
READ-based In-Memory Computing using
Sentential Decision Diagrams

Sven Thijssen∗, Muhammad Rashedul Haq Rashed†, Sumit Kumar Jha‡, and Rickard Ewetz†
∗Department of Computer Science, University of Central Florida, Orlando, USA

†Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
‡Computer Science Department, Florida International University, Miami, USA
{sven.thijssen, muhammad.rashed, rickard.ewetz}@ucf.edu, jha@cs.fiu.edu

Abstract—Processing-in-memory (PIM) has the potential to
unleash unprecedented computing capabilities. While most in-
memory computing paradigms rely on repeatedly programming
the non-volatile memory devices, recent computing paradigms
are capable of evaluating Boolean functions by simply ob-
serving the flow of electrical currents within a crossbar of
non-volatile memory. Synthesizing Boolean functions into such
crossbar designs is a fundamental problem for next-generation
in-memory computing systems. The selection of the data structure
used to guide the synthesis process has a first-order impact
on the overall system performance. State-of-the-art in-memory
computing paradigms leverage representations such as majority
inverter graphs (MIGs), and binary decision diagrams (BDDs).
In this paper, we propose the Cascading Crossbar Synthesis
using SDDs (C2S2) framework for automatically synthesizing
Boolean logic into crossbar designs. The cornerstone of the
C2S2 framework is a newly invented data structure called
sentential decision diagrams (SDDs). It has been proved that
SDDs are more succinct than binary decision diagrams (BDDs).
To minimize expensive data transfer on the system bus, C2S2

maps computation to multiple crossbars that are connected
together in series. The C2S2 framework is evaluated using 13
benchmark circuits. Compared with state-of-the-art paradigms
such as CONTRA, FLOW, and PATH, C2S2 improves energy-
efficiency by 6.8×while maintaining similar latency.

I. INTRODUCTION

The rise of the Internet of Things (IoT) [1] and 5G
technology [2] has powered the emergence of data-intensive
applications. However, today’s high-performance computing
systems are inhibited by the von Neumann bottleneck [3].
Processing in-memory (PIM) using non-volatile memory is a
promising solution to overcome this bottleneck, either in the
analog or digital realm. While analog in-memory computing
can efficiently execute approximate matrix-vector multiplica-
tion, digital in-memory computing can deliver deterministic
precision for high-assurance applications.

Within digital in-memory computing, we distinguish
between WRITE-based [4] and READ-based computing
paradigms [5]. The WRITE-based in-memory computing
paradigms require the non-volatile memory devices to be
reprogrammed for each function evaluation, which results in
high latency, power consumption, and poor reliability. In con-
trast, READ-based digital in-memory computing paradigms
do not suffer from these ramifications. In a READ-based
in-memory computing paradigm, the resistive devices are
only programmed once to their states, and do not need to

The authors were in part supported by NSF awards # 2319399 and
2113307, and DOE award DE-SC0024576.

TABLE I
DATA STRUCTURES FOR DIGITAL IN-MEMORY COMPUTING.

Framework Citation Data structure
CONTRA [8] NOR netlist
COMPACT [9] BDD
PATH [7] BDD
C2S2 (this work) SDD

be reprogrammed for each computation. Examples of such
paradigms are OR-plane logic [6] and path-based comput-
ing [7]. We focus on path-based computing because OR-plane
logic requires selector devices that are difficult to fabricate.

Path-based computing evaluates Boolean functions using
one-transistor one-memristor (1T1M) crossbar arrays. The
non-volatile memory devices are programmed one time and
Boolean variables are assigned to the selectorlines. The
Boolean function evaluates to true if there exists a path from an
input wordline to an output wordline using only low-resistive
devices and closed access transistors.

The success of the semiconductor industry over the past
two decades has been driven by automatically synthesizing
Boolean functions into logic gates (or standard cells) [10].
The selection of the underlying data structure used to guide
the synthesis process has a first-order impact on the overall
system performance. In Table I, we show the data structures
used to guide the synthesis process of Boolean functions to
in-memory computing hardware. Most data structures were
invented before year 2000. This paper is motivated by more
recently invented sentential decision diagrams (SDDs) [11].
SDDs have been shown to be exponentially more succinct than
previous decision diagram representations [12].

