. However, those techniques cannot be used for undirected
computational graphs. This promoted the research explorations
into equivalence checking using brute-force enumeration and
graph reachability [16], [22], [29].

IV. PROPOSED XSAT FRAMEWORK

In this section, we introduce the proposed XSAT framework.
An overview of the framework is illustrated in Figure 4.

The input of the framework are the crossbar design D and
the specification ϕ. The output of the framework is whether
the both D and ϕ are equivalent or non-equivalent. The
framework consists of two components: (1) a base approach
using BMC, and (2) an extension using a divide-and-conquer
technique. In Section IV-A, we will first explain the base
approach where we formulate a bounded checking formulation
for the whole crossbar through unrolling of time steps. Then, in
Section IV-B, we introduce the divide-and-conquer approach
where we divide the problem into smaller subproblems by
fixating input variables.

Fig. 4. High-level overview of the XSAT framework.

A. Base formulation

In this section, we translate the crossbar design into a
formulation for bounded model checking. The input is a
crossbar design D and the specification ϕ. The output is
equivalent/non-equivalent. The framework consists of three
steps: graph conversion, graph compression, and bounded
model checking. An overview of the flow is provided in
Figure 5. Further, we illustrate our proposed bounded model
checking approach with an example in Figure 6.

Fig. 5. Overview of bounded model checking.

1) Graph conversion: The first step is to convert the
crossbar design D into an undirected bipartite graph G.
For each row Ri and column Cj , we introduce a node
Ri and Cj , respectively. In Figure 6(a), we show a small

crossbar design with three rows and two columns. Con-
sequently, its resulting undirected graph G = (V,E)
has nodes V = {R0, R1, R2, C0, C1} and edges E =
{(R0, C0, a), (R0, C1, b), ...(R2, C1, d)}). Each edge is a
triple, where its first two elements are the nodes, and the
third element is the literal. The resulting graph is shown in
Figure 6(b).

2) Graph compression: The next step is graph compression,
which consists of two sub-steps: 1) edge removal and 2) node
contraction. In the edge removal step, we remove edges with
label ‘0’. When an edge has label ‘0’, the corresponding
memristor will be programmed to a high resistive state (OFF).
This entails that no electrical current will ever be able to flow
through the device. Hence, we can remove the edge from
the graph without changing its behaviour. In Figure 6(c), we
observe how the edge between node R2 and C0 has been
removed. In the node contraction step, we contract two nodes
connected by an edge with label ‘1’. When an edge has label
‘1’, the corresponding memristor is in a low resistive state
(ON). When an electrical current is present on a wordline
(bitline), the electrical current will always flow through this
device onto its connecting bitline (wordline). Consequently,
two nodes Ri and Cj connected by an edge (Ri, Cj , 1) are
deemed equivalent, and we can contract the two nodes Ri and
Cj . These observations were also made in [29]. In Figure 6(d),
we observe how node R1 has merged into node C0 such that
only node C0 remains.

3) Bounded model checking: In this last step, the
compressed graph G′′ is converted into a model for SAT
solving based on bounded model checking. Let G′′ = (V,E)
be the undirected graph where V is a set of nodes representing
the nanowires (wordlines and bitlines), and E is a set of edges
representing the memristors. As discussed in Section II-B2,
bounded model checking consists of time unrolling. For each
state, we will introduce time steps. The number of time steps
has both an upper bound and a lower bound. The lower
bound is one, and the upper bound is the number of nodes in
the graph. The number of nodes is the upper bound because
at most |V | unique nodes can be visited. Define T = |V | as
the maximum number of time steps and let M be the number
of rows, and N the number of columns. Then we model the
behaviour of the crossbar design as follows:

Rt
1 = 1, t ∈ [1, T] (1)

Rt
i =

∨
mij ∧ Ct−1

j , ∀i ∈ [2,M], j ∈ [1, N], t ∈ [2, T] (2)

Ct
j =

∨
mij ∧Rt−1

i , ∀i ∈ [2,M], j ∈ [1, N], t ∈ [2, T] (3)

