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ABSTRACT
We present a new xor-based attention function for e"cient
hardware implementation of transformers. While the standard
attention mechanism relies on matrix multiplication between the
key and the transpose of the query, we propose replacing the
computation of this attention function with bitwise xor operations.
We mathematically analyze the information-theoretic properties of
the standard multiplication-based attention, demonstrating that it
preserves input entropy, and then computationally show that the
xor-based attention approximately preserves the entropy of its
input despite small variations in correlations between the inputs.
Across various admittedly simple tasks, including arithmetic,
sorting, and text generation, we show comparable performance to
baseline methods using scaled GPT models. The xor-based
computation of the attention function shows substantial
improvement in power consumption, latency, and circuit area
compared to the corresponding multiplication-based attention
function. This hardware e"ciency makes xor-based attention
more compelling for the deployment of transformers under tight
resource constraints, opening new application domains in
sustainable energy-e"cient computing. Additional optimizations
to the xor-based attention function can further improve e"ciency
of transformers.
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1 INTRODUCTION
Transformer-based arti!cial intelligence models have
demonstrated impressive and hitherto unforeseen capabilities, but
their exponentially growing computational demands raise urgent
questions about both operating costs and sustainability. Data
centers and data networks consume massive amounts of
energy [6, 18], accounting for an estimated 2%-3% of global
electricity use in 2023. As human interfaces for discovering
knowledge on the Internet transition from search engines to large
language models, and users switch from search engines to
conversational queries on models like Claude, Gemini, GPT, Grok,
or public models, AI could end up consuming an even more
signi!cant portion of worldwide energy production [13, 15]. This
trajectory is clearly not sustainable.

Our work seeks to tackle this challenge by redesigning the
attention function that is central to large language models and
other transformers. Attention enables models to focus on the
relevant context by selectively weighting inputs. However, the
predominant approach relies on computationally intensive matrix
multiplications, which makes attention a performance bottleneck.
Inspired by the similarity in information-theoretic properties of
multiplication and the xor operation, we aim to overcome this
limitation by substituting matrix multiplication in the attention
function with xor operations during the calculation of the
attention. Although simple, this change represents a signi!cant
shift from mainstream practices. We demonstrate its viability on
admittedly simple examples and quantify substantial
improvements in power, latency, and area needs of hardware
implementation.

Prior work to improve the e"ciency of the attention
mechanism has focused primarily on three areas: algorithmic
advancements such as sparse and linear attention to reduce token
interactions [2, 21], model optimizations such as knowledge
distillation and pruning to compress models [4, 9, 11], and
hardware acceleration including circuit design and
parallelization [1, 15]. However, these approaches do not directly
address the core complexity of matrix multiplications and
consequent inevitable hardware ine"ciencies. In contrast, our
approach reshapes the computation of the attention function based
on information-theoretic insights about entropy preservation,
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diverging from current approaches and paving the way for
potentially useful advancements along these lines in the future.
While there has been work [23] on applying xor and other Boolean
gates to quantized neural networks in general, we are the !rst to
identify that attention can be accelerated using xor-based
approaches. The key contributions of our work are as follows:

(1) We present a new XOR-based attention function that can
lead to the design of transformer architectures and large
language models optimized for hardware e"ciency, thereby
introducing a new computation approach that signi!cantly
reduces the energy, latency, and hardware complexity of
such models.

(2) Our work o#ers an information-theoretic analysis of the
standard attention function and shows that the attention
function preserves the entropy of at least one of its inputs
under mild technical conditions, including those imposed
by Ostrowski’s theorem [22]. Then, we use computational
analysis to show that the XOR-based attention function
approximately retains the $ow of information from its
inputs to its output despite small variations in the
correlation between the inputs.

(3) We validate our theoretical propositions through
experiments such as sorting, arithmetic, and text generation,
showcasing the potential of our proposed design in various
admittedly simple scenarios.

(4) We show that the 16-bit XOR-based attention function is
13X more energy e"cient, 5X faster, and 39X smaller in area
than the multiplier-based approach.

