
Equivalence Checking for Flow-Based Computing
using Iterative SAT Solving

Sven Thijssen1, Muhammad Rashedul Haq Rashed2, Md Rubel Ahmed3, Suraj Singireddy4, Sumit Kumar Jha5, Rickard Ewetz6
1Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA

2Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
3Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA

4Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
5Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, USA

6Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
sthijssen@fau.edu,muhammad.rashed@uta.edu,mdrubel.ahmed@ucf.edu,suraj.singireddy@utsa.edu,sumit.jha@!u.edu,rewetz@u".edu

Abstract
Processing in-memory is projected to shatter the von Neumann
bottleneck and enable acceleration of data-intensive applications.
Flow-based computing is an e#cient in-memory computing para-
digm for accelerating the execution of Boolean logic. While recent
synthesis algorithms can map complex functions into "ow-based
computing circuits, the functional correctness cannot be veri!ed us-
ing state-of-the-art equivalence checking techniques. The challenge
is that non-volatile memory devices are intrinsically bi-directional,
which introduces cycles in the computational graph. These cycles
break traditional equivalence checking methods that are based on
SAT formulations. In this paper, we propose a framework for equiv-
alence checking of "ow-based computing circuits that is called
FlowSAT. The framework captures each circuit using an undirected
computational graph. The key idea of FlowSAT is to introduce
helper variables, in the form of arrows, that dynamically convert
the undirected graph into a directed graph. This facilitates equiva-
lence checking to be performed using traditional SAT formulations.
However, it is prohibitively expensive to ban all possible cycles
using arrow variables. Therefore, we propose to eliminate cycles
by iteratively adding constraints to the SAT formulation. Our ex-
perimental evaluation demonstrates that FlowSAT is up to an order
of magnitude faster than state-of-the-art methods. The framework
is capable of verifying all 20/20 benchmark circuits, while the pre-
vious state-of-the-art technique is only capable of verifying 12/20
circuits within a time limit of one hour.

ACM Reference Format:
Sven Thijssen, Muhammad Rashedul Haq Rashed, Md Rubel Ahmed, Suraj
Singireddy, Sumit Kumar Jha, Rickard Ewetz. 2024. Equivalence Checking
for Flow-Based Computing using Iterative SAT Solving. In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’24).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3676721

This work was in part supported by NSF #2319399 and NSF #2404036. The research
was conducted while Sven Thijssen, Muhammed Rashedul Haq Rashed, and Rickard
Ewetz were a#liated with the University of Central Florida.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676721

1 Introduction
With the advent of data-centered applications, the slow-down of
Moore’s law [41], and the end of Dennard scaling [13, 45], there
have been substantial investments in emerging technologies and
alternative computing paradigms [1, 21, 29, 48], such as in-memory
computing. Processing in-memory (PIM) can be realized using
traditional CMOS devices or emerging non-volatile memory de-
vices such as resistive random-access memory (ReRAM) [47], spin-
transfer torquemagnetic random-accessmemory (STT-MRAM) [18],
phase change memory (PCM) [7], and ferroelectric !eld e$ect
transistors (FeFET) [2]. In addition to minimizing standby power
consumption, the non-volatile memory devices facilitate energy-
e#cient analog in-memory computation. Moreover, in-memory
computing systems perform computationwithin thememory, which
paves the way to breaking the Von-Neumman barrier and unleash-
ing orders of magnitude (up to three) improvements in energy-
e#ciency [19, 27].

Many logic styles for PIM have been proposed, including solu-
tions based on analog matrix-vector multiplication [17], Bit-wise-
in-bulk [28], material implication logic (IMPLY) [5], memristor-
aided logic (MAGIC) [26], majority-based logic (MAJORITY) [14],
path-based computing (PATH) [38], and "ow-based computing
(FLOW) [23]. While analog in-memory computing has appeal-
ing properties for accelerating applications that can tolerate low-
precision (e.g. neural networks and search), many other applications
require digital in-memory computing to provide guarantees on the
computational accuracy [32]. Several contenders have emerged for
accelerating Boolean logic using in-memory computing [5, 26, 38].
Among these, "ow-based computing has demonstrated immense
potential due to the fast and e#cient computations [36].

Research on "ow-based computing has primarily focused on
mapping a Boolean function 𝐿 to a crossbar design D. Solutions
include approaches such as model counting [9], conjunctive nor-
mal form [43], and binary decision diagrams (BDDs) [8]. However,
equally important is the problem of verifying the functional cor-
rectness using equivalence checking. Equivalence checking is used
to ensure that no errors are introduced within logical optimization
techniques. Equivalence checking is also a critical tool for test and
debugging [34]. Equivalence checking for traditional CMOS circuits
is performed using SAT solving [30], as follows: a miter circuit is
!rst formed using the designed circuit D and the speci!cation.
Next, a SAT problem is formulated and solved to identify any in-
puts that give di$erent outputs from the design and speci!cation.

https://doi.org/10.1145/3676536.3676721
https://doi.org/10.1145/3676536.3676721

ICCAD ’24, October 27–31, 2024, New York, NY, USA S. Thijssen et al.

Figure 1: Boolean functions can be executed using !ow-based computing using a synthesis and evaluation step. (a) In the "rst
step, the input is a speci"cation in, for example, BLIF "le format, is (b) compiled into a crossbar design [36]. In the second
step, (c) the non-volatile memory devices are programmed to high or low resistive states, depending on the truth values of the
input variables (𝑀1, 𝑀2, 𝑀3). (d) Finally, the Boolean function (𝑁) is evaluated by applying a voltage at the input and grounding the
output. Subsequently, an electrical current flows through the programmed crossbar circuit. When the electrical current reaches
the output, the Boolean function evaluates to true.

The approach is fast and e#cient and leverages that the computa-
tional graph of CMOS circuits is acyclic [30]. Unfortunately, the
equivalence checking problem for "ow-based computing is signi!-
cantly more challenging due to the fact that non-volatile memory
devices are bidirectional. This results in the underlying computa-
tional graph being undirected, which allows cycles to be formed
in the graph. These cycles break standard equivalence checking
approaches based on traditional SAT formulations.

Early investigations on equivalence checking for "ow-based
computing are based on brute-force enumeration [10], graph reach-
ability [37], recurrent neural networks (RNNs) [34]. These methods
only scale to crossbar designs of modest size. Mainly due to the
exponential time complexity with respect to the number of input
variables. A more recent work performs equivalence checking us-
ing bounded model checking (BMC) [40]. That work decoupled the
undirected graph into a directed graph by replicating the crossbar
(𝑂 +𝑃) times, which enables equivalence checking methods to be
scaled up with one to two orders of magnitude [40]. Unfortunately,
the size of the SAT formulation grows rapidly with the size of the
crossbar, making it unable to verify large crossbar designs.