ϕ =
∨

Rt
M , ∀t ∈ [1, T] (4)

The equation on line 1 defines that the input nanowire R1

must be true (ON) for all time steps. This is because the input
voltage will be high during the evaluation, thus providing an
electrical current on the input nanowire. The equation on line 2
defines how row Ri can be reached in time step t. As discussed
in Section III, a row Ri can only be true (ON) at time step t if
and only if a column Cj is true (ON) at time step t−1 and the

Fig. 6. Example of bounded model checking.

memristor at their intersection mij is true (ON). In physical
terms, this means that an electrical current can only reach
row Ri if and only if there is an electrical current present on
column Cj and the memristor at their intersection is in a low
resistive state. Similarly for a column Cj on line 3. Finally, we
define on line 4 the Boolean function of the crossbar design D
as the collection of all possible paths from the input nanowire
to the output nanowire. More specifically, we capture these
paths as a disjunction of all possible paths for different time
steps in the range from 1 to the upper bound T .

In Figure 6(e), we illustrate this model graphically. The
input nanowire R0 is highlighted with a dashed line, and the
output nanowire is highlighted with a bold line. The graph
is unrolled for T = |V | = 4 time steps. Further, the edges
represent the relations between time step t and t + 1. For
example, column C0 in time step T = 2 can be reached
from row R0 in time step T = 1 using the memristor a or
from column C1 in time step T = 1 using the memristor c.
We have highlighted the paths from input nanowire to output
nanowire using red dashed lines. For example, there is a path
R1

0
a−→ C2

0
c−→ C3

1
d−→ R4

2. This path denotes ϕ = a∧ c∧d. The
other path is R1

0
b−→ C2

1
d−→ R3

2.

B. Divide-and-conquer

In this section, we introduce a divide-and-conquer technique
to leverage multi-core parallelism on computing machines.
The idea is to fixate a set of variables X to reduce the
problem size. When fixating a variable x, we obtain two
independent subproblems, one for x = 0 and one for x = 1.
Each individual problem has smaller or equal problem size
as the original problem. The divide-and-conquer technique
consists of three steps: variable sorting and variable fixating,
and graph compression. The last step is the same as the graph
compression step explained in Section IV-A. Hence, we will
omit the details here. The divide-and-conquer technique can
best be described as the construction of a binary tree. The root
node of the tree is the original problem. Each internal node
has two outgoing branches, one for x = 0 and one for x = 1.
The leaf nodes describe the subproblems that will be solved in
parallel. The depth of each path from root node to leaf node is
defined by two user-defined parameters: the maximum depth
D, and a threshold T . The first parameter, D defines how
many subproblems can be solved maximally in parallel (2D).
The second parameter, T , defines a maximum problem size.
The problem size is defined by the number of nodes |V | in
the graph G = (V,E). When a subproblem is smaller than

the threshold, the problem can be solved quickly by the SAT
solver. Hence, there is no need to further reduce the problem.
In Algorithm 1, we describe the divide-and-conquer technique.
The input of the algorithm is the graph G, constructed from
the crossbar design D, and the user-defined parameters D and
T . The output of the algorithm is a set of subgraphs G. Now,
we will elaborate on the main steps of the divide-and-conquer
algorithm.

1) Variable sorting: In this first step, we count the occur-
rences for each unique variable in the crossbar design. Next,
these variables are sorted in descending order such that we
obtain an ordered list X . For example, in Figure 7 for D = 0,
we observe that variable a occurs 2 times, variable b occurs
3 times, and variables c and d one time. The corresponding
ordered list X = {b, a, c, d}.

2) Fixating variable: In this step, we construct a set of
small subgraphs based on the original graph G. These sub-
graphs are constructed in an iterative manner. We introduce
an auxiliary variable H, which holds the subgraphs. Initially,
H only holds G (line 3). In each iteration, we will fixate a
variable x. If the number of iterations i exceeds the maximum
depth D or the graph G is smaller than the threshold T ,
then we add the subgraph to the output set G (lines 7-10).
Otherwise, we fixate the variable x for x = 0 and x = 1,
and we add these subproblems to the auxiliary set H for the
next iteration (lines 11-13). Finally, we increment the counter i
(line 14).

