Execution Sequence Optimization for Processing In-Memory
using Parallel Data Preparation

Muhammad Rashedul Haq Rashed”, Sven Thijssen*, Dominic Simon*, Sumit K.]haT, Rickard Ewetz*
“Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA
TComputer Science Department, Florida International University, Miami, FL, USA
{muhammad.rashed,sven.thijssen,dominic.simon}@ucf.edu,sumit.jha@fiu.edu,rickard.ewetz@ucf.edu

ABSTRACT

Processing in-memory (PIM) promises to unleash unprecedented
computing capabilities for high-data-rate applications. Computa-
tion using PIM is performed by breaking down computationally
expensive operations into in-memory kernels that can be efficiently
executed using non-volatile memory. Logic styles such as MAGIC re-
quire that each output memory cell is prepared for evaluation before
executing the functional logic operation. State-of-the-art synthe-
sis algorithms perform the preparation immediately after memory
cells have expired. Unfortunately, this results in that columns of
cells are prepared greedily, instead of leveraging efficient parallel
data preparation instructions. In this paper, we propose the PREP
framework that maximizes the opportunities for parallel column
preparation using execution sequence optimization. The key idea
of the framework is to postpone data preparation instructions until
there are no available prepared cells. Next, the accumulated memory
cells are prepared in parallel to release the memory for functional
evaluations. The framework is capable of exploring a frontier of
area-performance solutions. The PREP framework is evaluated us-
ing 15 benchmarks from the SuiteSparse library. Compared with
state-of-the-art synthesis tools, energy consumption and latency
are respectively reduced by 27% and 25% with no additional cost in
crossbar memory.

ACM Reference Format:

Muhammad Rashedul Haq Rashed, Sven Thijssen, Dominic Simon, Sumit
K. Jha, and Rickard Ewetz. 2024. Execution Sequence Optimization for
Processing In-Memory using Parallel Data Preparation. In 61st ACM/IEEE
Design Automation Conference (DAC "24), June 23-27, 2024, San Francisco, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3649329.
3657348

1 INTRODUCTION

The next wave of scientific discovery is predicated on scaling up
scientific simulation capabilities. The success of AlphaFold 2.0 in
predicting 3D protein structures comes from the convergence of
new Al algorithms and scaled-up computing resources [4]. Scien-
tific simulations for complex physical systems such as weather
forecasting [1], drug discovery [14], and combustion [8] take days
or months using today’s high-performance computing systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06....$15.00
https://doi.org/10.1145/3649329.3657348

Table 1: Evaluation with 32-bit Fixed-Point Multiplication.

Framework Preparation WRITEs Functional WRITEs #Total WRITEs
LOGIC [15] 5549 10046 15595
PREP (proposed) 1271 10046 11317
Improvement 77% 0% 27%

With the near end of technology scaling, there is a surging interest
in exploring emerging computing paradigms such as photonic [20],
quantum [13], and in-memory computing [18].

Processing in-memory (PIM) can be performed using analog
matrix-vector multiplication, digital Boolean functions, and content
addressable memories (CAMs). While analog in-memory computing
is energy-eflicient, digital in-memory paradigms are more promis-
ing for scientific computing applications with strict requirements
on computational accuracy. Logic styles for digital in-memory com-
puting include OR-plane logic [16], PATH [22], bitwise-in-bulk [11],
IMPLY [3], and MAGIC [10]. OR-plane logic and PATH-based com-
puting are efficient for executing irregular Boolean functions [22].
On the other hand, bitwise-in-bulk, IMPLY, and MAGIC paradigms
are ideal for accelerating matrix-vector multiplication operations
due to their highly parallel nature [9, 11]. The MAGIC logic style
is currently the most advantageous because it does not require
expensive peripheral circuitry.

To accelerate expensive matrix-vector multiplication operations,
the computation is first decomposed into in-memory compute ker-
nels. Next, the in-memory compute kernels are ordered into an
execution sequence. The MAGIC logic style supports INV, NOR2,
and multi-input NOR operations. Each operation requires the prepa-
ration of an output device and the execution of a logic instruction.
Both the preparation and the functional evaluation involve perform-
ing a WRITE operation. The state-of-the-art synthesis tools perform
the cell preparation immediately when any memory cell has expired.
However, this results in columns of cells being prepared greedily.
At the same time, the cell preparation is performed using WRITE
operations of type SET, which can be efficiently performed in paral-
lel [23]. Hence, there exists an opportunity to improve performance
by leveraging parallel SET operations for content preparation.