In this paper, we propose the Cascading Crossbar Synthesis
using SDDs, C2S2 pronounced as “C-2-S-2”, framework
for automatically synthesizing Boolean functions into 1T1M
crossbar arrays for path-based in-memory computing. The
cornerstone of the C2S2 framework is the recently invented
SDD representation. Moreover, multiple crossbars are con-
nected into staircase-like cascading structures to minimize the
utilization of the system bus. The main innovations of C2S2

are summarized, as follows:
1) We propose synthesis algorithms for mapping SDDs to

1T1M crossbars. First, Boolean functions are synthesized
into crossbars using SDDs, which are then evaluated using
low-latency and energy-efficient READ operations.

2) Using cascading structures to minimize inter-crossbar com-
munication on the system bus, we present new algorithms
for synthesizing Boolean functions into path-based com-
puting systems with architectural constraints.

Fig. 2. Overview of the compilation phase and evaluation phase for path-based computing. (a) First, a Boolean function is specified in a hardware description
language such as Verilog. (b) Then, the Boolean function is synthesized into an SDD. (c) The SDD is mapped into a crossbar design. (d) Next, the memristors
are programmed to their resistive states. (e) Given an input vector for evaluation, the selectorlines are charged accordingly. (f) Finally, the output is computed
by applying a high input voltage to the top-most wordline.

3) Compared with state-of-the-art paradigms, the experimen-
tal results demonstrate energy improvements of 6.8×while
maintaining similar latency.

In Section II, we provide preliminaries. In Section III,
we explain path-based computing and formally define the
problem. Our proposed framework C2S2 is introduced in
Section IV. Optimization of hardware resources in Section V.
Experimental evaluation is in Section VI. Summary and future
work in Section VII.

II. PRELIMINARIES

A. Sentential Decision Diagrams (SDDs)

A sentential decision diagram (SDD) is a graph represen-
tation of a Boolean function f [11]. The SDD of a Boolean
function f = ¬A ∧ ¬B ∧ C ∨ A is illustrated in Figure 1(a).
In contrast with binary decision diagrams (BDDs), sentential
decision diagrams are defined by a vtree instead of a variable
ordering. This generalization from a strict linear ordering to
a local partial ordering imposed by the underlying vtree of
an SDD yields greater flexibility and allows SDDs to explore
more partitions as compared to BDDs. This ultimately results
in the enhanced succinctness of SDDs compared to equiva-
lent BDDs. The BDD and SDD sizes of four representative
benchmarks are shown in Figure 1(b).

An SDD is a directed acyclic graph (DAG) with two types of
nodes: OR-nodes, and AND-nodes. OR-nodes are represented
by circles, and AND-nodes are represented by rectangles, as
shown in Figure 1(a). An OR-node is a disjunction over all
its outgoing edges; an AND-node is a conjunction of a prime
(left element in the rectangle), and a sub (right element in
the rectangle). A prime or a sub can either be literals (a
Boolean variable or the negation of a Boolean variable) or
Boolean functions. SDDs are interpreted as follows: starting
from the root node of the DAG, we traverse all nodes to
the leaf nodes. All AND-nodes with ⊥ (false) as sub are
tautologically equivalent with ⊥, and can thus be omitted
from the Boolean function. For the OR-nodes, we disjoin the
function of its children, and for the AND-nodes we conjoin
the prime and the sub. For Figure 1(a), we would have
f = ¬A ∧ (¬B ∧C ∨B ∧⊥) ∨A ∧⊤ ≡ ¬A ∧ ¬B ∧C ∨A.
Efficient algorithms for manipulating SDDs enable their use
in our synthesis approach.

(a) SDD (b) SDD vs BDD size

Fig. 1. (a) An SDD. (b) Comparison of SDD and BDD sizes.

B. In-Memory Computing Architecture

The architectural design of an in-memory computing plat-
form is an important design choice. If the desired computation
cannot fit within a single crossbar, it must be partitioned across
multiple crossbars. However, inter-crossbar communication
on the system bus is power-hungry and bandwidth-limited.
To overcome this limitation, we propose to use crossbars
connected into cascading staircase-like structures. The cas-
cading structure introduces additional constraints on the data
movement but greatly reduces the amount of communication
on the system bus in our experimental investigations.

