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Abstract. Model explanations improve the transparency of black-box machine
learning (ML) models and their decisions; however, they can also enable privacy
threats like membership inference attacks (MIA). Existing works have only an-
alyzed MIA in a single interaction scenario between an adversary and the target
ML model, missing the factors that influence an adversary’s capability to launch
MIA in repeated interactions. These works also assume the attacker knows the
model’s structure, which isn’t always true, leading to suboptimal thresholds for
identifying members. This paper examines explanation-based threshold attacks,
where an adversary uses the variance in explanations through repeated interac-
tions to perform MIA. We use a continuous-time stochastic signaling game to
model these interactions. Unaware of the system’s exact type (honest or mali-
cious), the adversary plays a stopping game to gather explanation variance and
compute an optimal threshold for membership determination. We propose a sound
mathematical formulation to prove that such an optimal threshold exists, which
can be used to launch MIA and identify conditions for a unique Markov perfect
equilibrium in this dynamic system. Finally, we evaluate various factors affecting
an adversary’s ability to conduct MIA in repeated settings through simulations.

1 Introduction

Due to the complex and black-box nature of machine learning (ML) models, under-
standing the underlying reasons behind model decisions is often challenging. This has
led to the design of different model explanation techniques [23, 29, 33]. Simultane-
ously, explanations expose an attack surface that can be exploited to infer private model
information [31] or launch adversarial attacks against the model [19, 35]. One feasi-
ble attack from model explanations is Membership Inference Attacks (MIAs). MIAs
have been extensively studied in the literature, where adversaries analyze ML models
to formulate attacks aimed at discerning the membership of specific data points. MIAs
can be classified into binary classifier-based [32], metric-based [22], and differential
comparison-based attacks [18].

In this work, we focus on metric-based MIAs, particularly model explanation-based

MIAs, where an adversary could use model explanations to infer the training set mem-
bership of target data points. Shokri et al. [31] demonstrated that variance in gradient-
based explanations can confirm membership compared to a predefined threshold. How-
ever, it was empirically analyzed for a single query instance. This work further ana-
lyzes how explanation variance changes with repeated queries from an adversary. In
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this iterative interaction, the adversary sends repeated queries to the system (ML model
and explanation method) using historical information to find the optimal threshold for
explanation variance. Additionally, while it is straightforward to compute an optimal
threshold if the training set membership is known [22], the question arises: how can an
explanation-based threshold attack be executed when an adversary lacks knowledge of
the model and its training process?

An adversary that iteratively interacts with the target system to compute the expla-
nation variance threshold raises several questions: What is the optimal duration for this
interaction? Can the system detect and prevent such malicious interactions? How can
the system serve both honest and malicious users effectively? While honest and ma-
licious users may formulate similar queries, the emphasis lies on the malicious user’s
intention to initiate MIA. Thus, the value of an explanation for an honest end-user is
based on its relevance, explaining the model’s decision for the query. However, a mali-
cious end-user evaluates an explanation’s value based on the information it contains for
potential exploitation in launching MIAs. Intuitively, the duration, pattern, and structure
of such repeated interactions could impact the degree of private information disclosure
by the system. Nevertheless, the current comprehension of this phenomenon is insuf-
ficient, particularly when considering the presence of a strategic adversary whose goal
is to minimize the attack cost and path towards undermining the system’s privacy and
a strategic system that is aiming to prevent this without having full knowledge of the
nature of the end-user (adversarial or non-adversarial) engaged in the interaction.

We aim to bridge this research gap by using game theory to model interactions
between an adversary and an ML system in the above context. Specifically, we use a
continuous-time stochastic signaling game to capture the complexities of these interac-
tions. In particular, we make the following contributions in this paper:
1. We model the interactions between an ML system and an adversary as a two-player

continuous-time signaling game, where the variance of the generated explanations
(by the ML system) evolve according to a stochastic differential equation (SDE).

2. We then characterize the Markov Perfect Equilibrium (MPE) of the above stochastic
game as a pair of optimal functions U(⇡) and L(⇡), where U(⇡) is the optimal
variance path for the explanations generated by the system, L(⇡) is the optimal
variance path for the explanations given by the system to an adversary after adding
some noise, and ⇡ is the belief of the system about the type of the adversary.

3. We evaluate the game for different gradient-based explanation methods, namely,
Integrated Gradients [38], Gradient*Input [34], LRP [3] and Guided Backpropaga-

tion [37]. By means of experiments using benchmark datasets, we demonstrate that
the capability of an adversary to launch MIA depends on factors such as the expla-
nation method, input dimensionality, model size, and number of training rounds.

2 Background and Preliminaries

2.1 Gradient based Explanations

For some input data point �!x 2 Rn and a classification model F✓, an explanation
method H simply explains model decisions, i.e., it outputs some justification/explanation
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of why the model F✓ returned a particular label y = F✓(
�!
x ). In this work, we consider

feature-based explanations, where the output of the explanation function is an influence
(or attribution) vector and where the element Hi(

�!
x ) of the vector represents the degree

to which the i
th feature influences the predicted label y of the data point �!x . Specif-

ically, we consider the Gradient method [34], Integrated Gradient (IG) method [38],
Layer-wise Relevance Propagation (LRP) [3], and Guided Backpropagation [37]. For
more details, please refer to the extended version of the paper [21].

2.2 Membership Inference Attacks

In membership inference attacks (MIA), an adversary with a target dataset Xtgt ⇢ R
n

aims to identify which data points belong to a target model’s training set Xtr. The
adversary predicts membership by assessing if each point �!x 2 Xtgt is also in Xtr.
Intuitively, a low model loss typically translates to a prediction vector dominated by
the true label, resulting in a high variance, which may indicate model certainty [31]
and, thus, the data point (under consideration) as a member of the training dataset.
The variance of the feature-based explanation to determine data point membership is as
follows:

MembershipExpl,⌧E (
�!
x ) =

(
True, V ar(HGRAD(�!x ))  ⌧E

False, otherwise

where the variance of some vector �!v 2 Rn is calculated as: V ar(�!v ) =
Pn

i=1(vi �
µ�!v )

2, whereµ�!v = 1
n

Pn
i=1 vi.