In this paper, we propose PREP, a framework that maximizes
the use of parallel content preparation instructions using execution
sequence optimization. The synthesis tool compiles the desired
computation into a graph of in-memory operations with predeces-
sor constraints. Sequence optimization is performed by postponing
(or accumulating) cell preparation instructions while processing
functional operations. Parallel cell preparation instructions are
performed when no prepared cells are available for functional eval-
uations. The PREP framework explores the Pareto optimal frontier
of area-performance solutions. Table 1 shows that the PREP frame-
work can reduce the number of total in-memory operations for

https://doi.org/10.1145/3649329.3657348
https://doi.org/10.1145/3649329.3657348
https://doi.org/10.1145/3649329.3657348

DAC 24, June 23-27, 2024, San Francisco, CA, USA

32-bit fixed-point multiplication by 27% compared to the state-of-
the-art [15]. The main innovations of the paper can be summarized,
as follows:

o The observation that parallel cell preparation can be used to
improve the performance of in-memory computing paradigms
such as IMPLY and MAGIC.

o A graph formulation of the sequencing problem that allows
both performance and memory utilization to be optimized
using parallel cell preparation instructions.

o The experimental evaluation shows that the proposed par-
adigm speeds up arithmetic operations by 26% on average
without any additional crossbar memory overhead.

e On 15 scientific computing applications, the PREP frame-
work achieves a 25% speedup and 27% energy efficiency
compared to the state-of-the-art paradigm.

The remainder of the paper is organized as follows: preliminar-
ies and the motivation are presented in Section 2. The problem
formulation is presented in Section 3. The PREP framework is intro-
duced in Section 4. The experimental evaluation of the framework
is discussed in Section 5. The paper is concluded in Section 6.

2 PRELIMINARIES

In this section, we first explain how MAGIC can be used to evaluate
Boolean functions. Next, we showcase the opportunities for parallel
data preparation instructions.

2.1 Digital In-Memory Computing using
MAGIC

Digital in-memory computing relies on performing Boolean opera-
tions using non-volatile memory devices. The execution of a NOR
(3c1 + x2) and INV (x3) operation using MAGIC is shown in Fig-
ure 1. The paradigm performs computation using an initialization
step and an evaluation step. In the initialization step, the Boolean
input operands are first programmed into a row of non-volatile
memory (NVM) cells. Next, cells dedicated to storing the output of
the logic operations are prepared by programming them to a low
resistance state (LRS) using a SET operation. During the evaluation
step, the NOR/INV operations are realized by applying controlled
voltages to the input cells and grounding the output cells. MAGIC
is an attractive logic style as it offers a high order of parallelism
using SIMD. In a crossbar architecture, each row of the crossbar
can execute independent NOR/INV netlists in parallel, which can
accelerate applications dominated by matrix-vector multiplication
operations.

Next, we explain how cell preparation instructions are used to
reduce memory utilization when executing a sequence of MAGIC

Initialization Evaluation

Initialize input data Prepare output cells Functional evaluation

SET v v GND
v I ¥
X1 | X X [% | 1 X, | X, | Xi+X,
» i » o
X3 X3 %3 X3

Figure 1: Steps for evaluating NOR/INV operations using
MAGIC. Each box represents a memristor cell within cross-
bar.

Rashed, et al.

(i) Initialization _= — i (i) Evaluation — |

F=xpbx, vxs e Xy 1

1 netlist I !

| x| || 1] 11 ‘ » — |

‘ S I ‘ I ‘ Xp x| Xz | x| 1 ‘ 1 ‘ |

in functional out i :

' (1V) Cell Preparation ! = |

! Cycle3 SET * Cycle 2 X tx, :
3 ’ xp x| x| 1 | X, | 1 ‘ i ‘ Xl x| x| g |, | ‘

! (v) Evaluation —~ 1! (vi) Evaluation :

i Cycle 4 x; i} Cycles x;tx, tx 5 !