III. PATH-BASED COMPUTING USING SDDS

Path-based computing is a READ-based digital in-memory
computing paradigm [7]. The synthesis process in that work
was guided by a relatively direct mapping from a BDD to
a crossbar. We show an overview of path-based computing
using SDDs in Figure 2. The example is shown using a single
crossbar, but we consider cascading staircase-like structures
in the C2S2 framework. The computing paradigm consists of
three phases: compilation, initialization, and execution.

In the compilation phase, a Boolean function f is provided
in a hardware description language such as Verilog, PLA, or
BLIF. This is illustrated in Figure 2(a). Then, the function is
synthesized into an SDD, as shown in Figure 2(b). Next, the
SDD is compiled into a crossbar design D for 1T1M crossbar
arrays, as shown in Figure 2(c). In the initialization phase, the
memristors are programmed once to their resistive state, as
in Figure 2(d). This results in lower energy consumption and
latency compared with WRITE-based computing paradigms.

Finally, in the execution phase, an input vector is provided to
evaluate the Boolean function f . In Figure 2(e), the input vec-
tor to be evaluated is {x0=1,x1=1,x2=1} and the selectorlines

Fig. 4. Example of the synthesis flow for the proposed framework C2S2. The input of the framework is an SDD and the output is a staircase design. The
graph of the SDD in (a) is pre-processed such that we obtain a pruned SDD in (b). Next, the nodes of the graph are labeled and separated in layers defined
by the OR-nodes as shown in (c). Then, in (d), a cascade of crossbars is created by assigning the nodes to wordlines and selectorlines. More precisely, the
variables are assigned to the selectorlines and inter-crossbar connections are created. Finally, memristors are assigned a low resistive state (‘1’) to realize the
edges, resulting in a staircase design in (e).

are charged accordingly. To evaluate the Boolean function
f , we apply a high voltage to the top-most nanowire (the
input) and ground the bottom-most nanowire (the output). An
electrical current will flow through the memristor crossbar
array. We say that a Boolean function f evaluates to true if
and only if there exists a path from the input to the output
along closed gates. In Figure 2(f), we observe that f evaluates
to true as there is such a path from input to output, which is
indicated using a red dotted line.

Fig. 3. Example of cascade architecture with four crossbars connected in
series.

A. Problem formulation
In this paper, we address the problem of mapping a

Boolean function into cascading staircase-like structures of
1T1M crossbars using sentential decision diagrams (SDDs),
as illustrated in Figure 3. We decompose the problem into
two sub-problems:
1) The algorithmic synthesis of a Boolean function into cas-

cading 1T1M crossbar structures based on SDDs without
any explicit constraints on the number or dimensions of
crossbars.

2) The partitioning of the SDD-based design into multiple
cascading 1T1M crossbars while obeying hardware con-
straints, such as the number of series connected crossbars
and the dimensions of the crossbars.

We resolve these twin problems by presenting a graph-based
mapping of SDDs onto crossbars and creating a partitioning
algorithm based on an ILP formulation to meet hardware
constraints and merge underutilized cascading structures.

IV. THE C2S2 FRAMEWORK

In this section, we describe our proposed Cascading
Crossbar Synthesis using SDDs, C2S2, framework. The input
of the framework is an SDD G and the output is a cascading
design S. Figure 4 presents an overview of the flow of the
framework. The synthesis consists of four main steps: graph
pre-processing, node labeling, node assignment, and edge
assignment.

A. Graph Pre-Processing

The input of the first step is a graph G representing the SDD
of a Boolean function f . The SDD is generated using the SDD
tool [13]. In Figure 4(a), the graph G for the SDD is illustrated.
Following the rules in Section II-A, AND-nodes with ⊥ as
prime/sub are removed. AND-nodes with ⊤ as prime/sub are
changed into BUF-nodes (buffer nodes). This resulting graph
illustrated in Figure 4(b).

B. Level and Node Labeling

In the second step, the nodes of the graph are labeled. The
input is the pruned SDD from Figure 4(b) and the output is a
graph with node labels, as illustrated in Figure 4(c). Further,
the nodes in different levels are separated. Each level is defined
by the distance between the root node and the OR-nodes. In
Figure 4(c), the OR-nodes 2 and 4 define a layer with its
AND-nodes 1 and 3 as children.