In summary, our work reveals a promising path towards
developing large language models and other transformer models
that are more e"cient. The principle of logic-based attention we
establish can potentially shape new approaches for e"cient and
sustainable AI.

2 RELATEDWORK
Prior work has attempted to enhance the e"ciency of attention
mechanisms through three main approaches: algorithmic
advancement, model optimization, and hardware acceleration. Our
description of the related work omits several interesting and
important results due to space constraints.

2.1 Algorithmic Advancement
Several studies [2, 21] have sought to improve the computation of
the attention operation using ideas about the sparsity of the
attention matrix and its low rank. For example, the Sparse
Transformer reduces the complexity to O(𝐿

→
𝐿) and the Reformer

speeds up the attention operation to O(𝐿 log𝐿). The Linformer
uses the Johnson-Lindenstrauss lemma and an existential
argument to further reduce the complexity of the operation by
!nding a low-dimension projection that is logarithmic in the
original dimension of the attention matrix. These improvements
still rely on matrix multiplication and are inherently ine"cient for
hardware implementation. Further, our approach is orthogonal to
these ideas and may be suitable adapted for use in conjunction
with them, replacing multiplication with Boolean XOR operations.

2.2 Model Optimization
Quantization and pruning coupled with knowledge distillation has
been particularly helpful in enhancing the e"ciency of
transformer models [4, 9]. Quantization has enabled the
deployment of large language models on commodity GPU
hardware by deploying models with as few as 4 bits. More recently,
1-bit LLMs have been proposed that greatly push the boundaries of
quantization [11, 20]. Most of these approaches to optimize
models, such as knowledge distillation and quantization, will
remain applicable to our method.

2.3 Hardware Acceleration
There has been a lot of work on accelerating neural networks,
including transformers by creating specialized accelerators. We
present a new attention function that is hardware-friendly and
can be implemented e"ciently on multiple hardware platforms,
including existing CMOS and upcoming in-memory computing
technologies [5, 8, 12].

E#orts have been made to use Boolean logic [23] for binary
neural networks. In a recent approach [14], the transformer was
co-designed on an FPGA using sparse attention and dynamic
pipelining. The softmax function has been optimized for use in
transformers using a hardware-software co-design approach [16].
Mixed-scheme quantization has been used to design FPGA
solutions [19] for transformers used in computer vision. Hardware
optimizations such as token pruning and other methods have been
used to accelerate Bayesian transformers and transformers
deployed on crossbars [3, 10].

In contrast, our approach is di#erent because we redesign
attention based on fundamental information-theoretic insights on
the entropy preservation properties of the multiplication and the
XOR operation. This departs signi!cantly from current approaches
and opens up new avenues for algorithmic, model, and hardware
optimizations of the new attention function.

3 ATTENTION: BEYOND MULTIPLICATION
We brie$y discuss the attention function, and then motivate the
design of a new xor-based attention function using
information-theoretic arguments about the traditional attention
function that essentially involves matrix multiplication. Then, we
computationally show that an xor-based attention function
approximately preserves the information-theoretic properties of
the traditional attention function.

3.1 Attention Mechanism
In neural networks such as transformers, the attention mechanism
is used to focus on relevant sections of the inputs depending on the
context of the task and thereby enable both e"cient and adaptive
learning. As a result of the success of the attention mechanism,
transformers have become ubiquitous in large language models,
vision language models, and even scienti!c foundation models.

Mathematically speaking, the attention computation involves
three primary components:

(1) Queries: The query represents the current position in the
sequence whose attention is being computed. Given an input
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𝑀 , the query𝑁 =𝑂𝐿𝑀 uses a tensor𝑂𝐿 that can be learned
to identify the current position in the input sequence.

(2) Keys: Given a query, the key represents all the positions in
the input sequence that the query must pay attention. Given
an input 𝑀 , the key 𝑃 = 𝑂𝑀𝑀 uses a learnable tensor𝑂𝑀
to identify the position that should be “attended to” by the
query vector.

(3) Values: Given an input 𝑀 , the value 𝑄 = 𝑂𝑁𝑀 uses a
learnable tensor to identify the values that should be
weighed by the computed attention to produce the !nal
output of the attention mechanism.