‘ Xy | Xy | X3 | X3 | Xty |] ‘ b ‘ x| % | X5 | | X | f ‘ I

Figure 2: Execution sequence of a MAGIC netlist. (i) Cross-
bar row initialization and, (ii-vi) sequential execution of
NOR/INV/SET operations. The SET operations allow memory

cells to be reused after the content has expired.
operations, which is shown in Figure 2. The figure shows the exe-

cution of a NOR/INV netlist f = X1 + x2 + X3. Figure 2(i) shows the
initialization step of MAGIC where the input operands (x;-3) are
programmed into the input cells, and the functional and the output
cells are initialized to 1 (LRS). The functional cells are used to evalu-
ate the intermediate NOR/INV gates of the netlists. Figure 2(ii)—(vi)
show the sequential evaluations of the NOR/INV gates and the
intermediate cell preparation step. In the first two cycles, x1 and

X1 + x3 are evaluated, and the results are stored in the functional

cells. After X1 + x3 is evaluated, the result of X7 is no longer needed,
and the memory cell storing the result can be freed and reused for
future evaluations. If the memory cell was not reused, the memory
requirements would have been increased by one. Therefore, in the
third cycle, the functional memristor storing the x7 is prepared for
reuse by using a SET operation which is shown in Figure 2(iv). In the
next couple of cycles, the remaining NOR/INV operations are eval-
uated in Figure 2(v)—(vi). The example highlights that it is critical
to reuse expired memory cells to minimize memory utilization.

2.2 Serial vs. Parallel Cell Preparation

The outlined approach of memory cell reuse (from previous work)
aims to minimize the memory cell requirements. This means that
as soon as the value stored in a functional cell expires i.e., no longer
required for future executions, the algorithm immediately frees
the cell and prepares it for reuse us1ng a SET operatlon Due to

Flgure 3: (a) An example NOR-INV netllst (d) equlvalent
DAG of the netlist, (c) execution sequence with serial cell
preparation, and, (d) execution sequence with parallel cell
preparation.

Execution Sequence Optimization for Processing In-Memory using Parallel Data Preparation

the greedy nature of this cell preparation step, memory cells will
almost exclusively be prepared using individual data preparation
instructions. However, previous studies have shown that parallel
SET operations are efficient and do not incur latency overhead [23].
We speculate that if some cell preparations are held off until later
cycles, we can prepare cells using parallel SET operations, which
in turn will reduce the total number of WRITE cycles. We illustrate
the concept with an example in Figure 3.

Figure 3(a) shows an example MAGIC netlist with three primary
inputs (—) and five NOR/INV gates (a—e). In Figure 3(b), an
equivalent DAG representation of the netlist is shown. The inputs
of the netlist are represented with a unified input source and the
NOR/INV gates are represented with five nodes, a—e. The goal is
to explore sequences for the node execution that yield a minimum
number of cell preparation WRITEs. In Figure 3(c), we present an
execution sequence with serial cell preparation operations. The
sequence results in two SET operations to immediately prepare
the expired cells. The sequence incurs 7 WRITE cycles in total. In
Figure 3(d), we present an alternative execution sequence where we
hold off immediate cell preparation to perform parallel cell prepa-
ration in a later cycle. The alternative sequence results in 6 WRITE
cycles in total. This observation motivates us to develop a frame-
work that maximizes the opportunity of parallel cell preparation to
reduce the latency of the netlist execution.

3 PROBLEM FORMULATION

The objective of this paper is to leverage parallel data prepara-
tion instructions to improve the performance of digital in-memory
computing using MAGIC. This is achieved by creating an addi-
tional optimization step in the synthesis flow for MAGIC, which
is shown in Figure 4. The flow shows that an arithmetic operation
is first compiled into an INV/NOR netlist [12]. Next, the execu-
tion sequence is optimized to minimize memory utilization. This is
achieved by scheduling the functional operations such that memory
cells are released as early as possible [15]. The output of this step
is a netlist and the minimum required area (number of memory
cells N). The proposed sequence optimization preserves the order
of the functional operations while only optimizing the order of the
data preparation instructions. The output is a netlist that contains
parallel data preparation instructions. Next, the resulting execu-
tion sequence is utilized to perform processing in memory using
MAGIC. The specific objectives of the proposed execution sequence
optimization are, as follows:

(1) Given an execution sequence P and a cell count constraint
N, optimize the execution sequence to minimize the total

1
Synthesis Step | Evaluation Step

1
i
DAG 1\ MVM Input
Conversion 1 ! Opeiaml.v
i i 3 Sequence N !’ Sequence :
Amhm?“c Netlist | O(VE) Optimization G.AN Optimization _’Exccutioru’ In-Memory
Operation Synthesis for Memory 1 for Data Sequence ;| Execution
A+B Utilization 1| Preparation ;
1 :
AxB : . . ' l
z%} %} @ @ o ! Qutput Vector
1 1
1 PREP i
(This Work) j

Figure 4: Overview of synthesis flow for MAGIC.

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

number of data preparation instructions. The number of
instructions can be reduced by introducing parallel data
preparation instructions.

(2) Determine the Pareto optimal frontier of execution sequences
with optimal area performance.

4 THE PREP FRAMEWORK

In this section, we introduce the PREP framework. The overview of
the framework is shown in Figure 4. The main innovation of this
paper is the observation that parallel data preparation instructions
can be performed. No previous work has considered the aspect of
parallel data preparation for in-memory computing. Our approach
is based on the insight that data preparation instructions are not
required to be performed as soon as a memory cell has expired.
Instead, we delay performing cell preparation instruction until
there are no memory cells available for functional evaluations. This
results in that the opportunities for parallel data preparation are
maximized. The proposed algorithm targets the use of the minimum
memory cell count N. However, by considering relaxed constraints
on the cell count, the Pareto optimal frontier of performance-area
solutions can be explored.

In the following, we outline the details of the proposed sequence
optimization in Section 4.1. Next, we illustrate the algorithm with
an example in Section 4.2.

DAG, Execution Cell Count
G(VE) Sequence, P Constraint, N

Any Prepared
Cell Remains?

Process Next
Functional Node

1
s e
1| £ 06 1
8% 5 '
HIE g £s :
V23S Update Node Sets 5 Parallelly SET 0
! 2 3 All Expired Nodes !
| [T H
------------------------- & g I |
T
o

All Nodes
Processed?,

Figure 5: Flowchart of PREP framework.

4.1 Sequence Optimization for Data Preparation

In this section, we explain the proposed sequence optimization for
data preparation. The input to the algorithm is an area-optimized ex-
ecution sequence P and a cell count constraint N. The algorithm also
requires the DAG G = (V, E) to capture the predecessor constraints
of the operations. By default, we use the execution sequence and
the minimum cell count obtained from the state-of-the-art LOGIC
framework [15]. The output is a new execution sequence that uti-
lizes parallel data preparation instructions while still satisfying the
cell count constraint. The flowchart for our proposed algorithm is
shown in Figure 5.

The proposed algorithm maintains three sets of nodes, active
nodes A (memory cells storing intermediate data), expired nodes
X (cells with expired intermediate data), and cells prepared for
functional evaluation. For simplicity, we simply show the count for

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Rashed, et al.

i LOGIC Sequence (i) Functional (iii) Sequence Cover (iv) Cover) Cover
i Node Sequence START START START
i START START END i @ @
i @ @ ® Legend i ®
i i
i ® ® @ Unprocessed Node
i Pruning O Active Node . P éb““ Pl@sss
: © @ ® ETs o : N :
) » Expired Node ’ v
i i
D Garo
i Active Nodes, A >
i © @ ® v e A>@ A>@ ®
; el Expired Nodes, X > @ X> 0 X> 0
#Prepared Cells > 5 #Prepared Cells > 4 #Prepared Eclls >3
Proccss@ l
(xi) Final PREP Sequence ® (i) Cover (viii) Cover (vii) Cover (vi) Cover
START START START START
START ®
CONTINUE cess Process
.0 © ©
— ¢
A>@© A>®
x>@® x>@®®
#Prepared Cells > 1 #Prepared Cells > 2 #Prepared Cells > 0 #Prepared Cells > 1 #Prepared Cells > 2