In this paper, we propose a framework for equivalence checking
of "ow-based computing circuits called FlowSAT. The key idea of
the framework is to introduce an arrow variable that speci!es the
direction of each edge in the underlying computational graph. The
arrow variables e$ectively convert the undirected graph into a di-
rected graph without replicating the crossbar design as in [40]. This
results in a substantially more concise SAT formulation. The arrow
variables specify the direction of the current "ow with respect to
a particular input vector. To eliminate current "owing in cycles
within the crossbar, constraints using the arrows must be added to
ban the cycles. However, it is prohibitively expensive to enumerate
all possible cycles within a crossbar design [12]. Moreover, many
cycles will, in reality, never occur due to con"icting Boolean vari-
ables. For example, a cycle containing a Boolean variable 𝑀 and its
complement ¬𝑀 will never be formed. Therefore, in the FlowSAT
framework, we propose to iteratively and incrementally add con-
straints that eliminate cycles. This results in a SAT formulation with
𝑄 (𝑃+𝑂 +𝑅) variables, where𝑃 ,𝑂 ,𝑅 , are the number of wordlines,
bitlines, and memristors with a Boolean variable assigned, respec-
tively. This is substantially fewer variables than the state-of-the-art

method XSAT, which requires𝑄 ((𝑃 +𝑂) · (𝑂𝑃) +𝑅) variables. For
our experimental evaluation, we compare our proposed FlowSAT
framework with enumeration [10], RNN [34], CHECK [37], and
XSAT [40] on 20 benchmarks. This comparison is performed for
both the equivalent case and the nonequivalent case. From the eval-
uation, we conclude that FlowSAT is an order of magnitude faster
than the state-of-the-art framework XSAT. Moreover, FlowSAT is
the only framework that is able to prove equivalence for all 20
benchmark circuits. Furthermore, we analyze the e$ects of cycles
on the behavior of our proposed iterative SAT formulation.

The paper is organized as follows: preliminaries are provided in
Section 2, where we discuss "ow-based computing and equivalence
checking. The FlowSAT framework is introduced in Section 3. The
experimental evaluation is discussed in Section 4. The paper is
concluded in Section 5.

2 Preliminaries
2.1 Flow-Based Computing
Flow-based computing [31, 39] is a digital in-memory computing
paradigm on crossbar arrays. A crossbar is a mesh of two ormultiple
layers of conducting nanowires, as shown in Fig. 1(c). Each layer
is perpendicular to its adjacent layers, and nanowires in a layer
are parallel to one another. Between two consecutive layers, NVM
devices connect nanowires at the intersections. As shown in Fig. 1,
evaluation of Boolean functions is performed using two steps: (1) a
synthesis step and (2) an evaluation step.

Step 1: Synthesis. In this step, a Boolean function (speci!ca-
tion) is provided as input, as shown in Figure 1(a). The speci!cation
may be in BLIF, Verilog, or PLA !le format, which is subsequently
synthesized into a crossbar circuit design, as shown in Figure 1(b).
Here, 𝑁 = (𝑀1 →¬𝑀2 →¬𝑀3) ↑𝑀3 is the speci!cation. In the crossbar
circuit design, the input variables ({𝑀1, 𝑀2, 𝑀3}), the negation of the
input variables ({¬𝑀1,¬𝑀2,¬𝑀3}), and the truth values ({0, 1}) are as-
signed to the non-volatile memory devices, as well as the wordlines
for the input and output. A wide variety of synthesis techniques
have been proposed to construct a crossbar circuit design for a
given Boolean function. These techniques have been conjunctive
normal forms (CNFs) [43], negation normal forms (NNFs) [23], free
binary decision diagrams (FBDDs) [16], and reduced ordered binary
decision diagrams (ROBDDs) [8].

Equivalence Checking for Flow-Based Computing using Iterative SAT Solving ICCAD ’24, October 27–31, 2024, New York, NY, USA

Step 2: Evaluation. In this step, the Boolean function is eval-
uated for an assignment of truth values to the input variables
({𝑀1 ↓↔ 1, 𝑀2 ↓↔ 0, 𝑀3 ↓↔ 0}. Based on the truth values, the non-
volatile memory devices are programmed to high or low resistive
states (HRS/LRS) for a logical ‘0’ or ‘1’, respectively. In Figure 1(c),
the state of the programmed crossbar circuit is shown, where the
NVM devices are either in LRS (dark gray) or HRS (white). The last
sub-step, the Boolean function, is evaluated by applying a voltage
at the input and grounding the output wordline. Consequently, an
electrical current "ows through the nanowires and NVM devices of
the crossbar array, as shown in Figure 1(d). When an electrical cur-
rent is (not) measured at the output, the Boolean function evaluates
to true (false).

(a) (b)
Figure 2: Example of equivalence checking !ow using SAT.
(a) The miter circuit of an 𝑁1 = 𝑀1 → 𝑀2 from speci"cation
and using a !ow-based computing circuit. (b) The solution
from the SAT solver both in terms of variables and using a
graphical realization. The SAT solver determines that the cir-
cuits are non-equivalent. Graphically, it can be observed that
bitline 𝑆1 drives wordline𝑇2 and vice versa. This situation
could not occur in a circuit with directed gates.
2.2 Equivalence Checking
Equivalence checking is the problem of verifying the functional
equivalence between a circuit design and a speci!cation (also re-
ferred to as “golden model”). Even though this is an NP-hard prob-
lem, over the years, many techniques have been proposed, resulting
in hybrid solutions. For example, techniques for equivalence check-
ing may include one or more of the following: simulation, synthesis,
and SAT solving [30].

Simulation may be an e$ective way to show non-equivalence
between two circuits. When the input space is small, simulation
may be used to show equivalence [25]. However, when the input
space is large, simulation may not be a scalable method and can
be used in combination with formal methods. Synthesis can be
leveraged for equivalence checking. For example, given a variable
ordering, binary decision diagrams are canonical representations
for a Boolean function. By compiling both the design and speci!ca-
tion into a BDD, the two implementations can easily be compared.
Further, and-inverter graphs (AIGs) have been employed as in-
termediate data structures to reduce the overall problem size [6].
Lastly, one of the most successful methods for determining (non-)
equivalence between two circuits is formulating the problem as a
satis!ability (SAT) problem [12, 35]. To formulate the problem as a
SAT problem, the two circuits are bound together by constructing
a miter circuit. For the miter, the same output variables in both cir-
cuits are joined together using an XOR gate, which is subsequently

joined together using an OR gate (disjoined). Then, the circuit is
converted into conjunctive normal form (CNF). CNF is a format
for a Boolean expression that consists of a conjunction (AND) of
clauses, where a clause is a disjunction (OR) of Boolean literals.
The CNF representation of a circuit can directly be obtained using
Tseitin’s transformation [42]. Many conversions, such as Tseitin’s
transformation, have been proposed to obtain a CNF formulation
for a Boolean formula. Lastly, the CNF formulation is fed to a SAT
solver [35]. When the SAT problem is UNSAT, the circuits are equiv-
alent because no assignment of the input variables can be found
such that the output variables of both circuits are di$erent. On the
other hand, when the SAT problem results in SAT, such assignment
can be found and both circuits are non-equivalent. SAT solvers
have been !ne-tuned over the years with the objective of reducing
the overall runtime.