Given the query, the key and the value vectors, the attention
mechanism is best described as the scaled dot-product between the
query and the key being used to compute a weighted version of the
value vector. Formally, we say that,

A(𝑁,𝑃) = 𝑁𝑃𝑂 (1)

Attn(𝑁,𝑃) = softmax

(
A(𝑁,𝑃)√

𝑅𝑃

)
𝑄 (2)

where 𝑅𝑃 is the dimensionality of the keys. Here, A(𝑁,𝑃) is the
attention function and Attn is the attention output. Our emphasis
in this paper is the redesign of the attention function A(𝑁,𝑃). To
this end, we !rst study the information-theoretic properties of
the classical attention function and then discover that the XOR
operation shows similar properties.

3.2 Information Theoretic Motivation
We motivate our redesign of the attention function A(𝑁,𝑃) by
focusing on the information $ow through this function. Ideally, an
attention function may not cause a signi!cant loss in the
information content of the output as compared to the information
content of the input. We denote by 𝑆 (𝑇) the singular value
decomposition (SVD) entropy of the matrix𝑇 . Given the singular
values 𝑈↑𝑄 of the matrix𝑇 , its SVD entropy is computed as follows:

𝑆 (𝑇) = ↓ 1
log𝑉

∑
𝑈𝑄 log𝑈𝑄 (3)

Here, 𝑉 is the number of singular values and 𝑈𝑄 = 𝑈↑𝑄 /𝑊𝑅 is the
normalized singular value, and 𝑊𝑅 =

∑
𝑈↑𝑄 is the sum of singular

values for the matrix𝑇 .
In particular, the SVD entropy of the Q matrix is given by

𝑆 (𝑁) = ↓ 1
log𝑃

∑
𝑈𝐿𝑄 log𝑈𝐿𝑄 , where 𝑈𝐿𝑄 are the normalized singular

values of 𝑁 . Similarly, the SVD entropy of a 𝑃 matrix:
𝑆 (𝑃) = ↓ 1

log𝑃
∑
𝑈𝑀𝑄 log𝑈𝑀𝑄 . We recall that a matrix and its

transpose have identical singular values. For the sake of simplicity,
we assume that both 𝑁 and 𝑃 are non-singular square matrices
with a Frobenius norm of unity.

T!"#$"% 3.1 (O&’$#(&)*’& T!"#$"% [22]). Let
𝑈↑0 (𝑀 ), . . . 𝑈↑𝑃 (𝑀 ) denote the singular values of a non-singular matrix
𝑀 and two n-square complex matrices 𝑋 and 𝑌. Let f be a symmetric
function of n real variables such that
𝑍 𝑆𝑇𝑈 (𝑎1, . . . , 𝑎𝑉) = 𝑍 (𝑏𝑇1 , . . . , 𝑏𝑇𝐿 ) is increasing in each 𝑎𝑄 and
convex in the region 𝑎𝑄 ↔ 0, then

𝑍 (𝑈↑1 (𝑋𝑌), . . . ,𝑈↑𝑃 (𝑋𝑌)) ↗ 𝑍 (𝑈↑1 (𝑋)𝑈↑1 (𝑌), . . . ,𝑈↑𝑃 (𝑋)𝑈
↑
𝑃 (𝑌)) (4)

L"%%+ 3.2. The function 𝑍 (𝑎1, . . . , 𝑎𝑉) =
∑
𝑎𝑄/𝑐 log(𝑎𝑄/𝑐),

where 𝑐 is a constant, satis!es the conditions of Ostrowski’s theorem.

P$##,. Wewill show that the function, 𝑍 , satis!es the conditions
of the Ostrowski’s theorem:

(1) The function 𝑍 is a symmetric function of 𝐿 real variables:
𝑎1, . . . 𝑎𝑉 .