Figure 6: The workflow of the sequence optimization for the data preparation algorithm. (i) Target DAG and area-optimized
LOGIC sequence [15], (ii) pruned sequence with only the functional nodes, (iii) - (viii) and (x) workflow of cell count constrained
(N =5) processing of functional nodes, (ix) parallel cell preparation of expired nodes and, (xi) optimized PREP sequence.

the prepared cells in the example in Section 4.2. We first discard
all the data preparation instructions from the execution sequence.
Next, we process functional operations one by one. If there exists a
prepared memory cell, we schedule the next in-memory compute
operation. Once the operation is scheduled, we update the active
node and the expired node sets. The output of the considered op-
eration is added to the active node set. Next, we use the DAG to
check if any of the active nodes have expired, i.e., the intermediate
result is not needed to compute any future output. Next, we move
on to processing the next in-memory compute operation. Now we
return to the case that there are no prepared memory cells available.
Then, we prepare all the expired nodes and update the prepared cell
count and the active and expired node sets. The same functional
operation is considered in the next iteration of the algorithm.

4.2 Example of Algorithm

The workflow of the algorithm is illustrated with an example in
Figure 6. Figure 6(i) shows a target DAG and the corresponding
area-optimized execution sequence of the DAG nodes using the
LOGIC framework [15]. The LOGIC framework adopts a greedy
approach for sequence generation and releases expired memory as
soon as possible. As a result, the generated sequence consists of
five cell preparation cycles. While the parallel SET operations are
not created intentionally, it is not uncommon that parallel resets
with 2-3 cells are created due to that the nodes expire simultane-
ously. The sequence optimization algorithm aims to maximize the
parallel cell preparation operations. First, the LOGIC sequence is
pruned to remove all the SET instructions in Figure 6(ii). Next,
the functional nodes within the pruned sequence are sequentially
processed. For this example, we consider a cell count threshold
of N = 5. In each step, the algorithm checks if any prepared cells
are remaining. The algorithm also keeps track of the set of active
nodes A and the set of expired nodes X. In Figure 6(iii)—(viii), we
sequentially process the first five functional nodes a—b—e—c—d

of the sequence. The figures show the changes in sets A and X and
the available prepared cell count for each node processing. After
the d is processed in Figure 6(viii), the count of the prepared cell is
0. Therefore cell preparation is required. In Figure 6(ix), all expired
nodes in X (a and b) are parallelly SET to prepare memory cells.
This sequential node processing and memory preparation steps are
continued until all the functional nodes are processed in the order
dictated by the pruned LOGIC sequence. The final sequence for the
PREP framework is shown in Figure 6(xi). The figure shows that
the number of cell preparation cycles is reduced by two cycles in
the optimized sequence. This improvement directly translates to
latency and energy improvements within the PREP framework.

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance of the
PREP framework. We conduct the experiments on an octa-core
machine with 3.60 GHz Intel Core i9 processor with NVIDIA RTX
2070 and 64 GB RAM. We define the arithmetic operations using
Verilog scripts. We utilize the ABC tool [12] with a custom NOR/INV
library to generate the MAGIC netlist. We develop the sequence
optimization tool using C++.

We compare the performance of the PREP framework with
respect to the state-of-the-art in-memory computing framework
LOGIC [15]. We also utilize the latency-optimized frameworks in
Talati et al. [21] (for addition) and Haj-Ali et al. [6] (for multiplica-
tion) for comparative evaluation. Note that the works in [6, 21] are
centered on sub-optimal manual decomposition of computation. For
a fair evaluation, we adopt the automated synthesis approach and
a similar architecture to the state-of-the-art LOGIC paradigm. This
also enables us to perform a direct comparison among the compet-
ing frameworks. The power-area costs of micro-architectural com-
ponents are appropriately adapted from [9, 19]. Cross-architectural
data transfer cost is estimated using the CACTI 7 tool [2].

In the subsequent sections, we first perform a sensitivity analysis
to determine the best parameter values for the PREP framework.

Execution Sequence Optimization for Processing In-Memory using Parallel Data Preparation

60
........... LOGIC Baseline Area H 180

1.1x LOGIC Area

— Locic

1.2x LOGIC Area
1.3x LOGIC Area
—+—1.5x LOGIC Area
—©— 2x LOGIC Area

50

N
o

N
=

- PREP-A

Talati
et al.