Algorithm 1 Divide-and-conquer algorithm
Input: G,T,D
Output: G // A set of subproblems

1: function DIVIDEANDCONQUER(G)
2: X ←SORTEDOCCURRENCES(G)
3: H ← {G}, G ← ∅, i← 0
4: while H ̸= ∅ do
5: x← X[i]
6: G← POP(H)
7: if i ≥ D ∨ |G| ≤ T then
8: G ← G ∪ {G}
9: continue

10: end if
11: G− ← FIXATEANDCOMPRESS(G, x, 0)
12: G+ ← FIXATEANDCOMPRESS(G, x, 1)
13: H ← H ∪ {G−, G+}
14: i← i+ 1
15: end while
16: return G
17: end function

Fig. 7. Example of the proposed divide-and-conquer algorithm. The user-defined parameter are T = 4 and D = 2.

In Figure 7, we illustrate the construction of the subgraphs
based on Algorithm 1. The input is the graph in column D =
0, and the user-defined parameters are T = 4 and D = 2. In
Figure 7, in column D = 1, we observe that first variable b is
fixated. This results in two subgraphs, one for b = 0 and one
for b = 1. For b = 1, we observe that the number of nodes
of the graph after compression is smaller than the threshold T
(|V | = 4 ≤ T). Hence, this subgraph branches no further. For
b = 0, the threshold is not yet met, and in subsequent iteration,
variable a is fixated. Again, this results in two subgraphs, one
for a = 1 and one for a = 0. We have reached the maximum
depth D = 2, and the algorithm halts. The output is the set of
the three subgraphs in the gray boxes.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed equivalence check-
ing technique for flow-based computing. Experimental results
are conducted on a machine with 20 Intel Core i9-9900X
processors and a memory of 128GB. Python 3.8 was used
for the code implementation in combination with the ABC
tool [33] for the combinational equivalence checking based on
MiniSAT. The source code is publicly available on GitHub1.
We evaluate our proposed equivalence checking technique
XSAT on 26 MCNC benchmarks [36]. In Table I, we pro-
vide the properties for these benchmarks and their respective
crossbar designs. These benchmark properties are the number
of input variables, and the number of output variables. The
crossbar properties are the number of rows and columns, the

1https://github.com/sventhijssen/xsat

number of literals, and the number of memristors that are
programmed ON and OFF. The benchmarks are subdivided
into two categories: nineteen smaller benchmarks (rows plus
columns are less than 800), and seven large benchmarks.

TABLE I
OVERVIEW OF 26 BENCHMARKS FROM THE MCNC

BENCHMARK SUITE [36].

Benchmark
Properties Crossbar

Inputs Outputs Rows Cols Lits ON OFF
(num) (num) (num) (num) (num) (num) (num)

SMALL
frg1 28 3 59 74 181 22 4163
e64 65 65 112 76 157 30 8325
count 35 16 65 41 159 9 2497
cht 47 36 45 55 146 2 2327
b9 41 21 96 93 266 28 8634
bcd 26 38 280 247 575 29 68556
i6 138 67 83 143 426 7 11436
term1 34 10 121 125 365 31 14729
bca 26 46 271 228 548 23 61217
i7 199 67 201 169 663 4 33302
example2 85 66 208 190 570 29 38921
bc0 26 11 562 571 1845 120 318937
i3 132 6 71 95 198 33 6514
i5 133 66 145 133 410 26 18849
comp 32 3 71 93 242 23 6338
my adder 33 17 102 115 361 17 11352
x4 94 71 245 214 645 56 51729
too large 38 3 250 257 780 74 63396
x1 51 35 364 349 1099 100 125837

LARGE
spla 16 46 451 391 1185 56 175100
misex3 14 14 533 523 1599 94 277066
alu4 14 8 478 549 1765 82 260575
dalu 75 16 584 572 1727 60 332261
apex5 117 88 664 585 2108 98 386234
apex1 45 45 717 702 2143 96 501095
seq 41 35 711 713 2095 88 504760

TABLE II
RUNTIMES FOR EQUIVALENCE CHECKING TECHNIQUES CHECK, RNN, AND PROPOSED XSAT BASE FORMULATION ON 19 MCNC BENCHMARKS.