2.3 Geometric Brownian Motion

A Geometric Brownian Motion (GBM) is a continuous-time stochastic process com-
monly used to model the evolution of a variable that exhibits random fluctuations over
time. A general GBM state process st satisfies the stochastic differential equation:

dst = a(st, u(st, t), t)stdt+ b(st, u(st, t), t)stdWt

where, a(st, u(st, t), t) and b(st, u(st, t), t) are the drift and volatility parameters
of the state process st, respectively, Wt is a standard Brownian motion with mean = 0
and variance = t, and u(st, t) is the control. In this paper, an adversary aims to reach
a variance threshold to launch explanation-based attacks by repeatedly interacting with
the ML model using appropriate queries and historical interaction data. Here, we model
the evolving explanation variance EX

v as a GBM due to its ability to capture periodic
and random fluctuations in a non-negative continuous-time process.

2.4 Optimal Control and the Stopping Problem

In a two-player game, each agent makes an optimal control decision to either continue
or stop interacting with the other agent. Such problems involving optimal control are
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usually modeled using Bellman’s equation and solved with dynamic programming. Let
ui(st, t) represent the control of agent i when the system is in state st at time t. The
value function, denoted by Hi(st, t), represents the optimal payoff/reward of the agent
i over the interval t = [0, T ] can be written as:

Hi(st, t) = max
ui

Z T

0
f(st, u(st, t), t)dt

Where f(st, u(st, t), t) is the instantaneous payoff/reward a player can get given the
state (st) and the control used (u) at time t. the Bellman equation is a partial differential

equation or PDE, referred to as the Hamilton Jacobi Bellman (HJB) equation, and can
be written as:

rH(st, t) = f(st, u
⇤
, t) +

@H

@t
+
@H

@st
a(st, u

⇤
, t) +

1

2

@
2
H

@s
2
t

b(st, u
⇤
, t)2

Where u
⇤ = u(st, t) is the optimal value of the control variable. Using the above

equation, we represent the value functions of both the adversary and the system. The
optimal control u (for both the adversary and the system) is binary: u = 1 means ”stop”
interacting, and u = 0 means ”continue” the interaction.
Stopping Problem: A stopping problem models the decision to continue an activity for
an instantaneous payoff f(st, u(st, t), t) or stop for a termination payoff �(st, T ). It is
determined based on the payoff he/she is expected to receive in the next instant. The
stopping rule for the state boundary value s

⇤
t at which an agent decides to stop and get

the termination payoff is given by:

u(st, t) =

(
stop, st >= s

⇤
t

continue, st < s
⇤
t

In other words, when the agent decides to stop, he/she gets:

H(st, T ) = �(st, T ) 8st � s
⇤
t

Value Matching and Smooth Pasting Conditions: Two boundary conditions are re-
quired to solve the HJB equation outlined above, First, value matching condition tells an
agent that if they decide to stop (at that defined boundary), then the termination payoff
equals the continuation payoff. It is given by:

H(s⇤t , t) = �(s⇤t , t) 8t

Second, the smooth pasting condition ensures a smooth transition at the stopping
boundary. Intuitively, it helps pin the optimal decision boundary, s⇤t and is given by:

Hst(s
⇤
t , t) = �st(s

⇤
t , t) 8t

where Hst(s
⇤
t , t) is the derivative of H(s⇤t , t) with respect to the state st. If one or both

conditions are unsatisfied, stopping at the boundary s
⇤
t can’t be optimal. Therefore, an

agent should continue and again decide at the next time instant.
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3 Game Model

Next, we present an intuitive description of the problem followed by its formal setup as
a signaling game. Further, we also characterize the equilibrium concept in this setup.

3.1 Intuition

We consider a platform, the system, offering an ML model and feature-based expla-
nations as a black-box service. End-users request labels and explanations but cannot
download the model. The system interacts with two types of users, honest and ma-

licious, without knowing their type. Honest users seek explanations for their queries,
while malicious users exploit explanation variance to conduct MIAs without detection.

The malicious end-user or an adversary interacts repeatedly with the system to
obtain explanations for their formulated queries, leveraging prior variance history mod-
eled with GBM. Explanation-based MIAs rely on explanation variance thresholds [31],
making GBM a suitable model for this variance. GBM captures historical data integra-
tion and ensures that explanation variance stays positive, reflecting periodic and random
fluctuations. Note: Our goal is to establish mathematical proof of an optimal explana-
tion variance threshold that enables an adversary to launch MIAs. Thus, we are not
concerned about how an adversary models the query space. The malicious end-user
strategically decides when to stop interacting with the system to achieve their at-
tack objective, modeled as a continuous-time signaling game. If the system fails to
detect the malicious behavior and considers it honest, this is termed ”pooling” or ”on-
equilibrium path” behavior. Deviations from this behavior are termed ”separating” or
”off-equilibrium path” behavior. Throughout the game, the malicious end-user aims
to conduct a threshold-based MIA by leveraging accumulated information (labels +
explanations) up to that point.

More specifically, the malicious end-user decides whether to continue querying
for explanations or to stop and attack the system to avoid detection. Conversely, the
system, upon receiving requests, must decide whether to continue providing explana-
tions and how much noise to add or to block the end-user based on an optimal vari-
ance path U(⇡). Note: The system has imperfect information about the end-user’s
type. Thus, it determines the explanation’s noise level based on its Bayesian prior or
belief (⇡).

Based on this stopping game formulation, we structure the model payoffs for both
the system and the end-users (malicious and honest). Additionally, according to
each interaction instance between the system and the end-user, we formulate the
noise and the stopping responses. As mentioned before, the added noise/perturbation
to the generated explanation is based on the system’s belief pertinent to the activity
history of the end-user. For an honest end-user, the value of an explanation lies in
its relevance — the information it contains explaining the model’s decision for the query
sent to the benign end-user. Conversely, for a malicious end-user, the value of
an explanation also depends on its relevance — the amount of information it holds that
can be exploited by the malicious end-user to launch MIAs. A detailed explanation
of the payoffs and its design is outlined in Section 3.2.
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In this preliminary effort, we formally model the above interactions between a
single end-user (type determined by nature) and the system within a stochastic
game-theoretic framework, and further analyze it to answer the following two high-
level questions: When does a malicious end-user decide to stop the play and finally
compromise the system? How does the system make the strategic decision to block
a potential malicious end-user while continuing to give relevant explanations to po-
tentially honest end-users?