#Preparation WRITEs
with PREP
w
°

-
°

#Preparation WRITEs
with Different Frameworks

2 4 6

Adder Resolution (Bits) Functional Memory for 32-bit Adder

(scaled with respect to LOGIC baseline)
(@) (b)
Figure 7: (a) Trend of #preparation WRITEs using the PREP
framework for variable area (#cells) threshold and, (b) #prepa-
ration WRITEs vs area threshold for different frameworks.

Next, we evaluate the performance of the PREP framework for
MVM operations using 15 matrices from the SuiteSparse benchmark
suit [5].

5.1 Sensitivity Analysis

In this section, we first perform a sensitivity analysis by varying
the area (#cells) threshold within the PREP framework. The goal of
this experiment is to observe the impact of the parameter changes
within the PREP framework. Next, we perform an experiment to
quantify the degree of parallel cell preparation operations within
different frameworks.

5.1.1 Sensitivity Analysis for Cell Count Constraint. There exists
a direct correlation between the area (cell count) threshold and
the required number of SET operations within the PREP frame-
work. This is intuitive because, for a higher area threshold, the
PREP framework can execute more functional operations before a
cell preparation step is warranted. Figure 7(a) shows the trend of
preparation WRITE operations for different adder resolutions and
different area thresholds. It can be observed from the figure that for
higher area thresholds, the number of preparation WRITEs signifi-
cantly reduces. For instance, a mere 10% increase in area compared
to the LOGIC baseline area can reduce the number of preparation
WRITEs by 45% on average. Note that the graphs contain some
spikes for some adder resolutions (e.g., for the 30-bit adder). This is
due to that the execution sequencing algorithm within the LOGIC
framework is a greedy algorithm with a randomized component.
This leads to that for some adders the number of cell preparation
WRITESs spikes while attempting to optimize the area reuse.

An attractive feature of PREP is that the performance of the
framework can be tailored by tuning the area threshold. The full
potential of the PREP framework is illustrated in Figure 7(b) where
the change in the required number of cell preparation WRITEs for
32-bit addition using different memory allocations is illustrated.
The Figure highlights the LOGIC framework where the area is
minimum while the number of cell preparations is the highest. On
the other hand, the latency-optimized algorithm in Talati et al. [21]
incurs the minimum number of cell preparations while incurring
6.2x more area compared to the LOGIC framework. The PREP
framework introduces an opportunity to customize area-latency
performance. The figure highlights two points PREP-A and PREP-
L. PREP-A incurs the same area as the LOGIC framework while

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

80 LOGIC 6 PREP-A P PREP-L

5
60

IS
=
«

40

#Instances
#Instances
w
#Instances
=

N

20

-
e
n

1]
1 2 3 1] 10 20 30
#Cells Prepared/SET #Cells Prepared/SET

30 35 40 45
#Cells Prepared/SET

Figure 8: Parallel cell preparations for 32-bit addition.

reducing the number of cell preparation WRITEs using the PREP
data preparation algorithm. PREP-L further reduces the number of
cell preparation WRITEs while incurring 1.5x area compared to
the LOGIC framework. We do not select a higher area threshold
value for PREP-L because the improvement in latency tends to
saturate as shown in the figure. We use PREP-A and PREP-L for
MVM evaluation in the next section.

5.1.2 Parallel Cell Preparations. Figure 8 shows how many cells
are parallelly prepared in each data preparation instruction within
different frameworks. The figure shows that for 32-bit adder opera-
tion, the LOGIC framework performs in total of 179 cell preparation
operations. All of these cell preparation steps are restricted to a
parallel cell preparation of 1—3 cells. On the other hand, the PREP-A
framework incurs 41 cell preparation cycles and parallelly prepares
up to 30 cells. Finally, the PREP-L incurs only 7 cell preparation
cycles and parallelly sets cells in the range between 28 — 46 in each
instance.

5.2 Evaluation with MVM Applications

In this section, we evaluate the performance of the PREP framework
for MVM operations. In-memory computing is a promising solu-
tion to accelerate data-intensive applications that are dominated
by MVM operations. For instance, the systems of linear equations
can be solved using iterative refinement algorithms such as the
conjugate gradient method (CG) [7] and generalized minimal resid-
ual method (GMRES) [17]. In each iteration of these methods, an
expensive MVM operation is performed. In-memory computing
platforms can greatly accelerate this MVM process by performing
parallel in-situ operations.