VERIFICATION FOR BOTH EQUIVALENT DESIGNS AND NON-EQUIVALENT DESIGNS.

Benchmark

Equivalent Non-Equivalent
CHECK [29] RNN [22] XSAT Base CHECK [29] RNN [22] XSAT Base

Total Total Time steps Pre Write CEC Total Total Total Time steps Pre Write CEC Total
(s) (s) (num) (s) (s) (s) (s) (s) (s) (num) (s) (s) (s) (s)

frg1 8.1 672.6 111 0.1 0.2 4.9 5.1 - 369.0 110 0.1 0.2 5.0 5.1
e64 22.3 - 158 0.2 0.2 1.1 1.3 0.1 - 158 0.2 0.2 0.2 0.4
count 54.4 - 97 0.1 0.1 0.4 0.5 28.8 - 97 0.1 0.1 0.2 0.3
cht 62.9 - 98 0.1 0.2 4.9 5.1 15.9 - 97 0.1 0.2 1.3 1.5
b9 416.4 - 161 0.1 0.3 10.8 11.2 81.3 - 161 0.1 0.4 7.4 7.8
bcd 559.7 5.0 498 1.7 2.6 37.6 40.2 163.1 0.9 582 2.3 4.7 84.2 88.9
i6 1073.9 - 219 0.2 1.2 24.0 25.2 54.1 - 218 0.2 1.3 2.1 3.3
term1 1225.2 - 215 0.3 0.6 25.2 25.9 518.6 - 215 0.3 0.7 2.2 2.9
bca 2742.6 16.1 476 1.4 2.4 52.9 55.2 121.9 2.1 916 5.6 11.8 31.2 43.0
i7 2866.5 - 366 0.7 6.1 115.8 121.9 14.8 - 365 0.7 6.1 61.7 67.8
example2 3199.8 - 369 0.8 1.9 142.4 144.3 553.3 - 368 0.8 2.0 73.4 75.4
bc0 - 228.6 603 2.8 6.2 539.5 545.7 - 25.0 603 2.8 6.0 110.6 116.7
i3 - - 133 0.1 0.2 5.0 5.2 - - 132 0.1 0.2 3.2 3.5
i5 - - 252 0.4 0.8 18.4 19.2 583.8 - 252 0.4 0.8 13.7 14.5
comp - - 141 0.1 0.3 15.1 15.4 - - 140 0.1 0.3 10.4 10.7
my adder - - 200 0.2 0.6 23.0 23.7 - - 200 0.2 0.6 3.8 4.4
x4 - - 403 1.1 2.3 72.1 74.4 376.0 - 402 1.2 2.5 52.6 55.0
too large - - 433 1.5 3.3 322.0 325.3 - - 433 1.6 3.5 49.4 52.9
x1 - - 613 3.0 6.1 348.6 354.7 - - 612 3.2 6.7 184.7 191.4
Completed 11/19 4/19 19/19 12/19 4/19 19/19

First, in Section V-A, we will compare our proposed XSAT
framework with other state-of-the-art equivalence checking
techniques for flow-based computing. Then, in Section V-B,
we will evaluate our proposed divide-and-conquer technique.