C. Node Assignment

In this section, we solve the problem of assigning nodes
of the labeled graph G′ to construct a cascading design. The
nodes of G′ will be assigned to the wordlines and selectorlines
of crossbars, depending on their layer. Whether a node will
be assigned to a wordline or selectorline depends on the type
of node:

• Each AND-node will be assigned to a wordline, and its
prime and sub will each be assigned to a selectorline.

• Each BUF-node will be assigned to a selectorline.
• Each OR-node will be assigned to a wordline.
In Figure 4(d), a cascading design is illustrated where the

nodes of the graph in Figure 4(c) have been assigned to the
wordlines and selectorlines. For example, the AND-node 1 has
been assigned to the second wordline from the bottom in the
first crossbar, and its prime A and sub B have been assigned
to the first and second selectorline in the first crossbar.

D. Edge Assignment

In this step, the memristors are assigned a resistive state to
realize the Boolean operations. An AND-node is realized by
programming three memristors to a low resistive state (‘1’):
the memristor connecting the prime and the input voltage, and
the memristors connecting the prime and the sub. An OR-
node is realized by assigning ‘1’ to all memristors between the
wordline of the OR-node and the selectorlines of its children.

Algorithm 1 Partitioning of the SDD G

Input: SDD G = (V,E), constraints C
Output: T // A topology of cascading staircase-like structures

1: function PARTITION(G)
2: while V ̸= ∅ do
3: R = ∅ // Initially, no root nodes for our cone
4: S = □ // Initially, no staircase structure
5: for r in GETCANDIDATES(G) do
6: Rtemp ← R ∪ {r}
7: H ← INDUCEDSUBGRAPH(G, R)
8: if CONSTRAINTSSATISFIED(C, H) then
9: S = STAIRCASE(H)

10: R← Rtemp

11: end if
12: end for
13: T ← T ∪ {S}
14: end while
15: end function

V. CONSTRAINED CASCADING SYNTHESIS

The synthesis method explained in previous Section IV re-
sults in cascading designs of arbitrary dimensions and depths,
and may not be optimal in realistic environments. Therefore,
we provide a partitioning algorithm to synthesize the given
graph G into subgraphs G′ such that G′ can be realized in
physical hardware.

Fig. 5. Example of the partitioning algorithm. In each block, candidate root
nodes are visited in a reverse topological sort.

A. Partitioning

In Algorithm 1, we provide the partitioning algorithm. The
input of the partitioning algorithm is the graph G = (V,E)
of an SDD, and the constraints C. The constraints C include
the crossbars dimensions, the number of inter-crossbar con-
nections, and the cascade depth. The output is a topology of
cascading staircase-like designs T . The algorithm iterates over
the nodes in V and stops when all nodes in V have been
processed, i.e. when all nodes in V have been assigned to a
cascading structure.

The algorithm works as follows: given the cascade depth L,
we consider candidate root nodes R that will define a set of
cones. A cone is defined by a root node and all its descendants.
The candidate root nodes are a sorted collection of nodes,
based on their level in the graph. All nodes are assigned a
level l, as explained in Section IV-B. Then we define a block of
nodes as nodes between layer l and l+L where l mod L = 0.
Candidate root nodes are being considered for each block in
a reverse topological sort (top to bottom). For each candidate
root node, an induced subgraph H is constructed based on
the candidate root nodes Rtemp. If the constraints are satisfied
when assigning the induced subgraph to the cascading design
(line 8), then we extend R with the candidate root node r.
This is illustrated in Figure 5. Otherwise, we do not extend
R with the candidate root node r and we proceed to the next
candidate root node.

min N (1)

s.t.
∑
j∈T

tj = N (2)∑
j∈T

sji = 1, ∀i ∈ |T | (3)

sji ≤ tj , ∀i ∈ |T |,∀j ∈ |T | (4)

sji0 + sji1 ≤ 1, ∀(i0, i1) ∈ CS,∀j ∈ |T | (5)∑
i∈T

sji ×Wi ≤ D, ∀j ∈ |T | (6)∑
i∈T

sji × Si ≤ D, ∀j ∈ |T | (7)

B. Aggregation

The resulting cascading topology T from previous section
results in cascading designs that are underutilized. To miti-
gate this problem, we propose an ILP formulation to merge
these underutilized cascades. The objective is to minimize the
number of cascades N (line 1). The idea is to assign each
cascade in the original topology T to a cascade in a new
topology T ′. Thus, for each staircase Si ∈ T , we assign it to a
staircase Sj ∈ T ′. The ILP formulation contains both variables
and constants. These variables are sji and tj (besides N). The
constants are Wi, Si, and D.