To perform this comparative evaluation, we select 15 MVM-
based applications from the SuiteSpare benchmark suits [5]. The
applications are listed in Table 2. The applications are selected
from a wide range of scientific domains. The matrices within the

Table 2: Overview of benchmarks from the SuiteSparse Ma-
trix Collection [5].

Applications Systems Matrix Dimensions #Non-zeros

eris1176 Power Network Problem 1176 X 1176 18552
cegh2919 Structural Problem 2919 x 2919 321543
raefsky1 Computational Fluid Dynamics 3242 x 3242 293409
fxm3_6 Optimization Problem 5026 X 5026 94026
Na5 Theoretical/Quantum Chemistry 5832 X 5832 305630
EX5 Combinatorial Problem 6545 X 6545 295680
fp Electromagnetics Problem 7548 x 7548 834222
ex40 Computational Fluid Dynamics 7740 X 7740 456188
benzene Theoretical/Quantum Chemistry 8219 x 8219 242669
besstk33 Structural Problem 8738 x 8738 591904
graham1 Computational Fluid Dynamics 9035 X 9035 335472
net25 Optimization Problem 9520 X 9520 401200
bundle1 Computer Graphics/Vision 10581 X 10581 770811
Si10H16 Theoretical/Quantum Chemistry 17077 X 17077 875923
Goodwin_040 Computational Fluid Dynamics 17922 x 17922 561677

DAC 24, June 23-27, 2024, San Francisco, CA, USA

o o= now

eris1176 cegh2919 raefskyl fxm3_6

Norm-Area
(Trimmed at y=2)
=

BLOGIC 8Haj-Aliet al.
s 1 32
g t
= -
£ i
=i
£ i
5 12
z cegh2919
HLOGIC EHaj-Ali et al.
P
0 1s
%11
52
= =
S Zos g E §
EE
= g 0
2 < eris176 cegb2919 raefskyl fxm3_6 Nas 5 y
= BLOGIC EHaj-Ali et al.

Rashed, et al.

benzene besstk33 graham1

= PREP-A

BPREP-L

net25 bundlel

benzene besstk33

BPREP-A ®PREP-L

ex40 benzene besstk33 grahaml net25 bundlel Sil0H16 Goodwin_040
BPREP-A EPREP-L

Figure 9: Area-latency-energy overhead evaluation of different frameworks.

applications also have different data patterns, which impact the
performance of the computing paradigms.

The comparative area-latency-energy performance of different
paradigms is presented in Figure 9. The y-axis in the figures for
area-energy evaluation is trimmed at y = 2 for illustration pur-
poses. Our experiments show that the Haj-Ali et al. [6] framework
requires 12X more area on average compared to the LOGIC frame-
work. This is expected as the Haj-Ali et al. framework adopts a
latency-optimized algorithm where the area is unconstrained. On
the other hand, due to the cell count constraint on the PREP-A
framework, the area cost is equal to that of the LOGIC framework.
The figure also shows that the latency performance of the LOGIC
framework is the worst of the three paradigms due to its greedy
cell preparation operations. However, the Haj-Ali et al. framework
and PREP-A and PREP-L frameworks show comparable latency
performances. This is due to that the number of cell-preparation
WRITES is greatly reduced within the PREP framework. With the
data preparation optimization algorithm, the PREP-A and PREP-L
frameworks achieve 25% and 32% speedup compared to the LOGIC
framework, respectively. This speed-up also translates into a 27%
improvement in energy consumption within the PREP-A frame-
work, compared to the LOGIC framework. Conversely, due to the
massive hardware overhead, the Haj-Ali et al. framework is the
least energy-efficient of the three frameworks. This significant im-
provement in energy consumption within the PREP-A framework
is the result of its faster processing capability, which minimizes the
accumulated energy consumption of the architectural components.