A. Comparison with previous techniques

In this section, we will compare our proposed framework
XSAT with previous work. In Table II, we provide the run-
time for equivalence checking of both equivalent crossbar
designs and non-equivalent crossbar designs. To create the
non-equivalent crossbar designs, we introduce a single error
by programming a random literal in the crossbar design to
ON/OFF. We compare our proposed XSAT framework with
CHECK, a technique based on graph reachability [29], and
with the technique based on RNNs [22]. For our proposed
framework, we provide a detailed runtime analysis of the
different steps. These steps are the pre-processing (pruning),
the file creation to write the bounded model checking, and the
combinational equivalence checking (CEC). The total runtime
is the sum of the runtimes for these substeps. The maximum
runtime for the equivalence checking techniques is one hour
(3600s). Runtimes that exceed this limit are indicated by a
dash (−).

First, we analyze the equivalent case. From the results,
we observe that CHECK is capable of solving 11/19 bench-
marks whereas the RNN framework is capable of solving
4/19 benchmarks. We observe that in many cases, the RNN
framework does not scale well to benchmarks with a large
number of input variables. For example, the technique can
handle up to 28 input variables. CHECK on the other hand,
cannot handle benchmarks with a large number of literals and
memristors programmed ON. This is due to that the number
of paths in the graph grows in this number of literals. For
example, benchmarks x1 and bc0 have 1099 and 1845 literals,
respectively. Finally, we observe that XSAT is capable of

solving all benchmarks. We can also observe that the runtime
for XSAT is much smaller than the runtime for both CHECK
and the RNN-based technique for the majority of benchmarks.
Thus, we conclude that XSAT outperforms both CHECK and
the RNN-based technique to show equivalence.

Now, we analyze these techniques for the non-equivalent
case. We observe that CHECK is capable of solving 12/19
benchmarks, which is one more than the number of bench-
marks for equivalence checking. This is because the com-
plexity of the problem may reduce. We also observe that the
runtime decreases for the majority of benchmarks. However,
for some benchmarks, the problem becomes more difficult,
such that CHECK is no longer capable of solving the problem
within one hour. An example is the benchmark frg1. The
RNN-based technique is still capable of solving 4 out of 19
benchmarks. As long as the number of input variables remains
unchanged, the RNN-based technique will have similar run-
time to its equivalent counterpart. Finally, we observe that
our proposed XSAT framework is again capable of solving all
19 benchmarks. The runtimes to illustrate non-equivalence are
more or less similar to the runtimes for equivalence.

B. Evaluation of divide-and-conquer technique

In this section, we will evaluate the proposed divide-and-
conquer technique. First, we will determine good values for the
user-defined parameters D and T . Recall that the parameter
D is the maximum depth of the binary tree, and T is the
maximum number of nodes in the graph.

In Figure 8, we plot the runtime for XSAT in terms of
the number of time steps for the small benchmarks. The
number of time steps is equal to the number of rows plus
the number of columns minus the number of memristors which
are programmed ON. The latter subtraction is due to the graph
contraction. From the figure, we observe that equivalence can
be shown within several minutes when the number of time

TABLE III
COMPARISON OF THE BASE FORMULATION AND THE DIVIDE-AND-CONQUER TECHNIQUE ON 7 MCNC BENCHMARKS. FOR BOTH TECHNIQUES, THE

RUNTIME FOR THE PRE-PROCESSING, THE TIME TO WRITE THE FILE, AND THE RUNTIME FOR COMBINATIONAL EQUIVALENCE CHECKING ARE PROVIDED.
PROPERTIES FOR THE SAT PROBLEMS, I.E., THE NUMBER OF CLAUSES AND LITERALS, ARE ALSO PROVIDED.

Benchmark
XSAT base formulation XSAT using divide-and-conquer technique

Pre Write CEC Total Clauses Literals Pre Write CEC Total Clauses Literals
(s) (s) (s) (s) (num) (num) (s) (s) (s) (s) (num) (num)