For each cascade j in T , we introduce a variable tj . This
variable denotes whether cascade j in our new topology in
T ′ will be used (tj = 1) or not (tj = 0). The number of
used cascades N is then defined by tj (2). The variable sji
indicates whether cascade i from the original topology T is
assigned to cascade j in the new topology T ′ or not. If sji = 1,

TABLE IV
NUMBER OF CASCADES, NUMBER OF INTER-CONNECTIONS, AND CRITICAL PATH LENGTH FOR DIFFERENT STAIRCASE DEPTHS.

Benchmark
No cascade Cascade

Bus connections Inter-connections Critical path Synthesis time Bus connections Inter-connections Critical path Synthesis time
(num) (num) (num) (min) (num) (num) (num) (min)

bw 98 179 5 0.32 28 0 1 0.98
apex4 126 2869 9 1.34 56 1248 5 7.45
alu2 25 410 8 0.14 10 111 4 0.63
urf4 159 10086 9 6.86 93 8228 10 27.62
alu4 72 2082 10 1.01 31 1131 8 5.73
tial 73 2278 10 0.95 32 1330 9 6.20
misex3c 106 731 13 0.57 33 181 5 2.31
table3 132 2996 14 2.24 49 1388 6 9.60
misex3 155 1450 13 0.62 43 442 5 4.00
in0 103 1086 14 0.79 30 365 5 2.38
pdc 377 1854 15 1.51 113 585 5 6.53
spla 399 1745 16 1.63 118 566 5 4.22
frg2 980 5172 16 4.55 306 1556 5 14.74
Normalized 1.00 1.00 1.00 1.00 0.36 0.36 0.49 4.46

then cascade i is assigned to cascade j. Otherwise, if sji = 0,
then cascade i is not assigned to cascade j (line 3 and 4).
Constraint on line 5 denotes that cascades i0 and i1 cannot
be assigned to the same cascade j. CS is a set of tuples of
cascades that are inter-dependent and cannot be assigned to
the same cascade. Details are omitted due to the page limit.
The constraint allows only si0 or si1 to be one. The constraints
on line 6 and 7 ensure that the number of wordlines Wi and
selectorlines Si do not exceed the crossbar dimensions D.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate C2S2. Experimental evaluation
was performed on a Linux machine with Ubuntu version
20.04.4 LTS, 20 i9-900X cores, and 128GB RAM. The source
code was programmed in Python 3.8 and can be found on
GitHub1. For the ILP formulation, we used CPLEX version
20.1.0.0 [14]. To compile the SDDs, we use [13]. Further, to
construct the BDDs, we use a BDD tool based CUDD [15].
In Table II, an overview is given of 13 benchmarks selected
from the Revlib benchmark suite [16].

TABLE II
OVERVIEW OF 13 BENCHMARKS FROM REVLIB [16].

Benchmark
Circuit BDD SDD

Inputs Outputs AND OR AND OR
bw 5 28 474 237 401 195
apex4 9 19 3432 1716 2751 1069
alu2 10 6 720 360 436 187
urf4 11 11 9284 4642 7143 1883
alu4 14 8 2506 1253 1974 794
tial 14 8 2852 1426 1930 751
misex3c 14 14 1492 746 1063 506
table3 14 14 4820 2410 3747 1632
misex3 14 14 5220 2610 1902 888
in0 15 11 1552 776 1257 578
pdc 16 40 4242 2121 2561 1219
spla 16 46 4784 2392 2815 1327
frg2 143 139 20362 10181 7566 3566
Normalized 1.00 1.00 0.67 0.59
In all experiments, we set the crossbar dimensions to

128 × 128 [8]. The power consumption for the data bus
connecting the staircases, is set to 13mW [17] and the latency
15ns. For a crossbar 0.3mW [17] and 100ns with a write
energy of 0.391nJ and write latency of 50.9ns [18]. In
Section VI-A, we evaluate the proposed framework C2S2

in terms of hardware utilization. In Section VI-B, we make

1https://github.com/sventhijssen/c2s2

a comparison with previous state-of-the-art frameworks for
digital in-memory computing.