(2) 𝑍 𝑆𝑇𝑈 (𝑎1, . . . , 𝑎𝑉) =
∑
𝑏
𝑀𝑁
𝑂 log 𝑀𝑁

𝑂 =
∑ 𝑇𝑁

𝑊 𝑏
𝑀𝑁
𝑂 is increasing in

each variable 𝑎𝑄 since its derivative is 𝑊𝑆𝑀𝑁 /𝑂+𝑇𝑁𝑆𝑀𝑁 /𝑂
𝑊2 ↔ 0 for

all 𝑎𝑄 ↔ 0.
(3) 𝑍 𝑆𝑇𝑈 (𝑎1, . . . , 𝑎𝑉) =

∑
𝑏
𝑀𝑁
𝑂 log 𝑀𝑁

𝑂 =
∑ 𝑇𝑁

𝑊 𝑏
𝑀𝑁
𝑂 has a second

derivative of 𝑆𝑀𝑁 /𝑂𝑇𝑁+2𝑋𝑆𝑀𝑁 /𝑂
𝑊3 ↔ 0 for all 𝑎𝑄 ↔ 0. Hence,

𝑍 𝑆𝑇𝑈 (𝑎1, . . . , 𝑎𝑉) is convex. ↭

Under the technical conditions imposed by the Ostrowski’s
theorem, we will establish the result showing that the SVD entropy
of the product is at least as large as the SVD entropy of one of the
input matrices, i.e., information is retained during the computation
of the attention function in traditional attention mechanisms.

L"%%+ 3.3. 𝑆 (𝑋(𝑁,𝑃)) ↔ min (𝑆 (𝑁), 𝑆 (𝑃))

P$##,. Consider a function related to the SVD entropy,
𝑍 (𝑎1, . . . , 𝑎𝑉) =

∑
𝑎𝑄/𝑊𝑌 log(𝑎𝑄/𝑊𝑌), where 𝑊𝑌 is the sum of

singular values of the attention function. From Theorem 3.1 and
Lemma 3.2, we get the following:

∑ 𝑈↑𝑄 (𝑁𝑃)
𝑊𝑌

log(
𝑈↑𝑄 (𝑁𝑃)

𝑊𝑌
)

↗
∑ 𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)

𝑊𝑌
log(

𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)
𝑊𝑌

) (5)

Now, the term on the left hand side can be connected to the
entropy of the attention from the de!nition of the attention function
and the SVD entropy:

↓(log𝑉) 𝑆 (𝑋) =
∑ 𝑈↑𝑄 (𝑁𝑃)

𝑊𝑌
log(

𝑈↑𝑄 (𝑁𝑃)
𝑊𝑌

) (6)

The term on the right side of Eqn 5 can be simpli!ed to Eqn. 7 using
the fact that

∑
𝑈↑𝑄 (𝑁𝑃) ↗ ∑

𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃), that is,
∑
𝑈↑𝑄 (𝑁𝑃) ↗∑

𝑈↑𝑄 (𝑁) and
∑
𝑈↑𝑄 (𝑁𝑃) ↗ ∑

𝑈↑𝑄 (𝑃) for matrices 𝑁 and 𝑃 with
Forbenius norm 1. We recall that singular values are always non-
negative. Eqn. 7 holds true for both 𝑊 = 𝑊𝑃 and 𝑊 = 𝑊𝐿 .

∑ 𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)
𝑊𝑌

log(
𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)

𝑊𝑌
)

↗
𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)

𝑊
log(

𝑈↑𝑄 (𝑁)𝑈↑𝑄 (𝑃)
𝑊

) (7)

↗ max
(
𝑈↑𝑄 (𝑃)
𝑊𝑀

log(
𝑈↑𝑄 (𝑃)
𝑊𝑀

),
𝑈↑𝑄 (𝑁)
𝑊𝐿

log(
𝑈↑𝑄 (𝑁)
𝑊𝐿

)
)

(8)

↗ max (↓(log𝑉) 𝑆 (𝑁),↓(log𝑉) 𝑆 (𝑃)) (9)

Eqn. 8 follows from Eqn. 7 by using the fact that 𝑁 and 𝑃 have a
Forbenius norm of 1.