spla 3.90 9.65 2232.31 2245.86 3197427 6408444 35.16 0.39 0.50 36.06 59741 161408
misex3 6.64 14.78 3294.74 3316.16 5210060 10443593 12.18 0.45 0.80 13.44 179515 501609
alu4 6.28 16.67 3516.00 3538.95 5296423 10622106 16.12 0.40 0.83 17.35 164110 450064
dalu 7.99 19.16 3448.04 3475.19 6083041 12188311 65.78 2.02 58.87 126.67 222249 446825
apex5 10.51 26.70 1621.72 1658.92 * * 133.72 2.58 156.41 292.71 702476 1421614
apex1 13.60 30.99 10083.48 10128.07 * * 70.43 1.67 157.52 229.62 278460 559333
seq 13.21 28.73 7208.54 7250.48 * * 90.65 2.25 17.38 110.28 * *
Normalized 1.00 1.00 1.00 1.00 1.00 1.00 6.63 0.06 0.02 0.04 0.03 0.04average

steps is below 400. When the number of time steps is above
the threshold of 400, the runtime starts an exponential growth.
Further, from the benchmarks in Table II, we conclude that
when the number of time steps is lower than 200, the runtime
is less than a minute. Hence, for the proposed divide-and-
conquer technique, we will set the user-defined parameter
T = 200. We also observe in Figure 8 that the number of
SAT clauses grows large as the number of time steps grows. In
the figure, we can observe that the runtime strongly correlates
with the number of SAT clauses.

Fig. 8. Runtime in seconds and number of clauses for different number of
time steps.

Next, we will analyze the effects of the user-defined parame-
ter D on the runtime of the XSAT algorithm. In Figure 9, we
plot the maximum runtime for the SAT solver. We observe
that the runtime decreases as the number of subproblems
increases. This is due to the subproblems being smaller when
fixating a variable. Finally, we conclude that for D = 10, the
runtime barely improves. In Figure 9 on the right, we show the
distribution of the number of occurrences for the variables in
decreasing order. The highest count for a variable is 228 and
the smallest count is 1. We observe that the variable occurrence
drops sharply until it reaches a sharp inflexion point for the
eleventh most occurring variable and then stagnates near zero.
This point coincides with the point where there is no further
improvement from our divide-and-conquer technique. Based
on this sweep and analysis, we set the user-defined parameter
for the maximum depth to D = 10 for our last experiment.

Finally, we will compare our base formulation with the
divide-and-conquer approach. In Table III, we provide the
runtime for our base formulation and our dynamic approach
using the divide-and-conquer technique for seven of the largest
benchmarks. For some benchmarks, no clauses and literals are

Fig. 9. Runtime in terms of the maximum depth D for the divide-and-conquer
technique, and distribution of the number of occurrences for variables in the
crossbar design for the benchmark dalu.

reported, indicated by an asterisk (*), as the pre-processing
in ABC shows equivalence before feeding the circuit to the
SAT solver. We will primarly look at the total runtime, which
is much smaller for the divide-and-conquer technique on
average over all benchmarks. Using the divide-and-conquer
technique, the runtime improves by 93× compared with the
base formulation. The 93× is computed as the normalized
average over the improvements of the individual benchmarks.

VI. CONCLUSION AND FUTURE WORK

Flow-based computing is a promising digital in-memory
computing paradigm. A lot of effort has been made on syn-
thesis for the computing paradigm, yet a scalable verification
technique was non-existent. We have illustrated that equiv-
alence checking for flow-based computing is a challenging
problem due to the nature of memristor crossbars. Namely,
the bidirectional behavior of memristors challenge existing
and established equivalence checking techniques. The model
for flow-based computing is an undirected graph, which is
fundamentally different from directed (acyclic) graphs in tradi-
tional CMOS-based circuits. In this paper, we have proposed a
new equivalence checking technique for flow-based computing
based on bounded model checking. Further, we have intro-
duced a divide-and-conquer technique to reduce the overall
problem into smaller subproblems, which can be solved in
parallel. This results in an average speed-up of 93× over seven
larger MCNC benchmarks. We have compared our work with
the previous state-of-the-art equivalence checking techniques
for flow-based computing on 19 MCNC benchmarks, and
conclude that our proposed technique is the only one which
can solve all benchmarks within one hour.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information sci-
ences, vol. 275, pp. 314–347, 2014.