2.3 SAT Formulations and Undirected Graphs
In this section, we outline the challenge of performing equivalence
checking for circuits with bi-directional devices. We exemplify the
challenge using a minimal example in Figure 2.

The !gure shows a speci!cation of the Boolean functions 𝑁 =
𝑀1 → 𝑀2. A correct realization of the circuit using crossbar design
D for "ow-based computing is shown in Figure 2(a). Both the spec-
i!cation and the crossbar design are connected to an XOR gate to
form a miter circuit. Next, the miter circuit is translated into a CNF
representation using Tseitin’s transformation. It is straightforward
to translate the AND-gate and XOR gate into CNF form. To trans-
late crossbar design into CNF, a Boolean variable is created for each
wordline (𝑇1,𝑇2) and bitline (𝑆1). Next, two clauses are added per
memristor to capture their functional behavior (details in the next
section). The clauses ensure that the wordline and bitline have the
same value if the memristor connecting the two are turned on. We
also introduce a constraint that ensures that a wordline (or bitline)
can only be true if at least one bitline connected to the wordline is
true and the corresponding memristor is true. The outlined formu-
lation is fed to a SAT solver. As shown in the !gure, the SAT solver
determines that the formulation is SAT and that the two circuits are
not equivalent. This is problematic because the crossbar design D
is a correct realization of the 𝑁 . The error stems from the fact that
when 𝑀1 = 0 and 𝑀2 = 1, the output should be equal to 0. However,
the example shows that bitline 𝑆1 is 1 and wordline𝑇2 is 1, but
neither is connected to the input. Essentially, the bitline-world line
pair is driving itself using a cycle. The SAT solver can form the
cycles since the underlying computational graph is undirected due
to the bidirectional devices. However, there is no physical realiza-
tion of such cycles. Moreover, the crossbar cannot easily be made
directed since the "ow of current across a memristor may change
for di$erent inputs.

This problem was solved by replicating the crossbar (𝑂 + 𝑃)
times using Bounded model checking in XSAT [40]. The replication
(or time unrolling) converts the undirected graph into a directed
graph at the expense of making the SAT formulation have a factor
of (𝑂 +𝑃) more variables. In this work, we instead introduce arrow
variables that convert the undirected graph into an acyclic graph
for each input vector, i.e., the acyclic graph de!ned by the arrow
variables may change for each input.

ICCAD ’24, October 27–31, 2024, New York, NY, USA S. Thijssen et al.

3 The FlowSAT Framework
In this section, we introduce the FlowSAT framework. The input
to the framework is a speci!cation of a function 𝐿 and a crossbar
design D. The objective is to verify if the speci!cation and the
crossbar design are equivalent. The output from the framework
is equivalent or not equivalent. An overview of the framework is
shown in Figure 3.

Our proposed solution is based on introducing an arrow helper
variable for each memristor in the crossbar. The arrow variables
designate the direction of the current "owing through each mem-
ristor device. Using the arrows, it is straightforward to ensure that
a bitline-wordline pair cannot drive each other, which was the
root cause of the failure scenario in Figure 2. We present a SAT
formulation that solves equivalence checking problem for cycles
of maximum length of 2 in Section 3.1. The length of a cycle is
de!ned as the number of memristor devices that must be traversed
to return to the origin. In Section 3.2, we extend the framework to
handle cycles of length 𝑈 > 2. The two cases are handled di$erently
because the arrow variables directly eliminate all cycles of length
2. However, explicit constraints are required to be added to ban
cycles of longer length. Nevertheless, it is prohibitively expensive to
enumerate and ban all possible cycles in an undirected graph [12].
Fortunately, it is not necessary to ban all cycles because most cycles
cannot occur in reality. For example, current cannot "ow through
a cycle containing a Boolean variable 𝑀 and its complement ¬𝑀 .
Therefore, we propose to instead analyze the solution from the SAT
solver and incrementally and iteratively ban cycles, which is shown
at the bottom of Figure 3.

Figure 3: Overview of the FlowSAT framework.

3.1 Base Formulation
The base formulation consists of three types of constraints: (1) mem-
ristor constraints, (2) driver constraints, and (3) arrow constraints.
Each of the constraints is discussed further in subsequent sections.

3.1.1 Variables. Given a crossbar circuit with dimensions𝑃 ↗ 𝑂 ,
we introduce variables for both the𝑃 wordlines and the 𝑂 bitlines.
These variables are𝑇𝐿 , 1 ↘ 𝑉 ↘ 𝑃 and 𝑆𝐿 , 1 ↘ 𝑉 ↘ 𝑂 . This is a total
of (𝑂 +𝑃) variables for a 𝑂𝑀𝑃 crossbar.

3.1.2 Memristor Constraints. For each memristor 𝑃𝐿, 𝑀 , 1 ↘ 𝑉 ↘
𝑃, 1 ↘ 𝑊 ↘ 𝑂 , we introduce a constraint that models the behav-
ior of the intersection at the wordline𝑇𝐿 and bitline 𝑆 𝑀 . Given an
electrical current on a wordline𝑇𝐿 (bitline 𝑆 𝑀), then the electrical

current can only dissipate on the bitline 𝑆 𝑀 (wordline𝑇𝐿) if the
memristor𝑃𝐿, 𝑀 at its intersection is in a low resistive state. Other-
wise, if there is no electrical current on wordline𝑇𝐿 (bitline 𝑆 𝑀),
then the state of the bitline 𝑆 𝑀 (wordline𝑇𝐿) is inconclusive. The bit-
line may carry an electrical current by means of another wordline,
or may not carry an electrical current. For the SAT formulation, we
must ban the invalid constraints. In this case, an invalid constraint
solution exists when the wordline𝑇𝐿 carries an electrical current,
memristor𝑃𝐿, 𝑀 is in a low resistive state, and the bitline 𝑆 𝑀 has no
electrical current.

To ban these invalid solutions, we add two clauses to the SAT
formulation, one for each invalid solution. These constraints are:

(𝑇𝐿 ↑ ¬𝑃𝐿, 𝑀 ↑ ¬𝑆 𝑀) (1)
(¬𝑇𝐿 ↑ ¬𝑃𝐿, 𝑀 ↑ 𝑆 𝑀) (2)

3.1.3 Driver Constraints. A wordline𝑇𝐿 can only carry an elec-
trical current if there exists at least one bitline 𝑆 𝑀 that drives the
wordline. A bitline 𝑆 𝑀 drives a wordline𝑇𝐿 if and only if the bit-
line 𝑆 𝑀 carries an electrical current, the memristor 𝑃𝐿, 𝑀 at their
intersection is in a low resistive state, and the electrical current dis-
sipates from the bitline to the wordline. Due to the bidirectionality
of the memristors, the electrical current may also dissipate from
the wordline to the bitline.