Putting together Eqn. 5 and Eqn. 9, we get the following:

𝑆 (𝑋) ↔ min (𝑆 (𝑁), 𝑆 (𝑃)) (10)

Thus, the SVD entropy of the attention function is at least as large as
the smallest of the SVD entropy of the query𝑁 and key𝑃 terms. ↭
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3.3 Information Theory and Bitwise Operations
In the previous section, we saw that the traditional attention
operation has an interesting information-theoretic interpretation
as it does not lead to a loss of information. The design of our new
attention function is based on our analysis of the information $ow
between the output and the input of bit-vector operations. A
bitwise operation between two bit-vectors that causes a signi!cant
loss of information may be undesirable for use as an attention
function. In Table 1, we show how di#erent bitwise operations,
such as or (nor), and (nand), and xor di#erently in$uence the $ow
of information from their inputs to the outputs by measuring the
di#erence in the entropy of the inputs and the entropy of the
output. The table shows inputs with 16 bits and shows results for a
million samples per entry.

Table 1: In!uence of Bitwise Operations on Information Flow

Operation Bit Length Correlation Di"erence Entropy

AND 16-bits
-0.5 -20.60%
0.0 -19.02%
0.5 -18.07%

OR 16-bits
-0.5 -20.61%
0.0 -19.01%
0.5 -18.11%

XOR 16-bits

-0.9 -4.61%
-0.5 -0.76%
0.0 -0.15%
0.5 -0.77%
0.9 -4.61%

Table 1 shows how the bitwise XOR function is more e#ective
in propagating the entropy of its inputs to the outputs, and other
bitwise operators are not as e#ective at transmitting information
from the query and the key vector to the attention function. Based
on this motivation, we de!ne a new XOR-based attention function,
as de!ned below:

A↘ (𝑁,𝑃) = 𝑁 ↘ 𝑃𝑂 (11)

𝑋𝑄 𝑍 =
𝑉∑

𝑃=1
𝑁𝑄𝑃 ↘ (𝑃𝑂 )𝑃 𝑍 (12)

We discretize the query and the key vectors before computing the
attention using the XOR operation above, and then employ the new
attention function to weigh the value items as earlier.

Attn↘ (𝑁,𝑃) = softmax

(
A↘ (𝑁,𝑃)√

𝑅𝑃

)
𝑄 (13)

where 𝑅𝑃 is the dimensionality of the keys. Here, A(𝑁,𝑃) is the
attention function and Attn is the attention output.

4 EXPERIMENTAL RESULTS
We evaluate the e"cacy of our XOR-based attention function by
replacing the traditional attention function with this new function
in small-scale variants of the GPT model, including GPT-2. Our
goal is to show that the XOR-based attention function is capable of
learning concepts and shows comparable performance with the
traditional attention mechanism on admittedly simple tasks. We

Table 2: Attention mechanism comparison – sorting.

Length of Input Number of
Distinct Integers

Attention Mechanisms

Multiplication XOR

10 3 100.00% 100.00%
10 5 99.94% 99.96%
10 7 99.24% 99.84%
10 9 99.84% 99.46%
20 3 99.78% 99.78%
20 5 99.48% 97.92%
20 7 99.60% 99.46%
20 9 99.52% 98.84%

present a quantitative analysis of learning problems such as
sorting and arithmetic, and the change in energy, area and latency
requirements of the hardware implementation. We perform a
qualitative analysis on the text generation task.

All of our experiments were performed on a single node with 112
processor cores, 1.5 TB of RAM, and 8 A100 GPUs each having 80GB
of RAM. The relatively small and simple examples demonstrate
that the transformer model can learn using this new XOR-based
attention function. Future research will explore the e#ectiveness of
the novel attention function within larger-scale, instruction-tuned
language models, promising even more informative evaluation and
deeper insights in this design.

4.1 Sorting with GPT-nano
In our !rst experiment, we sought to learn how to sort sequences
using the new XOR-based attention mechanism that we have
developed, and compare it with the traditional attention based on
multiplication. The essence of the learning problem is as follows:
Given a random list of integers, the model aims to produce a
sorted version of that list. This basic sorting task provides a
platform for understanding and evaluating the model’s capability
to recognize patterns and apply logical sequencing rules, as well as
to evaluate the e"cacy of our new XOR-based attention function.