3.2 Setup and Assumptions

We model the above scenario as a two-player, continuous-time, imperfect-information
game with repeated play. This framework allows for modeling how a malicious end-user
may deviate from pooling behavior (stopping time) at any point and how the system
may detect it. Using GBM to model explanation variance involves abrupt transitions,
making continuous-time modeling more effective for its evolution. Due to their abil-
ity to capture such dynamics effectively, continuous-time frameworks are commonly
chosen in literature for problems involving stopping times. The game has two players:
Player 1 is the end-user, of privately known type ⇥ ! {h,m} (i.e., honest or mali-
cious), who wants to convince Player 2 (i.e., system) that he/she is honest. The game
begins with nature picking an end-user of a particular type, and we analyze repeated
play between this end-user (selected by nature) and the system, which occurs in
each continuous-time, t 2 R. As the system has imperfect information about the type
of end-user, it assigns an initial belief ⇡0 = Pr(⇥ = h). We assume both players
are risk neutral, i.e., indifferent to taking a risk, and each player discounts payoffs at a
constant rate r. Variance (EX

v
t ) computed for an explanation generated by an explana-

tion method of the system follows a GBM, and is given by:

dEX
v
t = µEX

v
t dt+ �EX

v
t dWt

where, µ is the constant drift and � > 0 is the constant volatility of the variance
process EX

v
t , and EX

v
0 = ex

v
0 > 0. Wt is a standard Brownian motion with mean = 0

and variance = t. To ensure finite payoffs at each continuous time t, we assume µ < r.
The state of the game is represented by the process (EX

v
t ,⇡t), where ⇡t is the belief of

the system about the type of the end-user at time t.
The system wants to give informative or relevant explanations to the honest end

-user, but noisy explanations to the malicious end-user. Hence, depending on the
system’s belief about the type of the end-user, it will decide how much noise
(perturbation) to add to each released explanation, according to the generated variance.
Let U(⇡t) denote the optimal variance path (or functional path) for the system - a non-
increasing cut-off function which tells the system the optimal explanation variance
computed for an explanation generated by an explanation method and L(⇡t) denote the
optimal explanation variance path for the end-user - an increasing cut-off function
which tells the end-user the optimal explanation variance for the explanation given
by the system at given belief ⇡t. To simplify the resulting analysis, we assume that the
explanations variance computed by the system and explanations variance computed
by the end-user are just different realizations of the explanation variance process
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EX
v
t . We denote ex

v
sy,t and ex

v
eu,t as the system’s and end-user’s realization of

the process EX
v
t , respectively. Moreover, as the system would add some calculated

noise to the generated explanation based on its Bayesian belief, we assume that U(⇡t) �
L(⇡t), 8⇡t. Finally, as we are only interested in modeling the interactions between a
malicious end-user and the system, any reference to an end-user from this point
on implies a malicious end-user, unless explicitly stated otherwise. Next, we outline
a few other relevant model parameters before characterizing the concept of equilibrium
in the proposed game model.
Information Environment: Let Ft = �({EX

v
s } : 0  s  t) be the end-user’s

information environment, which is the sigma-algebra generated by the variance process
EX

v . In other words, Ft represents the information contained in the public history of
the explanation variance process. The system’s information environment is denoted
by F

+
t = �({EX

v
s ,�s} : 0  s  t), where EX

v
s is the variance process representing

the history of explanations variance and �s is the stochastic process representing the
historical activity of the end-user. If ⇢ is the time that end-user decides to stop,
then �t = ⇢ if ⇢  t and 1 otherwise.
Strategies: Next, let us outline the strategy space for both the end-user and the
system.

– end-user: We define strategies only for the malicious end-user (type m), as
they are the ones incentivized to launch explanation-based MIAs. The malicious
end-user uses a randomized strategy: at each time t, they either continue inter-
acting with the system or stop querying to attack. Their strategy depends on the
history of variance in the explanations provided by the system; hence it is a collec-
tion of Ft - adapted stopping times {�t} such that �t = ⇢ if ⇢  t and 1 otherwise.

– system: We assume the system plays a pure stopping time (⌧ t) strategy to block
a malicious end-user. Continuous interaction is a default action to provide model
predictions, and their explanations are implicit for the system. Its strategy depends
on the evolution of the explanation variance process EX

v and the record of the
end-user’s querying activity. Hence, the strategy space of the system is a col-
lection of F+

t - adapted stopping times {⌧ t}.

We use a path-wise Cumulative Distribution Function (CDF), represented as R
t0
t , to

characterize how fast the computed variance at a given time t is trying to reach the
variance threshold (defined later). We compute this CDF from the probability density
function (pt(exv

sy,t)) of the GBM, given by:

pt(ex
v
sy,t) =

1
p
2⇡t�exv

sy,t

exp

 
�

[ln(exv
sy,t) � (µ � �2)t]2

2�2t

!
,

where, exv
sy,t 2 (0,1). In other words, the CDF (Rt0

t ) will give the probability of how
close the computed explanation variance is to the explanation variance threshold at time
t starting from the explanation variance computed at time t0, i.e., exv

sy,0.
Beliefs: Given information F

+
t , the system updates its beliefs at time t from time

t0 < t using Bayes’ rule shown below. It is defined as the ratio of the probability of the
honest end-user sending queries to the system (set to 1) to the total probability of
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honest end-user and malicious end-user sending queries to the system.

⇡t =

(
1

1+(1�⇡t0 )R
t0
t

, if ⇡t0 > 0 and ⇢ > t. (i)

0, if ⇢  t or ⇡t0 = 0. (ii)

Bayes’ rule (i) is used when the end-user has not stopped communicating with
the system (⇢ � t) and the initial belief of the system about the end-user’s type
is also not zero. However, if the system has already identified the end-user’s type
as m or the end-user has already stopped communicating with the system and gets
detected by it, then system’s belief ⇡t will be zero, as indicated in (ii).