To de!ne whether a wordline𝑇𝐿 is driven by any bitline 𝑆 𝑀 , we
introduce driver variables 𝑋𝐿, 𝑀 , 1 ↘ 𝑉 ↘ 𝑂 and 1 ↘ 𝑊 ↘ 𝑃 , and a
clause for each wordline:

(¬𝑇𝐿 ↑ 𝑋𝐿,1 ↑ 𝑋𝐿,2 ↑ · · · ↑ 𝑋𝐿,𝑁) (3)

Similarly, for each bitline 𝑆 𝑀 , we introduce a clause:

(¬𝑆 𝑀 ↑𝑌1, 𝑀 ↑𝑌2, 𝑀 ↑ · · · ↑𝑌𝑂, 𝑀)
In total, there will be 2𝑅 driver variables if there are 𝑅 memris-
tors with a Boolean variable assigned. Memristor devices that are
constantly on/o$ do not require driver variables.

3.1.4 Arrow Constraints. As discussed earlier, the driver variables
𝑋𝐿 , 1 ↘ 𝑉 ↘ 𝑃 determine whether a wordline is driven by a bitline
or not. A bitline drives a wordline if and only if the bitline carries
a current, the memristor at its intersection is in a low resistive
state, and the electrical current "ows from bitline to wordline. For
the last constraint, a sense of directionality is required, which we
introduce by means of an auxiliary arrow variable 𝑍𝐿, 𝑀 . We will use
the following de!nition for 𝑍𝐿, 𝑀 :

𝑍𝐿, 𝑀 =

{
1, if 𝑆 𝑀 ↔𝑇𝐿

0, if𝑇𝐿 ↔ 𝑆 𝑀

We add the following seven clauses:

(¬𝑋𝐿, 𝑀 ↑𝑃𝐿, 𝑀 ↑𝑍𝐿, 𝑀 ↑𝑇𝐿) (4)
(¬𝑋𝐿, 𝑀 ↑𝑃𝐿, 𝑀 ↑𝑍𝐿, 𝑀 ↑ ¬𝑇𝐿) (5)
(¬𝑋𝐿, 𝑀 ↑𝑃𝐿, 𝑀 ↑ ¬𝑍𝐿, 𝑀 ↑𝑇𝐿) (6)

(¬𝑋𝐿, 𝑀 ↑𝑃𝐿, 𝑀 ↑ ¬𝑍𝐿, 𝑀 ↑ ¬𝑇𝐿) (7)
(¬𝑋𝐿, 𝑀 ↑ ¬𝑃𝐿, 𝑀 ↑𝑍𝐿, 𝑀¬ ↑𝑇𝐿) (8)
(¬𝑋𝐿, 𝑀 ↑ ¬𝑃𝐿, 𝑀 ↑ ¬𝑍𝐿, 𝑀 ↑𝑇𝐿) (9)

Equivalence Checking for Flow-Based Computing using Iterative SAT Solving ICCAD ’24, October 27–31, 2024, New York, NY, USA

Figure 4: Example of the cycle breaking. (a) Initially, we are given a crossbar circuit design that contains a cycle. (b) When the
circuit is fed as part of its miter to the SAT solver, a model is found. A part of the model is shown, together with a graphical
depiction where the drivers are indicated by red arrows. (c) Based on the model, a directed graph is constructed, from which the
cycle can be deduced. Finally, the cycle is banned from the SAT formulation, and in subsequent iteration results in UNSAT.

3.2 Iterative Cycle Breaking
While the formulation in the previous section is able to handle
cycles of length 2 using the arrow variables. The SAT formulation
cannot handle cycles of length > 2. In this section, we propose a
methodology to eliminate all such cycles automatically. A naive ap-
proach would be to enumerate all possible cycles in the undirected
graph and ban them using sets of arrow variables. For example, a
cycle containing the arrow variables 𝑍1, 𝑍2, 𝑍3, 𝑍4 can be banned
by adding a clause (¬𝑍1 ↑¬𝑍2 ↑¬𝑍3 ↑¬𝑍4). However, this is not
practical because the number of possible cycles grows exponen-
tially with the size of an undirected graph [12]. Instead, we analyze
the solution from the SAT formulation to determine if the formu-
lation became SAT due to a cycle or non-equivalence. If a cycle
is detected, we explicitly ban that cycle using the arrow variables
and resolve the SAT formulation. This process continues until the
SAT formulation becomes UNSAT, or SAT, without any cycles. In
Algorithm 1, we provide a high-level pseudocode for the overall
iterative cycle-breaking algorithm. In subsequent sections, we will
elaborate on the most important sub-steps: (1) graph construction,
(2) cycle detection, and (3) cycle breaking.

We illustrate the proposed "ow using the example in Figure 4. A
3 ↗ 2 crossbar circuit is shown in Figure 4(a). The SAT solution and
a cycle is show in Figure 4(b). The cycle is detected and banned in
Figure 4(c). The SAT formulation results in UNSAT after the cycles
have been banned.

Algorithm 1 Iterative SAT solving
Input: D, S // Crossbar design and speci!cation
Output: ≃ or ⇐ // True or false
1: miter ⇒C!"#$%&’$M($)%CNF(D, S)
2: model⇒S!*+)SAT(miter) // Initialize set of cycles
3: while model ω ⇑ do
4: graph⇒C!"#$%&’$G%,-.(model)
5: cycles ⇒F("/C0’*)#(graph)
6: if |cycles | = 0 then
7: return ⇐
8: end if
9: miter⇒B%),1C0’*)#(miter, cycles)
10: model⇒S!*+)SAT(miter)
11: end while
12: return ≃

3.2.1 Graph Construction. Based on the found model, we construct
a directed graph. This graph is a directed bipartite 𝑆 = (𝑎1,𝑎2, 𝑏)
where 𝑎1 is the set of wordlines of the crossbar, 𝑎2 is the set of
bitlines of the crossbar, and 𝑏 is the set of edges. Each edge 𝑐 = (𝑀,𝑑)
has one endpoint in 𝑎1 and one in 𝑎2. In a traditional graph model
of the crossbar, the edges are undirected as the non-volatile memory
devices are bidirectional. However, in graph 𝑆 we will construct,
the edges will be directed based on driver variables. In Algorithm 2,
we provide the pseudo-code for the directed graph construction
from the model. Note that either 𝑋𝐿, 𝑀 (wordline𝑇𝐿 drives bitline
𝑆 𝑀) or 𝑌𝐿, 𝑀 (bitline 𝑆 𝑀 drives wordline𝑇𝐿) is true but not both at
the same time.

Algorithm 2 Directed graph construction from model
1: function C!"#$%&’$G%,-.(model)
2: graph⇒ ⇑
3: for 𝐿 ⇓ [1,𝑂] do
4: for 𝑀 ⇓ [1,𝑁] do
5: 𝑃 ⇒G)$V,*&)(model, 𝑄𝐿,𝑀)
6: 𝑅 ⇒G)$V,*&)(model,𝑆𝐿,𝑀)
7: if q then A//E/2)(graph, i, j) end if
8: if d then A//E/2)(graph, j, i) end if
9: end for
10: end for
11: return graph
12: end function

3.2.2 Cycle Detection. Next, we attempt to detect cycles within
the unconnected component, if any. Since we have a directed graph,
we leverage an adapted version of Johnson’s algorithm [24]. For
our work, we have leveraged an o$-the-shelf implementation from
NetworkX [15].