[2] J. Fan, F. Han, and H. Liu, “Challenges of big data analysis,” National
science review, vol. 1, no. 2, pp. 293–314, 2014.

[3] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, pp. 1–16, 2016.

[4] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big
data: Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–
361, 2017.

[5] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning
in bioinformatics: Introduction, application, and perspective in the big
data era,” Methods, vol. 166, pp. 4–21, 2019.

[6] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An
introductory review of deep learning for prediction models with big
data,” Frontiers in Artificial Intelligence, vol. 3, p. 4, 2020.

[7] J. Backus, “Can programming be liberated from the von neumann style?
a functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[8] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
and P. Deaville, “In-memory computing: Advances and prospects,” IEEE
Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.

[9] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[10] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1t1m crossbar to accelerate
matrix-vector multiplication,” in Proceedings of the 53rd annual design
automation conference, pp. 1–6, 2016.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[12] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2013.

[13] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference, pp. 1–6, 2016.

[14] A. Velasquez and S. K. Jha, “Parallel boolean matrix multiplication in
linear time using rectifying memristors,” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1874–1877, IEEE,
2016.

[15] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision
diagram-based synthesis of compact crossbars for in-memory comput-
ing,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 5, pp. 622–626, 2018.

[16] D. Chakraborty and S. K. Jha, “Design of compact memristive in-
memory computing systems using model counting,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–4,
2017.

[17] S. Thijssen, S. K. Jha, and R. Ewetz, “Compact: Flow-based computing
on nanoscale crossbars with minimal semiperimeter,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 232–
237, IEEE, 2021.

[18] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz, “Stream:
Towards read-based in-memory computing for streaming based process-

ing for data-intensive applications,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023.

[19] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Com-
putation of boolean formulas using sneak paths in crossbar computing,”
Apr. 19 2016. US Patent 9,319,047.

[20] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast
logic synthesis for rram-based in-memory computing using majority-
inverter graphs,” in 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp. 948–953, IEEE, 2016.

[21] D. Chakraborty and S. K. Jha, “Automated synthesis of compact cross-
bars for sneak-path based in-memory computing,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, pp. 770–775,
IEEE, 2017.

[22] S. Singireddy, R. Ewetz, and S. Jha, “Deep learning toolkit-driven
equivalence checking of flow-based computing systems,” in 2022 IEEE
4th International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 50–53, IEEE, 2022.

[23] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improve-
ments to combinational equivalence checking,” in Proceedings of the
2006 IEEE/ACM international conference on Computer-aided design,
pp. 836–843, 2006.

[24] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Automation of reasoning: 2: Classical papers on computational
logic 1967–1970, pp. 466–483, 1983.

[25] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, no. 53, pp. 1–2, 2005.

[26] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
no. 7, pp. 950–956, 1994.

[27] M. Riedel and J. Bruck, “Cyclic combinational circuits: Analysis for
synthesis,” in Int’l Workshop Logic and Synthesis, pp. 105–112, 2003.

[28] V. Agarwal, N. Kankani, R. Rao, S. Bhardwaj, and J. Wang, “An
efficient combinationality check technique for the synthesis of cyclic
combinational circuits,” in Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, pp. 212–215, 2005.

[29] S. Thijssen, S. K. Jha, and R. Ewetz, “Equivalence checking for flow-
based computing,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD), pp. 656–663, IEEE, 2022.

[30] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, pp. 530–535, 2001.

[31] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An efficient sat solver,”
in Theory and Applications of Satisfiability Testing: 7th International
Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004,
Revised Selected Papers 7, pp. 360–375, Springer, 2005.

[32] G. Audemard and L. Simon, “On the glucose sat solver,” International
Journal on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001,
2018.

[33] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22, pp. 24–40, Springer, 2010.

[34] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pp. 151–158, 1971.

[35] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking.,” Handbook of satisfiability, vol. 185, no. 99, pp. 457–
481, 2009.

[36] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” tech. rep., MCNC Technical Report, Jan. 1991.