Table 1: Flow Payoff Coefficients
Before Detection After Detection

Pooling Separation Starts Detection and Block (Game Ends)
end-user, type m P Mm

NS �k
end-user, type h P P P

system re D⇥
NS D⇥

B

Payoffs: Table 1 summarizes the flow payoff coefficients assumed in our game model.
The system earns a reward of D

⇥=m
B = kEX

v
t for detecting and blocking the

malicious end-user. The end-user’s type (malicious) is immediately revealed at
this time, thus a cost of �k is incurred by the end-user. In case of an interaction
with an honest end-user, the system will always earn a payoff of reEX

v
t , i.e.,

D
⇥=h
NS = reEX

v
t and D

⇥=h
B = reEX

v
t , while the honest end-user always earns a

reward of PEX
v
t in each stage of the game. In case of a malicious end-user who

keeps communicating with the systemwithout being detected i.e., pools with the hon-
est end-user, he/she receives a payoff (relevant explanation variance information) of
PEX

v
t . Prior to detection, if the malicious end-user stops and is able to compromise

the system, then the system will have to pay a lump-sum cost of D⇥=m
NS = �d

0
and

the malicious end-user will earn M
m
NS = (Mm + d

0
)EX

v
t , where M

m
EX

v
t is the

gain which relates to the explanation variance information gained from the system,
d

0
EX

v
t is the benefit (can be monetary) achieved after attacking the system. Mali-

cious end-user will also incur cost of deviation d. We make the following assump-
tions about the payoff coefficients: We assume that D⇥=m

B = kEX
v
t > reEX

v
t , as

the system will gain more in successfully preventing the attack from the malicious
end-user. When the malicious end-user decides to stop and attack the system
and is not successful in compromising the system, then PEX

v
t � M

m
EX

v
t (d

0
= 0)

as the system has not yet blocked the malicious end-user and because of the cost
of deviation.

3.3 Equilibrium Description

A Markov Perfect Equilibrium (MPE) consists of a strategy profile and a state pro-
cess (EX

v
,⇡) such that the malicious end-user and the system are acting op-

timally, and ⇡t is consistent with Bayes’ rule whenever possible (in addition to the
requirement that strategies be Markovian). A unique MPE occurs when the two types
of end-users display pooling behavior. Given this equilibrium concept, our main
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𝐁𝐞𝐥𝐢𝐞𝐟, 𝝅

, e
xv 𝑳(𝝅)

𝑼(𝝅)

After This Point, the System Will 
Block the Malicious End-user

After this Point, Malicious 
End-user Can Successfully 
Compromise the System

Fig. 1: Illustration of a continuous path analysis of U(⇡) and L(⇡) in Markov Perfect
Equilibrium

result is the characterization of querying activity of the malicious end-user and de-
tection (stopping) strategies by the system in a unique equilibrium. We assume that
a decision to stop querying (i.e., deviating from honest behavior) is the last action in
the game taken by the (malicious) end-user. This decision allows the end-user to
either achieve the target of compromising the system and then getting blocked by it
or getting blocked without reaching this target at all. In either case, the system’s be-
lief about this end-user will jump to ⇡t = 0. The end-user has no further action,
and the game reduces to a straightforward stopping problem for the system i.e., the
system decides when to stop the game. In that case, the continuation payoffs from that
point on can be interpreted as the termination payoffs of the original signaling game.

Next, consider the state of the game before the end-user deviates/reveals and
before the system’s block action. Since malicious end-user plays a mixed strategy
that occurs on-equilibrium path, system’s belief about the end-user evolves over
time. Thus, a unique MPE consists of a state variable process (EX

v
t ,⇡t) and two cutoff

functions, a non-increasing variance function U(⇡t) for the system and an increasing
variance function L(⇡t) for the end-user, where

– The system immediately blocks the end-user if ex
v
sy,t � U(⇡t), i.e., ⌧ =

inf{t >= 0 : exv
sy,t � U(⇡t)}.

– The malicious end-user keeps querying for explanation (thus, its variance), when-
ever exv

eu,t < L(⇡t) and mixes between querying and not querying whenever exv
eu,t �

L(⇡t), so that the curve {(L(⇡),⇡) : ⇡ 2 [0, 1]} serves as a reflecting boundary for
the process (exv

eu,t,⇡t).

We call such a unique MPE equilibrium a (U,L) equilibrium. The first condition
defines an upper boundary which tells the system that if an explanation variance
value ex

v
sy,t at time t (corresponding to a query sent by the end-user) is greater

than or equal to this boundary (U(⇡t)), then the end-user is trying to compromise the
system. In this case, the system should block the end-user. The second condition
above guides the behavior of the malicious end-user. Function L(⇡t) represents the
upper-bound of the target explanation variance value the malicious end-user wants
to achieve given a certain belief ⇡t at time t. When the explanation variance value
corresponding to a query by an end-user is less than this boundary function, i.e.,
ex

v
eu,t < L(⇡t), then it is strategically better for the malicious end-user to keep

querying (i.e., looks honest from system’s perspective). However, if exv
eu,t � L(⇡t)

then the malicious end-user has an incentive to stop querying. For the malicious



10 No Author Given

end-user, this condition also represents that it is near to the desired (or target) vari-
ance threshold value - one more step by the malicious end-user can either lead to
success (compromise of the system) or failure (getting blocked by the system be-
fore achieving its goal).

To understand the MPE structure, consider the current belief, ⇡t. If the computed ex-
planation variance is close to the threshold, the system should block the end-user
suspicious of moving toward the model’s classification boundary. This cutoff for the
variance is a non-increasing function of ⇡ because, by definition, the end-user is
less likely to be honest when the variance value is sufficiently close to the threshold
value and ⇡t is large. Thus, when the threshold value becomes greater than or equal to
the optimal function U(⇡t) at any time t, system will block the end-user. This is
intuitively shown in Figure 1, where uth represents the variance threshold for an ex-
planation generated by the system and lth represents the variance threshold for the
explanation after the textttsystem adds noise based on its belief, which can be given to
the end-user. [0, uth] or [0, lth] represents the pooling region where an MPE can
occur, if end-user is not blocked by the system.