3.2.3 Cycle Constraints. Based on the cycles, wewill now ban these
from the model. We accomplish this by adding a new set of clauses
and variables to the overall SAT formulation. Given a cycle indicated
by the driver variables, we can ban the cycles. Say the cycle is
supported by the drivers 𝑌1,0 → 𝑋1,𝑇 → · · · → 𝑋𝑈,0, then we can ban
the cycle by disallowing the conjunction: ¬(𝑌1,0→𝑋1,𝑇 → · · ·→𝑋𝑈,0).
This conjunction is translated into CNF using the generic formula
𝑒 =

∧𝑀
𝐿=1 𝑀𝐿 which becomes (∧𝑀

𝐿=1 (𝑀𝐿 ↑ ¬𝑒)) (∨𝑀
𝐿=1 ¬𝑀𝐿 ↑ 𝑒) [33].

Similar can be done for the reverse cycle.

ICCAD ’24, October 27–31, 2024, New York, NY, USA S. Thijssen et al.

4 Experiments
In this section, we evaluate our proposed FlowSAT framework. The
framework is implemented in Python 3.10 and uses Glucose as SAT
solver [4]. The code was executed on a Ubuntu machine with 20
i9 cores and 128GB RAM. We evaluate our framework on four-
teen MCNC benchmarks [46] and six EPFL control benchmarks [3].
The source code is publicly available on GitHub 1. In Table 1, we
provide an overview of the properties of the benchmarks and the
respective crossbar circuits. The crossbar circuit designs have been
constructed using COMPACT, the state-of-the-art synthesis frame-
work for "ow-based computing [36]. Here, we have set the hyper-
parameter gamma to one, and we have used reduced ordered binary
decision diagrams as data structure. For the crossbar circuits, the
number of rows (wordlines), columns (bitlines), number of literals,
and memristors programmed to true (ON) and false (OFF) are listed.

In subsequent sections, we will !rst compare our proposed
FlowSAT framework with previous work [34, 40]. We will conduct
a comparison both in the case where the crossbar circuit designs
are both equivalent and non-equivalent to the speci!cations. Due
to the nature of the crossbar circuit designs, our framework does
not require iterations to solve the problem. Hence, we will conduct
a sensitivity analysis of the FlowSAT framework in Section 4.2 on
crossbar designs with cycles.

4.1 Comparison with Previous Work
We compare our framework with three other equivalence checking
techniques for "ow-based computing. These techniques are brute-
force enumeration [10], recurrent neural networks (RNNs) [34],
and the state-of-the-art equivalence checking framework. In subse-
quent sections, we compare these techniques for both equivalent
and non-equivalent crossbar circuit designs. For both cases, we
report the most important results for each of the techniques. For
enumeration and the RNN-based technique, we report the total run-
time (in seconds). For the previous state-of-the-art method XSAT,
we report the number of time steps for which the circuit is un-
rolled/duplicated for bounded model checking (steps), the number
of variables and clauses for the SAT formulation, and a breakdown
of the runtime. For the runtime, we distinguish between the time
to perform pre-processing (Pre) and the time to perform combina-
tional equivalence checking (CEC). Finally, we also report the total
runtime in seconds. The XSAT framework makes use of the ABC
tool [6] to perform combinational equivalence checking, which is
in turn built upon MiniSAT [35]. For our proposed FlowSAT frame-
work, we also report the same numbers as XSAT, except for the
number of time steps the circuit is unrolled, as this is not appli-
cable to our approach. Note that the total runtime may slightly
di$er from the pre-processing time plus the time for combinational
equivalence checking as there is some overhead in other parts of
the code.

For the experiments, we set a timeout of one hour (3600 seconds).
When the equivalence checking technique times out, we indicate
this by a ‘-’ for the results.

4.1.1 Case 1: Equivalence. In our !rst experiment, we will evaluate
the frameworks on crossbar circuit designs that are equivalent

1https://github.com/sventhijssen/"owsat

Table 1: Overview of 20 benchmarks (14 MCNC and 6 EPFL
control). For each benchmark, we report the number of in-
puts and outputs. For the corresponding crossbar design, we
report the number of rows, columns, literals, and the number
of memristors that are programmed ON and OFF.

Benchmark
Properties Crossbar

Inputs Outputs Rows Columns Literals ON OFF
(num) (num) (num) (num) (num) (num) (num)

MCNC
in4 32 20 432 411 1209 89 176254
too_large 38 3 439 433 1411 119 188557
misex3 14 14 486 495 1403 82 239085
bc0 21 11 517 522 1571 86 268217
pdc 16 40 604 629 1578 61 378277
alu4 14 8 605 632 2159 114 380087
spla 16 46 626 579 1513 66 360875
vda 17 39 680 666 1901 112 450867
x3 135 99 700 576 1772 124 401304
apex6 135 99 700 576 1772 124 401304
apex3 54 50 772 802 2262 56 616826
ex1010 10 10 850 812 2695 60 687445
b2 15 17 1001 982 2839 139 980004
prom1 9 40 1980 1765 6246 160 3488294
EPFL
cavlc 10 11 317 303 989 39 95023
dec 8 256 1025 1024 2048 0 1047552
i2c 147 142 1345 1279 3492 210 1716553
int2"oat 11 7 122 121 394 29 14339
priority 128 8 504 520 1786 126 260168
router 60 30 125 122 390 22 14838

to their speci!cations. In Table 2, an overview is provided of the
results for all four frameworks. First, we observe that brute-force
enumeration does not perform well on these large crossbar circuit
designs as the number of input variables is high. For smaller designs,
such as cavlc, we can only evaluate up to eleven input variables. We
conclude that brute-force enumeration is only capable of proving
equivalence for three out of twenty designs within one hour. Next,
for the RNN-based approach, we observe that we can successfully
show equivalence for twelve out of twenty designs. The technique is
fast for benchmarks with relatively small number of input variables
(less than thirty). For example, misex3 and bc0 have 14 and 21 input
variables, respectively, and are consequently evaluated in less than
two minutes. Other benchmarks, such as x3 and apex3 timeout as
both have 135 and 54 input variables, respectively. In summary, the
RNN approach is capable of showing equivalence for twelve out
of twenty benchmarks. For XSAT, the !rst observation is that the
number of time steps for which the crossbar circuit is unrolled is
high (hundreds to thousands of times). This results in a high number
of variables and clauses ranging from millions to hundred millions.
The discrepancy in the orders of magnitude for XSAT and FlowSAT
stems from the duplication of the circuit in boundedmodel checking.
The number of variables for XSAT growswith𝑄 ((𝑃+𝑂)·(𝑂𝑃)+𝑅)
where𝑃 is the number of wordlines, 𝑂 the number of bitlines, and
𝑅 the number of non-zero literals in the crossbar. The number of
variables for FlowSAT grows with𝑄 (𝑃 +𝑂 +𝑅) on the other hand.
We observe that XSAT can only show equivalence for twelve out
of twenty benchmarks within one hour. Further, we also observe
that the CEC time is not strongly correlated with the number of
clauses and variables. For example, benchmark bc0 has almost four
million clauses whereas b2 has about 26 million clauses, yet the
latter was completed earlier than the former. Finally, we analyze

https://github.com/sventhijssen/flowsat

Equivalence Checking for Flow-Based Computing using Iterative SAT Solving ICCAD ’24, October 27–31, 2024, New York, NY, USA

Table 2: Comparison for twenty benchmarks where the crossbar circuit design is equivalent to the speci"cation. The benchmarks
are evaluated on four equivalence checking techniques for !ow-based computing: brute-force enumeration, a RNN-based
approach, the XSAT framework, and the proposed FlowSAT framework. For timeouts (‘-’), a cost of 3600𝑓 is calculated for the
normalized runtime comparison.