The model, GPT-nano, is a scaled-down variant of larger GPT
models, tailored for reduced complexity operations. It comprises of
3 layers with 3 attention heads each and an embedding dimension
of 48, substantially smaller than its full-sized counterparts. This
model is trained on a custom dataset comprising sequences of
integers of !xed length, where the target is the sorted sequence.
The data set is generated to ensure a blend of di"culty levels by
occasionally amplifying the instances with a higher number of
repeated integers, which represents scenarios that challenge the
model. The data set is divided into training and test sets, with a
distribution ratio that ensures 25% of the examples are reserved
randomly for testing, selected via a hashing mechanism. The
sequences fed into the transformer are preprocessed to contain
both the input and the output concatenated, with the latter shifted
by one position. Training is carried out using an AdamW optimizer
with a learning rate of 10↓4 and 10,000 iterations. During
evaluation, the model is tasked with sorting unseen sequences and
its predictions are compared against the ground truth.

Table 2 shows the results of sequences of length 10 and 20
involving 3 to 9 distinct integers. Traditional multiplication-based
attention achieves an average accuracy of 99.68% while the
XOR-based mechanism achieves an average accuracy of 99.40%.
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4.2 Adding with GPT
We assessed our implementation of XOR-based attention
mechanism in generative pre-trained transformer models using the
addition of two inputs with a small number of digits. The objective
is to investigate the e"cacy of this novel attention mechanism in
this arithmetic computational task, and compare its performance
with the conventional multiplication-based attention mechanism.

Three GPT models were selected for this experiment: GPT-nano,
GPT-mini, and GPT-2. GPT-nano is a highly compact model
designed for e"cient computation that was discussed earlier. The
GPT-mini model is designed as a scaled-down version of larger
models, it comprises of 6 layers, 6 heads, and an embedding size of
192. This model strikes a balance between computational e"ciency
and the ability to handle moderately complex tasks. The vanilla
GPT-2 model consists of 12 layers, 12 heads, and an embedding
size of 768, totaling approximately 124 million parameters. This
con!guration represents a fairly complex benchmark that can still
be successfully trained on A100 GPUs.

The diverse nature of these models allows for an investigation
into the e#ectiveness of the XOR-based attention mechanism
across di#erent scales of model architecture and complexity. Each
model was evaluated using two distinct attention mechanisms: (i)
standard multiplication-based attention as a control and (ii)
XOR-based attention.

Table 3: Results by model and attention mechanism

Model Number
of Digits

Attention Mechanism

Multiplication XOR

GPT-nano 2 100.0% 100.0%
3 100.0% 100.0%
4 100.0% 99.90%

GPT-mini 2 100.0% 100.0%
3 100.0% 100.0%
4 100.0% 100.0%

GPT2 2 100.0% 100.0%
3 100.0% 100.0%
4 100.0% 99.90%

As shown in Table 3, XOR-based attention mechanism shows
comparable and sometimes equivalent performance to the
traditional multiplication-based attention despite the simplicity
and e"ciency of the XOR operation. This clearly demonstrates
that the XOR-based attention function is capable of learning for
such tasks in transformer models.

We compared our new XOR-based attention function with
standard multiplication-based attention in the context of neural
machine translation. We utilize the GPT-2 model and the Multi30k
German-English translation task as our testbed. The performance
of each model is evaluated quantitatively on the basis of the loss
function. The XOR-based attention does not perform well
compared to the multiplication-based attention and achieves a
higher loss. We attribute this to the fact that the optimization
procedure for the XOR-based attention function may need to be
customized.

Table 4: Metrics for Multiplication with Di"erent Bit-widths

Bit-width Power (mW) Latency (ns) Area (um2)

4 bits 0.02 1.18 147.83
6 bits 0.06 1.51 358.08
8 bits 0.12 1.83 658.43
10 bits 0.19 2.16 1048.89
16 bits 0.52 3.88 2966.45

4.3 Shakespeare Dataset using GPT-mini
We trained the GPT-mini model with 6 layers, 6 heads and 192
dimensional embedding from scratch on the Shakespeare data set
using the standard attention and our XOR-based attention
function. Here is a sample response from the GPT-2 model that
was trained using a multiplication-based attention mechanism.