TABLE III
NUMBER OF CASCADES, NUMBER OF INTER-CONNECTIONS, AND

CRITICAL PATH LENGTH USING BDDS AND SDDS.

Benchmark
BDD SDD

Cas- Inter- Critical Cas- Inter- Critical
cades connections path cades connections path
(num) (num) (num) (num) (num) (num)

bw 82 142 3 56 93 2
apex4 99 1763 6 69 1869 4
alu2 18 229 5 15 251 5
urf4 121 5587 10 110 9015 8
alu4 53 1339 9 44 1387 10
tial 58 1538 10 46 1706 9
misex3c 72 699 8 56 416 6
table3 103 2239 10 79 1838 7
misex3 110 2463 9 80 847 6
in0 77 946 8 54 689 7
pdc 262 1822 8 199 1073 7
spla 317 2087 8 211 991 8
frg2 908 10234 13 531 2945 8
Normalized 1.00 1.00 1.00 0.75 0.80 0.82

A. Evaluation of C2S2

First, we compare our chosen data structure, SDDs, with
BDDs. In Table II, the number of AND-nodes and OR-nodes
for each benchmark as BDD and SDD is provided.

From Table II, we observe that SDDs reduce the number
of AND-nodes and the number of OR-nodes by 33% and
41%, respectively, compared with BDDs. This reduction is
due to that SDDs are partitioned based on sub-functions
(vtree) whereas BDDs are partitioning based on a single input
variable (variable ordering). The use of a vtree instead of
variable ordering results in that SDDs have a larger solution
space with the potential of being more succinct to represent
the Boolean function [19]. Next, we compare the hardware
improvements due to the chosen data structure. We evaluate
the proposed framework using both BDDs and SDDs. In
Table III, we report the hardware utilization in terms of number
of cascades, number of inter-connections, and critical path
length for both decision diagrams. We set the cascade depth to
L = 4. Compared with BDDs, we observe that the number of
cascades, number of inter-connections and critical path length
using SDDs decrease with 25%, 20%, and 18%, respectively.
Therefore, we conclude that it is most advantageous to use
SDDs compared to BDDs.

Finally, we will perform an analysis of the hardware archi-
tecture. In Table IV, the hardware utilization is reported for
staircase depths L = 4, which is the first saturation point

https://github.com/sventhijssen/c2s2

Fig. 6. Normalized energy consumption and latency for the proposed framework C2S2, PATH, COMPACT, and CONTRA.

among the benchmarks. In Table IV, we observe that the
bus connections have reduced by 64%, the number of inter-
connections by 64%, and the critical path length by 51%.

B. Comparison with other paradigms

We compare our proposed C2S2 framework with other
frameworks for digital in-memory computing paradigms.
These are PATH [7] for path-based computing, COM-
PACT [20] for flow-based computing, and CONTRA [8] for
MAGIC-based computing. All results, except for the bench-
marks pdc and spla for CONTRA due to a runtime error, have
been included. Here, we employ the optimization algorithm of
Section V-B to aggregate underutilized cascades.

In Figure 6(a), we plot the normalized energy consumption
for each benchmark for the aforementioned frameworks. We
observe that our framework C2S2 reduces the energy consump-
tion with 62.9%, 99.4%, and 99.7% compared with PATH,
COMPACT, and CONTRA on average. The energy reduction
with the READ-based paradigm PATH stems from the smaller
designs as a result of our chosen data structure (SDDs). This
translates in less bus connections and thus lower bus utiliza-
tion. Compared with the WRITE-based paradigms COMPACT
and CONTRA, the energy reduction is a result of the high
energy consumption for write operations, in combination with
high bus utilization.

In Figure 6(b), the normalized latency is given for all bench-
marks. Compared with PATH, the latency improves 1.05×
using C2S2 due to the critical path being of similar length.
Compared with COMPACT, and CONTRA, our framework
C2S2, improves latency by 138× and 33×, respectively. This is
due to that COMPACT and CONTRA rely on write operations
for each evaluation. Further, their bus utilization is higher
which leads to increased latency.