4 Equilibrium Analysis

Next, we try to analyze conditions under which a unique MPE exists in the game de-
scribed above, i.e., we try to construct a (U,L) equilibrium by finding conditions under
which optimal functions L(⇡t) and U(⇡t) exist.
High-level Idea: As mentioned in section 3, an MPE is defined as a pair of functions
L(⇡t) and U(⇡t). Thus, we first need to show that these two optimal functions exists.
To prove that L(⇡t) and U(⇡t) exist, we prove the continuity and differentiability prop-
erties of L(⇡t) (theorem 1) and U(⇡t) (theorem 2) in the belief domain (⇡t 2 [0, 1]).
As we have assumed that the system plays a pure strategy, we consider that U(⇡t)
(for the system) is optimal, and show that it exists and is continuous. However, com-
puting an optimal L(⇡t) is non-trivial, as we have assumed that the end-user plays
a randomized strategy. Therefore, to compute L(⇡t), we first construct two bounding
functions L

+(⇡t) (upper) and L
�(⇡t) (lower) and show that such functions exists (in

lemmas 3 and 4, respectively). To compute these functions we use the boundary condi-
tions (section 2.4) at the decision boundaries, i.e., Pooling, Separating, and Detection
and Block (outlined in Table 1) and the value functions defined below. We then show
that as ⇡t increases, L+(⇡t) and and L

�(⇡t) will converge in the range (0, uth) (lemma
1) or (0, lth) (lemma 2) as we have considered that an MPE occurs when both types of
end-user pool. Finally, we show that the first intersection point (root) of L+(⇡t) and
L
�(⇡t) is a unique MPE, if the end-user is not blocked by the system before that

point. At these decision boundaries, both players decide to either continue or stop.

4.1 Value Functions

As mentioned earlier, we are considering an equilibrium that occurs when both types of
end-user pool, i.e., exv

eu,t is strictly below L(⇡t). In this pooling scenario, no infor-
mation becomes available to the system about the type of the end-user; thus, belief
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(⇡t) remains constant. Hence, we write the value functions for both the players condi-
tioned on no deviation by the end-user. As we consider an infinite horizon in our
game, there is no known terminal (final) value function. Hence, these value functions
are independent w.r.t. t 2 R, as t singularly has no effect on them. The end-user’s
value function (F ) should solve the following HJB equation representing his/her risk-
less return:

rF (exv
eu ,⇡) = µex

v
euF

0

exv
eu
(exv

eu ,⇡) +
1

2
�
2(exv

eu)
2
F

00

exv
eu
(exv

eu ,⇡) +  ex
v
eu

where F
0

exv
eu

and F
00

exv
eu

are the first and second order partial derivative of the value
function F (exv

eu ,⇡) w.r.t. exv
eu , respectively, and, µ and � are the drift/mean and the

variance/volatility of the variance process EX
v
t , respectively.  is the payoff coefficient

which depends on the stage payoffs of the end-user, as represented in Table 1. The
solution to the above equation can be represented as:

F (exv
eu ,⇡) = A1(⇡)(ex

v
eu)

�1 +A2(⇡)(ex
v
eu)

�2 +
 ex

v
eu

r � µ

for some constants A1(⇡) and A2(⇡), where �1 > 1 and �2 < 0 are the roots of the
characteristic equation [9]. Similarly, the system’s value function V (exv

sy ,⇡) should
satisfy the following equation, conditioned on ex

v
eu < L(⇡) and ⇡ staying constant:

rV (exv
sy ,⇡) = µex

v
syV

0

exv
sy
(exv

sy ,⇡) +
1

2
�
2(exv

sy )
2
V

00

exv
sy
(exv

sy ,⇡) +  ex
v
sy

where V
0

exv
sy

and V
00

exv
sy

are the first and second order partial derivative of the value func-
tion V (exv

sy ,⇡) w.r.t. exv
sy , respectively. As before,  is the payoff coefficient which

depends on the stage payoffs of the system as shown in Table 1. The solution to the
above equation can be represented as:

V (exv
sy ,⇡) = B1(⇡)⇥ (exv

sy )
�1 +B2(⇡)(ex

v
sy )

�2 +
 ex

v
sy

r � µ

for some constant B1(⇡) and B2(⇡). We will use different boundary conditions to deter-
mine A1(⇡), A2(⇡), B1(⇡) and B2(⇡). Then, we will use these conditions to determine
U(⇡t) and L(⇡t).

4.2 Analytical Results

We aim to compute the system’s threshold uth (Lemma 1) and the end-user’s
threshold lth (Lemma 2). These thresholds define the region for a potential MPE in the
game if the necessary conditions are satisfied. These lemmas help determine if a unique
MPE exists. Due to space constraints, we could not add all the proofs here. Thus, please
find proofs and other details in the Appendix of the extended paper version [21].

Lemma 1. There exists a positive upper bound uth on the variance of an explanation

generated by an explanation method representing the maximum variance value that can

be reached for the query sent by the end-user.
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Lemma 2. There exists a positive upper bound lth on the variance of an explanation

given by the system to the end-user representing maximum variance value needed

to be reached by the end-user to compromise the system.

We aim to characterize the optimal cutoff functions: the system’s U(⇡t) and the
end-user’s L(⇡t). These functions represent the game’s MPE and help the system
and the end-user to play optimally in each game stage. For example, if the system
doesn’t have any knowledge of U(⇡t), then it won’t know the range of the variance
values being computed for the explanations, which are given to the end-user after
adding some noise based on its belief. Hence, an adversary can easily compromise the
system. In contrast, L(⇡t) function knowledge will guide an adversary on how to
compromise the system optimally. For that reason, we first prove that U(⇡t) exists
and is non-increasing and continuously differentiable (Theorem 11).
Theorem 1. U(⇡t) is non-increasing and continuously differentiable function in do-

main [0, 1] if and only if either �2�1J
‘(⇡, t)�2�1

 �1�2J
‘(⇡, t)�1�1

or �2(�1 �

1)J ‘(⇡, t)�2�1
 �1(�2 � 1)J ‘(⇡, t)�1�1

, where J(⇡, t) = L(⇡)
U(⇡) .