O God, O God!
SLY. A heart's no lord haim for that he seas the deed matting
throughly.

POST. Marry haphe all!
FIRST OBY. What in honest fors so discove, suse my suffer iends!
SIR JOHN. I will prosce me ithe wear he what I as true his? No

Exeunt PISANIO
BYETR. Thy slee ave the most dog.

CASSIUS. Say, they have this soner stand.
SICINIUS. Ay, madam, felel!
THURIO. Neer, fie; in my past ble indure wash an thou,
And I'll be a womine my the lork.

The response from the GPT-2 model accelerated using the XOR-
based attention is shown below.

O God, O God! fellow! Who's the breast as
makes a company? O leave a whipt? Ho! A pollot of women!

angels! He is hear! He shath day whill sain.
HOLASTESSS. And have to wof true he!
CAMILLO. Who has you then better?
HESPEED. Hath, I honest the hour of his greetingesss
And a man saffections.

CALIBAN. Hear you.
SON. CHALLOTES. Here hope disciplin'd where was this
A wand we furying.

FRENCHMENAS. O loutse man in the dead oof,
And much they darest moonshing all forese,
Betwee

The standard and the XOR-based approach both get the structure
of the response correct in terms of identifying dialogue and the
speci!c character of the sentences in the play. However, due to the
small size of the models, both of the trained models fail to achieve
the kind of realistic responses that larger models, such as GPT-4,
are able to produce. The experiment shows that the XOR-based
attention approach has similar qualitative performance in this
setting as the standard attention operation.

5 EFFICIENCY: MULTIPLICATION VS. XOR
We synthesize logic circuits using the Synopsis Design Compiler
with the 45nm FreePDK45 standard cell library [17]. We employ the
compile_ultra command and utilize the DC Ultra synthesis mode
to generate gate-level netlists for the designs. We set the area as
unconstrained to optimize for power and latency.

Table 4 shows the size of the multiplier circuit required to
implement the multiplication of di#erent bit widths. We have
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Table 5: Metrics for XOR with Di"erent Bit-widths

Bit-width Power (mW) Latency (ns) Area (um2)

4 bits 0.01 0.69 18.76
6 bits 0.02 0.69 28.14
8 bits 0.02 0.69 37.52
10 bits 0.03 0.69 46.90
16 bits 0.04 0.69 75.04

implemented the !xed bit-width multiplier to compare it with our
!xed-width XOR logic. As shown in Table 4, increasing the bit
width from 4 bits to 16 bits leads to a 26X increase in the power
required for the computation. Similarly, the area required to
perform the computation increases by a factor of 20.

Our XOR-based attention function uses bitwise XOR between
the query and the key matrices. We study the size, energy, and
time required to implement the XOR computation for bit vectors
with varying bit widths. In Table 5, we show that the power and
computation time required by the XOR operation increase linearly
with the bit width of the input. This is in sharp contrast to the
rapid growth in the compute energy and compute time faced by
the implementation of the multiplication operation.

Table 4 and 5 show that the power requirement of the XOR
implementation is 6X smaller for 8 bits and about 13X smaller than
the multiplier for 16 bits. Similarly, the latency for the 16-bit XOR
implementation is about 5X lower than that of the corresponding
multiplier. The area needed for the XOR implementation is 39X
smaller than that of the multiplier for 16 bits.

6 CONCLUSIONS
We present a new XOR-based attention function calculation that
enables substantial reductions in energy consumption, latency, and
area compared to the matrix multiplication-based attention
function computation. We validate the potential of XOR attention
in various simple tasks, including arithmetic, sorting, and text
generation using scaled GPT models. Our approach realizes
substantial hardware bene!ts, as illustrated in our prototypical
evaluation on a 45 nm technology. Future work will include an
evaluation of the new attention function on larger multi-modal
models with more complex benchmarks, re-design of components
of the attention mechanism that still use matrix multiplication, the
use of automated synthesis methods [7], and exploring potential
synergies with quantized LLMs [11].
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