Benchmark
Enum [10] RNN [34] XSAT [40] FlowSAT

Total Total Steps Variables Clauses Pre CEC Total Variables Clauses Pre CEC Total
(s) (s) (num) (num) (num) (s) (s) (s) (num) (num) (s) (s) (s)

MCNC
in4 - - 754 5879525 2930689 21.0 1248.7 1272.7 533913 1433718 30.6 2.4 33.0
too_large - - 753 7467553 3713647 25.5 1396.3 1424.8 572056 1548459 34.0 5.4 39.5
misex3 - 0.845 899 7425919 3705516 26.5 2236.0 2265.5 723265 1939814 39.9 3.4 43.4
bc0 - 71.55 953 7991101 3988632 31.7 2294.5 2329.3 811185 2175622 43.1 3.8 46.9
pdc - 3.158 - - - - - - 1141533 3058378 62.9 6.9 69.8
alu4 - 1.355 - - - - - - 1148826 3078253 64.6 8.7 73.3
spla - 3.245 - - - - - - 1089118 2917542 57.0 6.2 63.2
vda - 8.826 - - - - - - 1360304 3640531 71.4 7.8 79.2
x3 - - 1152 8106624 4047922 42.5 1054.5 1100.1 1212089 3242526 64.2 6.8 71.0
apex6 - - 1152 8452357 4220578 42.4 1107.5 1152.9 1211775 3241422 66.7 7.3 74.0
apex3 - - - - - - - - 1859772 4976558 97.2 91.2 188.5
ex1010 - 0.558 1602 66579644 23596048 88.4 1095.7 1187.1 2073258 5553986 109.4 147.1 256.4
b2 - 6.509 1844 74341323 26188553 104.3 1779.7 1887.1 2951704 7893154 154.4 174.8 329.2
prom1 - 1.177 - - - - - - 10489973 28026661 567.3 1692.6 2260.0
EPFL
cavlc 893.0 0.5 581 8482411 2992814 14.2 83.0 100.2 290180 779684 16.3 0.8 17.1
dec 2749.6 0.5 2049 32834685 11467647 92.0 76.2 171.3 3151721 8417521 164.1 138.9 303.0
i2c - - - - - - - - 5166391 13796612 272.9 482.0 754.9
int2"oat 278.7 0.5 214 1166970 408620 5.7 7.3 16.1 45067 122491 3.2 0.1 3.4
priority - - - - - - - - 789356 2115476 43.2 3.8 46.9
router - - 225 589049 282800 5.7 39.6 48.3 46628 126094 3.3 0.1 3.4
Total 3/20 12/20 12/20 20/20
Normalized 1.00 0.40 0.59 0.07

our proposed FlowSAT framework and compare it with XSAT. First,
we observe that the number of variables and clauses for FlowSAT
is much smaller than for XSAT. On average, FlowSAT only requires
8% and 49% of the number of variables and clauses, respectively,
compared with XSAT. Consequently, this results in much faster
runtimes for the proposed SAT formulation. In summary, FlowSAT
is the only framework capable of showing equivalence between the
crossbar circuit design and the speci!cations within one hour for
all twenty benchmarks.

4.1.2 Case 2: Non-Equivalence. In this section, we evaluate the
four frameworks for non-equivalent crossbar circuit designs. To
construct these designs, we replace one literal at a random position
in the crossbar design with either a logical zero or one. In Table 3,
we report the results for the same properties as in the previous
section. Our !rst observation is that all approaches succeed for
at least as many benchmarks as in the equivalent case. This is
because it su#ces to !nd at least one counter-example for which
the design and the speci!cation are not equivalent. For brute-force
enumeration, twelve out of twenty designs are completed within
one hour compared with three. For the RNN-based approach, the
results are the same as the framework relies on the construction of a
full truth table, which requires the same amount of time as with the
equivalent case. The XSAT framework is now capable of completing
all benchmarks within one hour. We observe that the runtime has
decreased signi!cantly for many benchmarks. For example, where

pdc was not able to complete in one hour in the equivalent case,
non-equivalence can now be shown in about 80 seconds. This is due
to the number of variables and clauses being smaller than in the
equivalent case as a consequence of the pre-processing within the
ABC tool. For example, for cavlc, non-equivalence can be shown in
the pre-processing stage, where and-inverter graphs are constructed
before the miter is even fed to the SAT solver. Lastly, the runtime
results for FlowSAT are somewhat similar to those of the equivalent
case, with some runtimes being slightly shorter or longer. As we
can observe, the number of variables and clauses are similar to
numbers in the equivalent case; hence, the runtimes are similar,
only slightly in"uenced by external factors. On average, the overall
runtime for our proposed FlowSAT framework is 20% faster than
XSAT, capable of completing all twenty benchmarks within one
hour.
4.2 Sensitivity Analysis
Finally, we perform a sensitivity analysis of our proposed FlowSAT
framework on designs with many cycles being added iteratively and
incrementally. In previous experiments, the benchmarks were based
on binary decision diagrams (BDDs). Due to inherent characteris-
tics of BDDs (Shannon’s expansion), cycles of length 2 mainly occur.
Hence, in this experiment, we start with a random crossbar design
of dimensions 32↗32with 5% density using 10 input variables. Then
we add additional literals at random positions within the design,
which will eventually add cycles to the design. In Figure 5(a) and (b),
we show the number of variables and clauses, respectively, for an

ICCAD ’24, October 27–31, 2024, New York, NY, USA S. Thijssen et al.

Table 3: Comparison for twenty benchmarks where the crossbar circuit design is non-equivalent to the speci"cation. The
benchmarks are evaluated on four equivalence checking techniques for !ow-based computing: brute-force enumeration, a
RNN-based approach, the XSAT framework, and the proposed FlowSAT framework.