To prove L(⇡) (Theorem 2) exists and is increasing and continuously differentiable,
we first characterize an explanation variance path L

+(⇡) (Lemmas 3), which represents
the maximum variance values that can be computed by the end-user for the given
explanations, and a variance path L

�(⇡) (Lemma 4), which represents the minimum
variance values for the explanations given by the system to the end-user. We write
three equations each for L+(⇡) and L

�(z) according to the value matching, smooth
pasting, and the condition in which the variance of the explanation received is oppo-
site of what end-user expected. Then, we demonstrate that both these functions are
increasing and continuously differentiable. The purpose for doing this is to use these
lemmas to show that as ⇡ ! 1, both L

+(⇡) and L
�(⇡) starts to converge and becomes

equal to L(⇡) after some point.

Lemma 3. L
+(⇡) is a well-defined, increasing, continuous and differentiable function

in domain [0, 1] if and only if �
0
(L+(⇡),⇡) > 0 and P > 0, where �() is the termina-

tion payoff if the end-user decides to deviate and attack the system.

Lemma 4. L
�(⇡)) is a well-defined, increasing, continuous and differentiable function

in domain [0, 1] if and only if either (@A
+
1 (z)
@⇡ L

�(⇡)�1 + @A+
2 (⇡)
@⇡ L

�(⇡)�2) < 0 or

(A+
1 (⇡)�1L

�(⇡)�1�1 +A
+
2 (⇡)�2L

�(⇡)�2�1) < 0.

Theorem 2. L(⇡) is a well-defined, increasing, continuous and differentiable function

domain [0, 1] if and only if either �
0
(L(⇡),⇡) > 0 and P > 0.

Finally, we show that such a point where L+(⇡t) and L
�(⇡t) converge (or intersect)

exists, and thus, a unique MPE (Theorem 3) exists in the game.

Theorem 3. A unique MPE or a point, & = �(L+(⇡),⇡)⇥(r�µ)
P⇥L�(⇡) , exists in the game where

the two curves L
+(⇡) and L

�(⇡) starts to converge, if and only if
�2

&�2+1⇥h
L
+(�

0
�

P
r�µ )� �1(��

PL+

r�µ )
i
�

�1

&�1+1

h
�2(��

PL+

r�µ )� L
+(�

0
�

P
r�µ )

i
.

1 To simplify the exposition of the proofs, we have replaced L(⇡t) with L(⇡) and U(⇡t) with
U(⇡) in these results.
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Table 2: Dataset Configurations.
Datasets Points #Features Type #Classes
Purchase 197,324 600 Binary 100

Texas 67,330 6,170 Binary 100
CIFAR-100 60,000 3,072 Image 100
CIFAR-10 60,000 3,072 Image 2

Adult 48,842 24 Mixed 2

5 Experimental Setup

We use the Captum [20] framework to generate four explanation types: GradientInput,
Integrated Gradients, LRP, and Guided Backpropagation. Next, we use PyTorch frame-
work to conduct the training and attack-related experiments. GradientInput serves as
our baseline to compare the results of the other explanation methods. We assume that
when the game ends, both the system and the end-userwill have access to their op-
timal strategies, uth and lth, respectively. Thus, when the game ends, an adversary can
use its optimal strategy and optimal threshold to conduct MIA, or a system can use
its optimal strategy and optimal threshold to protect against MIA. As a result, we focus
on two evaluation objectives in our experiments: (i) game evolution, and (ii) MIA accu-

racy. For the game evolution, we simulate and generate the future explanation variances
for t = 100 stages, according to the expression:

EX
v
t = EX

v
0 ⇤ e

((µ� 1
2�

2)+�Wt) (1)

The above equation is the solution to the GBM (Equation 1) of EX
v
t , derived using

the itô’s calculus [9]. µ and � > 0 are computed using the variance generated for the test
datapoints for each of the dataset. In our experiments, we take EX

v
0 as the last index

value of the test data points’ generated explanation variance, as we use this initial value
to generate future explanations. Using the obtained optimal strategies and thresholds,
we compute the attack accuracy in terms of the attacker’s success rate in launching the
MIA or the accuracy of the system in preventing the MIA.
Datasets. We use five popular benchmark datasets on which we perform our game
analysis and attack accuracy evaluations: Purchase and Texas datasets [25], CIFAR-
10 and CIFAR-100 [30], and the Adult Census dataset [11]. To ease the comparison,
the setup and Neural Network (NN) architectures are aligned with existing work on
explanation-based threshold attacks [31]. Table 2 details each dataset’s configuration.
One can refer to the extended version of the paper for more details [21].

Evaluation metric. We compute the True Positive Rate (TPR) to estimate MIA
accuracy after the game ends, with each player having formulated their best response
strategy. TPR measures how accurately an attacker infers data point membership. We
consider training data points to test against the optimal strategy of the system. Since
the sample space that we have considered contains only actual training members, there
can be only two outcomes: correctly classified and incorrectly classified. The total num-
ber of training data points correctly inferred as training points (using uth) are called
True Positives (TP ), while the number of training members discerned as non-training
members are called False Negatives (FN ). Thus, TPR = TP

TP+FN .
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6 Evaluation

This section analyzes our game model to assess two objectives: (i) the equilibrium evo-
lution for optimal strategies and (ii) attack accuracy (TPR). Next, we consider the Gra-

dient*Input method as our baseline for comparison against other explanation methods.
Finally, we also analyze how other factors can influence attack accuracy.

6.1 Impact of Different Attack Information Sources

As detailed in Section 5, we initially sample future explanations for each dataset using
GBM (Equation 1). The sampled noise is added to the generated explanations vari-
ance based on the computed belief ⇡t, such that higher belief implies honest user, thus
smaller noise added to the explanation variance, and vice-versa.

Then, we compute different functional paths for the system and the end-user
(Section 3.3) i.e., we compute U(⇡t), L+(⇡t), L�(⇡t) and L(⇡t) functions. The termi-
nation payoff, �(exv

eu ,⇡t) (defined in 2.4), which is used to write the boundary condi-
tions in the computation of L+(⇡t), L�(⇡t) and L(⇡t) (Lemma 3 and Lemma 4, and
Theorem 2) is assumed to be:

�(exv
eu ,⇡t) =

0.8⇥ ex
v
eu ⇥ log(⇡t ⇥ 2) + ⇡t ⇥ ex

v
eu

b

Where ex
v
eu is the value of any end-user’s functional path (considered for the

specific computation) at time t, and b is the model parameter set differently for each
explanation method. The parameters for �(exv

eu,⇡t) are empirically chosen based on
their suitability to each of the four explanation methods. From our numerical simula-
tions, we observe important patterns for each dataset in the baseline setting (Gradi-

ent*Input) and the other three gradient-based explanation techniques.
Game Evolution in the Baseline Setting: Figure 2 represents varying game evolution
realized for different datasets. Below, we analyze in detail the optimal paths obtained
for each dataset.