VII. SUMMARY AND FUTURE WORK

In this paper, we have introduced the Cascading Crossbar
Synthesis using SDDs, C2S2, framework that leverages senten-
tial decision diagrams (SDDs) to compile Boolean functions
into circuits for path-based computing. Further, we have pro-
posed an automated synthesis method to compile such SDDs
into cascading staircase-like structures, a hardware component
consisting of a series of hardwired memristor crossbars. Due

to SDDs being smaller than BDDs, hardware utilization can
be reduced by approximately 64%. This, combined with the
read-based characteristics of path-based computing, the C2S2

framework improves energy consumption by 6.8×compared
with the state-of-the-art synthesis method.

REFERENCES
[1] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,”

Information systems frontiers, vol. 17, no. 2, pp. 243–259, 2015.
[2] A. Gohil, H. Modi, and S. K. Patel, “5g technology of mobile commu-

nication: A survey,” in ISSP, pp. 288–292, IEEE, 2013.
[3] J. Backus, “Can programming be liberated from the von neumann style?

a functional style and its algebra of programs,” CACM, vol. 21, no. 8,
pp. 613–641, 1978.

[4] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS-II, vol. 61,
no. 11, pp. 895–899, 2014.

[5] M. R. H. Rashed et al., “Stream: Towards read-based in-memory
computing for streaming based data processing,” in ASP-DAC, pp. 690–
695, IEEE, 2022.

[6] A. Dehon, “Nanowire-based programmable architectures,” JETC, vol. 1,
no. 2, pp. 109–162, 2005.

[7] S. Thijssen, S. K. Jha, and R. Ewetz, “Path: Evaluation of boolean logic
using path-based in-memory computing,” in DAC, pp. 1129–1134, 2022.

[8] D. Bhattacharjee et al., “Contra: area-constrained technology mapping
framework for memristive memory processing unit,” in ICCAD, pp. 1–9,
2020.

[9] D. Chakraborty and S. K. Jha, “Automated synthesis of compact cross-
bars for sneak-path based in-memory computing,” in DATE, pp. 770–
775, IEEE, 2017.

[10] A. Nardi and A. L. Sangiovanni-Vincentelli, “Logic synthesis for manu-
facturability,” IEEE Design & Test of Computers, vol. 21, no. 3, pp. 192–
199, 2004.

[11] A. Darwiche, “Sdd: A new canonical representation of propositional
knowledge bases,” in IJCAI, 2011.

[12] S. Bova, “Sdds are exponentially more succinct than obdds,” in AAAI,
vol. 30, 2016.

[13] A. Choi and A. Darwiche, “Sdd advanced-user manual version 2.0.”
http://reasoning.cs.ucla.edu/sdd/doc/sdd-advanced-manual.pdf, 2018.

[14] IBM, “Cplex optimizer.” https://www.ibm.com/analytics/
cplex-optimizer, 2020.

[15] M. Vazquez-Chanlatte, “py-aiger-bdd.” https://github.com/mvcisback/
py-aiger-bdd, Nov 2018.

[16] R. Wille et al., “Revlib: An online resource for reversible functions and
reversible circuits,” in ISMVL, pp. 220–225, IEEE, 2008.

[17] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” SIGARCH, vol. 44, no. 3,
pp. 14–26, 2016.

[18] T. Yang et al., “Pimgcn: a reram-based pim design for graph convolu-
tional network acceleration,” in DAC, pp. 583–588, IEEE, 2021.

[19] A. Choi and A. Darwiche, “Dynamic minimization of sentential decision
diagrams,” in AAAI, vol. 27, pp. 187–194, 2013.

[20] S. Thijssen, S. K. Jha, and R. Ewetz, “Compact: Flow-based computing
on nanoscale crossbars with minimal semiperimeter and maximum
dimension,” TCAD, 2021.

http://reasoning.cs.ucla.edu/sdd/doc/sdd-advanced-manual.pdf
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://github.com/mvcisback/py-aiger-bdd
https://github.com/mvcisback/py-aiger-bdd

	Introduction
	Preliminaries
	Sentential Decision Diagrams (SDDs)
	In-Memory Computing Architecture

	Path-based computing using SDDs
	Problem formulation

	The C2S2 framework
	Graph Pre-Processing
	Level and Node Labeling
	Node Assignment
	Edge Assignment

	Constrained cascading synthesis
	Partitioning
	Aggregation

	Experimental evaluation
	Evaluation of C2S2
	Comparison with other paradigms

	Summary and future work
	References