6 CONCLUSION

In this work, we develop an area-constrained latency-optimized in-
memory computing framework to accelerate arithmetic operations.
The framework is centered on performing parallel cell preparation
operations on the expired computing nodes which is significantly
more efficient than serial cell preparation operations. The frame-
work offers superior energy and latency performance compared to
the state-of-the-art paradigm while incurring no additional crossbar
memory overhead. Additionally, the performance of the framework
can be customized by tuning the constraints. In future work, we
plan to implement the framework to accelerate new applications.

ACKNOWLEDGMENTS

This work was in part supported by NSF awards #2319399, #2408925,
and #2404036.

REFERENCES

[1] V. Balaji. Climbing down charney’s ladder: machine learning and the post-
dennard era of computational climate science. Philosophical Transactions of the
Royal Society A, 379(2194):20200085, 2021.

[2] R. Balasubramonian et al. Cacti 7: New tools for interconnect exploration in
innovative off-chip memories. ACM TACO, 14(2):1-25, 2017.

[3] J. Borghetti et al. ‘memristive’ switches enable ‘stateful’ logic operations via
material implication. Nature, 464(7290):873-876, 2010.

[4] E. Callaway. What’s next for the ai protein-folding revolution. Nature, 604:234-
238, 2022.

[5] T. A.Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1-25, 2011.

[6] A.Haj-Ali et al. Efficient algorithms for in-memory fixed point multiplication
using magic. In 2018 IEEE ISCAS, pages 1-5. IEEE, 2018.

[7] M.R. Hestenes. The conjugate gradient method for solving linear systems. In
Proc. Symp. Appl. Math VI, American Mathematical Society, pages 83-102, 1956.

[8] M. Ihme et al. Combustion machine learning: Principles, progress and prospects.
Progress in Energy and Combustion Science, 91:101010, 2022.

[9] M.Imani et al. Floatpim: In-memory acceleration of deep neural network training
with high precision. In Proceedings of the 46th ISCA, pages 802-815, 2019.

[10] S.Kvatinsky et al. Magic—memristor-aided logic. IEEE Transactions on Circuits
and Systems II: Express Briefs, 61(11):895-899, 2014.

[11] S. Li et al. Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In DAC, pages 1-6. IEEE, 2016.

[12] A. Mishchenko et al. Abc: A system for sequential synthesis and verification.

"http://www.eecs.berkeley.edu/alanmi/abc".

E. National Academies of Sciences, Medicine, et al. Quantum computing: progress

and prospects. 2019.

[14] M. Pandey et al. The transformational role of gpu computing and deep learning
in drug discovery. Nature Machine Intelligence, 4(3):211-221, 2022.

[15] M. R. H. Rashed et al. Logic synthesis for digital in-memory computing. In
Proceedings of the 41st IEEE/ACM ICCAD, pages 1-9, 2022.

[16] M. R. H. Rashed et al. Stream: Towards read-based in-memory computing for
streaming based processing for data-intensive applications. IEEE TCAD, 2023.

[17] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3):856—869, 1986.

[18] A. Sebastian et al. Memory devices and applications for in-memory computing.
Nature nanotechnology, 15(7):529-544, 2020.

[19] A. Shafiee et al. Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd ISCA, pages 14-26, 2016.

B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic comput-

ing. Nature Photonics, 15(2):102-114, 2021.

N. Talati et al. Logic design within memristive memories using memristor-aided

logic (magic). IEEE TNANO, 15(4):635-650, 2016.

S. Thijssen et al. Path: Evaluation of boolean logic using path-based in-memory

computing. In Proceedings of the 59th ACM/IEEE DAC, pages 1129-1134, 2022.

C. Xu et al. Overcoming the challenges of crossbar resistive memory architectures.

In 2015 IEEE 21st HPCA, pages 476-488. IEEE, 2015.

=
&

[20

[21

[22

[23

http://www.eecs.berkeley.edu/alanmi/abc

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Digital In-Memory Computing using MAGIC
	2.2 Serial vs. Parallel Cell Preparation

	3 Problem Formulation
	4 The PREP Framework
	4.1 Sequence Optimization for Data Preparation
	4.2 Example of Algorithm

	5 Experimental Evaluation
	5.1 Sensitivity Analysis
	5.2 Evaluation with MVM Applications

	6 Conclusion
	Acknowledgments
	References