– From the plots of the optimal functional path U(⇡t) of the system for each of the
dataset, as shown in Figures 2b, 2d, 2f, 2h, and 2j, we can observe that as ⇡t !

1, U(⇡t) starts decreasing. This is because, as the system’s belief about the type
of end-user approaches 1, both the variance of the explanation generated by the
system and the variance of the noisy explanation given to the end-user approach
uth and lth, respectively. After a certain point, i.e., when ex

v
sy > U(⇡t), the system

will block the end-user, which confirms to our intuition.
– From the optimal functional paths L+(⇡t), L�(⇡t) and L(⇡t) of the end-user for

each of the dataset, as shown in Figures 2a, 2c, 2e, 2g, and 2i, we can observe that
as ⇡t ! 1, L+(⇡t), L�(⇡t) and L(⇡t) approach the threshold lth. As discussed in
3.3, as ⇡t ! 1 and the variance of the explanation given to the end-user starts
to approach the variance threshold, it means a malicious end-user is trying to
compromise the system. Thus, if the system doesn’t block the end-user at the
right time (or doesn’t have knowledge about optimal U(⇡)), then the end-user can
easily compromise the system.
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– Earlier we showed that a unique MPE exists when L
+(⇡t) and L

�(⇡t) begin to con-
verge as ⇡t ! 1. This is also visible from our results as shown in Figure 2, where
we can observe that as ⇡t ! 1, L+(⇡t) and L

�(⇡t) starts to converge. However, for
the CIFAR-10 dataset, one can observe that the curves L+(⇡t) and L

�(⇡t) doesn’t
converge as ⇡t ! 1. Thus, an MPE doesn’t exist in the case of CIFAR-10 dataset.
The intuition behind this observation is that the fluctuations (or variance) of the ex-
planation variance computed for the CIFAR-10 is high, making it difficult for them
to converge to a single point. Finally, if the system doesn’t block the end-user
before the threshold lth or uth is reached, then we say a unique MPE exists in the
game.
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(c) CIFAR-100
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(d) CIFAR-100
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(e) Adult
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(g) Purchase
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(h) Purchase
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(i) Texas
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Fig. 2: Different functional paths for the different datasets. (a), (c), (e), (g), and (i) repre-
sents the optimal functional paths for the end-user. (b), (d), (f), (h), and (j) represents
the optimal functional paths for the system.

Attack Accuracy in the Baseline Setting: After obtaining the optimal strategies, we
use the range of the training data points of each dataset to determine how many data
point variances lie below the computed threshold uth to determine their membership.
As shown in Figure 3a, the attack accuracy for all the datasets except CIFAR-10 is more
than 50%. This result aligns with the observed game equilibrium analysis. Hence, the
fluctuations in explanation variance make it difficult for an adversary to reach the target
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threshold, in consequence, to launch MIAs. From these obtained results, one can easily
observe that the explanations provide a new opportunity or an attack vector to an adver-
sary actively trying to compromise the system. In other words, our results are clear
indicators that an adversary can repeatedly interact with the system to compute the
explanation variance threshold and successfully launch membership inference attacks
against the system.
Results for other Explanation Techniques: We also analyzed the game for the three
other explanation methods considered in this paper. We do not plot the game evolu-
tion results in this setting as the plots follow a very similar trend as seen in Figure 2,
i.e., game equilibrium was achieved for all the datasets except for the CIFAR-10. We
uses the same setting as the baseline setting (mentioned above) to compute attack accu-
racy for these three explanation methods. We obtained each dataset’s attack accuracy as
shown in Figure 3b. For the Texas and Purchase datasets, 100% accuracy was achieved,
i.e., an attacker effectively determines the membership of all the data points used for
training the model. However, for the CIFAR-10, the attack accuracy was below 50%,
and for the Adult dataset, attack accuracy was above 50% only for the LRP explana-
tion method. The reason is again the high fluctuations in the computed variance for the
CIFAR-10 dataset (slightly less for the Adult dataset), thus making it difficult for an
adversary to determine the membership of the data points in those datasets. These re-
sults clearly indicate that, for different explanation methods, an adversary’s capability
to launch MIA attacks will vary and may depend on the variance of the explanations.

(a) (b)

Fig. 3: Accuracy (TPR) for the optimal strategy obtained by the system and the
end-user: a) Gradient*Input method and b) Other explanation methods.

6.2 Analysis of other Relevant Factors

This section examines factors like input dimension, underfitting, and overfitting using
synthetic datasets to study how adversaries can exploit model gradient information for
membership inference attacks.

– Impact of Input dimension. First, we analyze the impact of input dimension on
game evolution using the Sklearn make classification module [27] to generate datasets.
We set the number of classes to 2 or 100 and vary the number of features from
tf 2 [10, 100, 1000, 6000]. We sample 20,000 points for each setting and split them
evenly into training and test sets. Second, for each value tf and for each class, we em-
ploy two models to train from this data: model A and model B. Model A is chosen to
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have fewer layers (or depth) than model B to compare the effect of the complexity of
the models on the game evolution and attack accuracy. Model A is a fully connected
NN with two hidden layers fifty nodes each, the tanh activation function between the
layers, and softmax as the final activation. The network is trained using Adagrad with
a learning rate of 0.01 and a learning rate decay of 10�7 for 50 epochs. Model B is a
five-layer fully connected NN with tanh activations. The layer sizes are 2048, 1024,
512, 256 and 100. We use the Adagrad optimizer with a learning rate of 0.01 and a
learning rate decay of 10�7 to train the model for 50 epochs. Next, we demonstrate
the effect of these models on our experiment’s two main objectives.
• Effect of Model A on Game Evolution and Attack Accuracy. For k = 2

classes, we observe a similar trend in the game evolution, shown in Figure 2 for
each of the features tf 2 [10, 100, 1000, 6000]. However, for k = 100 classes,
we observed that the belief ⇡t of the system about the type of the end-user is
always set to 1 as shown in Figure 4a. Consequently, the variance of the explana-
tions generated is equivalent to that of the explanations given (Figure 4b). Hence,
the game didn’t evolve as the system explained the same to the end-user.
The reason is because of underfitting. Model A lacks sufficient depth (fewer lay-
ers) to classify 100 classes accurately, resulting in poor performance. Moreover,
the final model’s loss was 5.74 for all features, leading to inaccurate predictions
and affecting the experimental objectives.