Benchmark
Enum [10] RNN [34] XSAT [40] FlowSAT

Total Total Steps Variables Clauses Pre CEC Total Variables Clauses Pre CEC Total
(s) (s) (num) (num) (num) (s) (s) (s) (num) (num) (s) (s) (s)

MCNC
in4 - - 753 14337210 5063400 20.9 23.9 47.8 533913 1433718 30.0 2.0 32.0
too_large - - 752 16959636 6057377 26.0 328.7 357.8 572056 1548459 31.6 2.3 33.8
misex3 1147.1 0.8 898 19211621 6754731 27.7 60.9 91.5 723265 1939814 39.1 3.1 42.2
bc0 - 71.55 952 20796575 7340488 32.2 22.6 57.8 811185 2175622 44.2 3.7 47.9
pdc 813.4 3.2 1171 28226342 9813103 42.2 35.8 80.9 1141533 3058378 61.8 5.8 67.6
alu4 12.1 1.4 1122 36374323 12955187 49.7 101.9 154.5 1148826 3078253 62.2 6.1 68.2
spla 671.5 3.2 1138 26070468 9044608 38.7 36.4 78.1 1089118 2917542 58.4 5.6 64.0
vda 321.1 8.8 1233 34896576 12157489 48.0 34.7 85.7 1360304 3640531 73.5 7.7 81.2
x3 - - 1151 26912747 9537253 41.1 39.8 83.9 1212089 3242526 66.1 6.6 72.7
apex6 - - 1151 26980455 9572869 40.3 152.1 195.4 1211775 3241422 66.1 6.7 72.8
apex3 - - 1517 45292867 15785619 68.6 1384.4 1456.1 1859772 4976558 100.3 88.7 189.0
ex1010 638.1 0.6 1601 66541208 23583274 85.0 280.5 368.5 2073258 5553986 111.5 152.8 264.3
b2 - 6.509 1843 74285477 26168954 106.1 142.0 251.1 2951704 7893154 162.4 163.2 325.6
prom1 391.4 1.2 3584 322233451 113768411 429.9 796.8 1229.7 10489973 28026661 565.2 1490.0 2055.2
EPFL
cavlc 0.9 0.5 580 0 0 14.1 4.9 22.0 290180 779684 16.6 0.8 17.4
dec 801.6 0.5 2048 33034600 11542261 90.1 42.0 135.1 3151721 8417521 172.6 143.6 316.2
i2c 298.4 - 2413 120477837 41897111 171.9 394.2 569.2 5166391 13796612 284.0 440.2 724.2
int2"oat 0.1 0.5 213 0 0 5.8 0.5 9.3 45067 122491 3.3 0.1 3.4
priority 8.3 - 897 22502866 7991622 31.9 37.1 72.1 789356 2115476 43.9 3.8 47.7
router - - 224 9233 3660 6.0 16.0 24.9 46628 126094 5.6 0.1 5.7
Total 12/20 12/20 20/20 20/20
Normalized 1.0 22.7 5.8 3.1

Figure 5: Sensitivity analysis on a 32 ↗ 32 random crossbar
design with 10 input variables. In (a), (b), (c), and (d), the
number of variables, clauses, iterations, and the runtime
in seconds is shown for our proposed FlowSAT framework
for increasingly dense designs. In (e) and (f), the number of
variables and clauses are shown for a single run that requires
multiple iterations for cycle breaking.

increasing number of literals (without the variables and clauses of
the speci!cation as this may shrink). We observe that the number
grows rapidly from some point. This is in accordance with the theo-
retical results in [44] that there is potentially a factorial number of
paths within a crossbar. Further, the number of iterations, and con-
sequently the runtime grows accordingly, as shown in Figure 5(c)
and (d). In Figure 5(e) and (f), we show the growth of the number
of variables and clauses for a single run (for 66 added literals), and

we observe a linear growth in both magnitudes in terms of the
number of iterations. This highlights the scalability of the proposed
approach even in the presence of many cycles.

5 Conclusion
Flow-based computing is an energy-e#cient in-memory computing
paradigm on crossbar arrays. Due to the bidirectional behavior of
non-volatile memory devices, the crossbar circuit is modeled as
an undirected graphs, contrasting with traditional VLSI circuits,
which are modeled as directed acyclic graphs. This has prevented
the use of SAT formulations for equivalence checking. Hence, for
veri!cation, alternative methods have been developed based on
brute-force enumeration, graph reachability, recurrent neural net-
works, and bounded model checking. Unfortunately, these methods
do not scale well when the number of input variables is large and/or
when the dimensions of the crossbar circuit designs are large. In
this paper, we have introduced a SAT formulation that can cope
with the non-traditional circuit behavior. We have solved the prob-
lem of bidirectionality by introducing auxiliary variables and arrow
variables, which provide a sense of directionality. Further, to cope
with the possible cyclic behavior of the circuit, we rely on an itera-
tive algorithm to detect such cycles and remove them from the SAT
formulation in the next iteration. From our experimental evaluation,
we conclude that our proposed FlowSAT framework is up to an
order of magnitude faster than the previous state-of-the-art method.
For future work, we suggest the exploration of model checking [11],
automated synthesis [20], and AI-based methods [22].

Equivalence Checking for Flow-Based Computing using Iterative SAT Solving ICCAD ’24, October 27–31, 2024, New York, NY, USA

References
[1] [n. d.]. Joint University Microelectronics Program.

https://www.darpa.mil/program/joint-university-microelectronics-program.
[2] T Ali, P Polakowski, S Riedel, T Büttner, T Kämpfe, M Rudolph, B Pätzold, K

Seidel, D Löhr, R Ho$mann, et al. 2018. High endurance ferroelectric hafnium
oxide-based FeFET memory without retention penalty. IEEE Transactions on
Electron Devices 65, 9 (2018), 3769–3774.

[3] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The
EPFL combinational benchmark suite. In Proceedings of the 24th International
Workshop on Logic & Synthesis (IWLS).

[4] Gilles Audemard and Laurent Simon. 2009. Predicting learnt clauses quality in
modern SAT solvers. In Proceedings of the 21st International Joint Conference on
Arti!cial Intelligence (Pasadena, California, USA) (IJCAI’09). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 399–404.

[5] Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R
Stewart, and R StanleyWilliams. 2010. ‘Memristive’switches enable ‘stateful’logic
operations via material implication. Nature 464, 7290 (2010), 873–876.

[6] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-
Strength Veri!cation Tool. In Computer Aided Veri!cation, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson
(Eds.). Springer, 24–40. https://doi.org/10.1007/978-3-642-14295-6_5

[7] Geo$rey W Burr, Matthew J Breitwisch, Michele Franceschini, Davide Garetto,
Kailash Gopalakrishnan, Bryan Jackson, Bülent Kurdi, Chung Lam, Luis A Lastras,
Alvaro Padilla, et al. 2010. Phase change memory technology. Journal of Vacuum
Science & Technology B 28, 2 (2010), 223–262.

[8] Dwaipayan Chakraborty and Sumit Kumar Jha. 2017. Automated synthesis
of compact crossbars for sneak-path based in-memory computing. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 770–775.

[9] Dwaipayan Chakraborty and Sumit Kumar Jha. 2017. Design of compact mem-
ristive in-memory computing systems using model counting. In 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[10] Dwaipayan Chakraborty and Sumit Kumar Jha. 2017. Design of compact mem-
ristive in-memory computing systems using model counting. In 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[11] Edmund Clarke, Ansgar Fehnker, Sumit Kumar Jha, and Helmut Veith. 2005.
Temporal logic model checking. Handbook of Networked and Embedded Control
Systems (2005), 539–558.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli$ord Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[13] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Pro-
ceedings of the 38th annual international symposium on Computer architecture.
365–376.

[14] Pierre-Emmanuel Gaillardon, LucaAmarú, Anne Siemon, Eike Linn, RainerWaser,
Anupam Chattopadhyay, and Giovanni De Micheli. 2016. The programmable
logic-in-memory (PLiM) computer. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). Ieee, 427–432.

[15] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[16] Amad Ul Hassen, Dwaipayan Chakraborty, and Sumit Kumar Jha. 2018. Free
binary decision diagram-based synthesis of compact crossbars for in-memory
computing. IEEE Transactions on Circuits and Systems II: Express Briefs 65, 5
(2018), 622–626.

[17] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley
Williams. 2016. Dot-product engine for neuromorphic computing: Programming
1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the
53rd annual design automation conference. 1–6.

[18] Yiming Huai et al. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges
and prospects. AAPPS bulletin 18, 6 (2008), 33–40.

[19] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
In-memory acceleration of deep neural network training with high precision.
In Proceedings of the 46th International Symposium on Computer Architecture.
802–815.

[20] Susmit Kumar Jha. 2011. Towards automated system synthesis using sciduction.
University of California, Berkeley.

[21] Sumit Kumar Jha, Susmit Jha, Rickard Ewetz, and Alvaro Velasquez. 2024. On the
Design of Novel Attention Mechanism for Enhanced E#ciency of Transformers.
In 61st ACM Design Automation Conference (DAC).

[22] Sumit Kumar Jha, Susmit Jha, Muhammad Rashedul Haq Rashed, Rickard Ewetz,
and Alvaro Velasquez. 2024. Automated Synthesis of Hardware Designs using
Symbolic Feedback and Grammar-Constrained Decoding in Large Language
Models. In NAECON 2024 - IEEE National Aerospace and Electronics Conference.

[23] Sumit Kumar Jha, Dilia E Rodriguez, Joseph E Van Nostrand, and Alvaro Ve-
lasquez. 2016. Computation of boolean formulas using sneak paths in crossbar
computing. US Patent 9,319,047.

[24] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4, 1 (1975), 77–84.

[25] Florian Krohm, Andreas Kuchlmann, and Arjen Mets. 1996. The use of random
simulation in formal veri!cation. In Proceedings International Conference on
Computer Design. VLSI in Computers and Processors. IEEE, 371–376.

[26] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald,
Eby G Friedman, Avinoam Kolodny, and Uri C Weiser. 2014. MAGIC—Memristor-
aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 11
(2014), 895–899.

[27] Shahar Kvatinsky,Misbah Ramadan, EbyG Friedman, andAvinoamKolodny. 2015.
VTEAM: A general model for voltage-controlled memristors. IEEE Transactions
on Circuits and Systems II: Express Briefs 62, 8 (2015), 786–790.

[28] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. 1–6.

[29] Paul Messina. 2017. The exascale computing project. Computing in Science &
Engineering 19, 3 (2017), 63–67.

[30] Alan Mishchenko, Satrajit Chatterjee, Robert Brayton, and Niklas Een. 2006.
Improvements to combinational equivalence checking. In Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design. 836–843.

[31] Jodh Singh Pannu, Sunny Raj, Steven Lawrence Fernandes, Dwaipayan
Chakraborty, Sarah Ra!q, Nathaniel Cady, and Sumit Kumar Jha. 2020. De-
sign and fabrication of "ow-based edge detection memristor crossbar circuits.
IEEE Transactions on Circuits and Systems II: Express Briefs 67, 5 (2020), 961–965.

[32] Muhammad Rashedul Haq Rashed, Sumit Kumar Jha, and Rickard Ewetz. 2021.
Hybrid analog-digital in-memory computing. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[33] Jarrod A Roy, Igor L Markov, and Valeria Bertacco. 2004. Restoring circuit
structure from SAT instances. Ann Arbor 1001 (2004), 48109–2122.

[34] Suraj Singireddy, Rickard Ewetz, and Sumit Jha. 2022. Deep learning toolkit-
driven equivalence checking of "ow-based computing systems. In 2022 IEEE 4th
International Conference on Arti!cial Intelligence Circuits and Systems (AICAS).
IEEE, 50–53.

[35] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with con"ict-
clause minimization. SAT 2005, 53 (2005), 1–2.

[36] Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz. 2021. Compact: Flow-based
computing on nanoscale crossbars with minimal semiperimeter and maximum
dimension. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 41, 11 (2021), 4600–4611.

[37] Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz. 2022. Equivalence checking
for "ow-based computing. In 2022 IEEE 40th International Conference on Computer
Design (ICCD). IEEE, 656–663.

[38] Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz. 2022. Path: Evaluation of
boolean logic using path-based in-memory computing. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 1129–1134.

[39] S. Thijssen, Muhammad Rashed, Sumit Kumar Jha, and Rickard Ewetz. 2024.
Synthesis of Compact Flow-based Computing Circuits from Boolean Expressions.
In 61st ACM Design Automation Conference (DAC).

[40] Sven Thijssen, Suraj Singireddy, Muhammad Rashedul Haq Rashed, Sumit Kumar
Jha, and Rickard Ewetz. 2023. Veri!cation of Flow-Based Computing Systems
Using Bounded Model Checking. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). IEEE, 1–9.

[41] Elie Track, Nancy Forbes, and George Strawn. 2017. The end of Moore’s Law.
Computing in Science & Engineering 19, 2 (2017), 4–6.

[42] Grigori S Tseitin. 1983. On the complexity of derivation in propositional calculus.
Automation of reasoning: 2: Classical papers on computational logic 1967–1970
(1983), 466–483.

[43] Alvaro Velasquez and Sumit Kumar Jha. 2014. Parallel computing using memris-
tive crossbar networks: Nullifying the processor-memory bottleneck. In 2014 9th
International Design and Test Symposium (IDT). IEEE, 147–152.

[44] Alvaro Velasquez and Sumit Kumar Jha. 2015. Fault-tolerant in-memory crossbar
computing using quanti!ed constraint solving. In 2015 33rd IEEE International
Conference on Computer Design (ICCD). IEEE, 101–108.

[45] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[46] Saeyang Yang. 1991. Logic synthesis and optimization benchmarks user guide:
version 3.0. Citeseer.

[47] Shimeng Yu. 2016. Resistive random access memory (RRAM). Synthesis Lectures
on Emerging Engineering Technologies 2, 5 (2016), 1–79.

[48] Yue Zha and Jing Li. 2016. Recon!gurable in-memory computing with resistive
memory crossbar. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 1–8. https://doi.org/10.1145/2966986.2967069

https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/2966986.2967069

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Flow-Based Computing
	2.2 Equivalence Checking
	2.3 SAT Formulations and Undirected Graphs

	3 The FlowSAT Framework
	3.1 Base Formulation
	3.2 Iterative Cycle Breaking

	4 Experiments
	4.1 Comparison with Previous Work
	4.2 Sensitivity Analysis

	5 Conclusion
	References