(a) (b)
Fig. 4: Explanation variance generated vs. explanation variance given when ⇡t = 1.

• Effect of Model B on Game Evolution and Attack Accuracy. Next, we ana-
lyze the game results model B, which incurred a training loss of 0.8 across all
features. No game evolution was observed for k = 2 classes and nf = 10 be-
cause we got � > µ and � > 1 for the test data points explanation variance.
Consequently, the computed future variance values were zero using Equation 1.
For tf 2 [100, 1000, 6000], we analyzed the game equilibrium and computed
the attack accuracy using sampled training data points, depicted in Figure 5a.
For tf = 1000, an attack accuracy greater than 50% was observed; however,
for tf = 100 and tf = 6000, an attack accuracy less than 50% was observed.
For k = 100 classes, we did not observe any equilibrium for any of the features
tf . Based on the final simulated explanation variance index (at t = 100), we
computed the threshold uth and determined the attack accuracy for each feature
(Figure 5b).

The results for models A and B show that the model choice significantly influ-
ences the game evolution and affects an adversary’s capability to launch MIA attacks
against the system.
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(a) k = 2. (b) k = 100.

Fig. 5: MIA accuracy for different features nf for model B.

– Impact of Overfitting. As detailed in [39], overfitting significantly boosts mem-
bership inference attack accuracy. To examine its impact, we varied training epochs
for Purchase, Texas, and Adult in {30, 50, 60} datasets. Overfitting increased at-
tack accuracy only for the Adult dataset, which remained unchanged for Texas and
decreased for Purchase. Hence, the game’s evolution and MIA accuracy hinge on
multiple factors (experimented above), not just on training epochs. Thus, overfitting
alone does not uniformly enhance attack capability, as shown in the aforementioned
scenarios.

7 Related Works

Efforts to enhance ML model transparency present privacy risks, as shown in existing
works where explanations are exploited for various attacks, such as MIA [31], model
reconstruction [24], model inversion [40], and sensitive attribute inference [12] attacks.
We focus on MIA, where high explanation variance indicates either exclusion from
training data or model uncertainty, enabling potential attacks [31]. Unlike prior work
analyzing the single “what if” interaction scenario, our study models repeated inter-
actions between the system and malicious end-user, examining varied settings’
impacts on MIA using optimal strategies and thresholds.

Game-theoretic approaches, such as zero-sum games [8] [13], non-zero sum games
[10], sequential Bayesian games [41] [14], sequential Stackelberg games [5] [1] and
simultaneous games [7] have been used in the research literature to model interactions
with ML models, specifically to model adversarial classification. Contrary to these ef-
forts, where an adversary’s objective is to target the classification task of an ML model,
our research effort focuses on the descriptive task, i.e., explaining the model predictions.
Specifically, we use a continuous-time stochastic Signaling Game [26] [4] [2] [36] to
model the repeated interactions in a dynamic ML system with explanations to accom-
plish MIAs. We also make a novel use of GBM [28] [17] [9] to model the explanation
variance in order to analyze how an adversary can utilize historical variance informa-
tion to reach the target variance threshold. To the best of our knowledge, there have been
no prior works that utilize a continuous-time game-theoretic formulation to study the
privacy leakages (in the form of MIAs) due to model explanations. Similar continuous-
time stochastic signaling game models have been used in economic theory to study
stock prices [9], dynamic limit pricing [15] [16], and market trading [6]. Our work is
one of the first to use modeling concepts from economic theory to study the privacy
problem in the ML and model explainability domain.
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8 Conclusion

We modeled the strategic interactions between an end-user and a system, where
the variance of the explanations generated by the system evolve according to a stochas-
tic differential equation, as a two-player continuous-time signaling game. Our main
aim was to study how an adversary computes the optimal variance threshold to launch
explanation-based MIAs. Further, our experiments showed that an adversary’s ability to
launch MIA depends on various factors. A knowledgeable adversary can exploit these
factors, particularly the variance in explanations, to effectively conduct MIA.

References

1. Alfeld, S., Zhu, X., Barford, P.: Explicit defense actions against test-set attacks. In: AAAI
(2017)

2. Averboukh, Y.: Approximate solutions of continuous-time stochastic games. SIAM Journal
on Control and Optimization (2016)

3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
One (2015)

4. Brázdil, T., Forejt, V., Krcal, J., Kretinsky, J., Kucera, A.: Continuous-time stochastic games
with time-bounded reachability. In: IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik (2009)

5. Brückner, M., Scheffer, T.: Stackelberg games for adversarial prediction problems. In: ACM
KDD (2011)

6. Daley, B., Green, B.: Waiting for news in the market for lemons. Econometrica (2012)
7. Dalvi, N., Domingos, P., Sanghai, S., Verma, D.: Adversarial classification. In: ACM KDD

(2004)
8. Dekel, O., Shamir, O., Xiao, L.: Learning to classify with missing and corrupted features.

Machine learning (2010)
9. Dixit, R.K., Pindyck, R.S.: Investment under uncertainty. Princeton university press (2012)

10. Dritsoula, L., Loiseau, P., Musacchio, J.: A game-theoretic analysis of adversarial classifica-
tion. IEEE Transactions on Information Forensics and Security (2017)

11. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

12. Duddu, V., Boutet, A.: Inferring sensitive attributes from model explanations. arXiv preprint
arXiv:2208.09967 (2022)

13. Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature deletion. In:
ICML (2006)

14. Großhans, M., Sawade, C., Brückner, M., Scheffer, T.: Bayesian games for adversarial re-
gression problems. In: ICML (2013)

15. Gryglewicz, S.: Signaling in a stochastic environment and dynamic limit pricing. Tech. rep.,
mimeo, Tilburg University (2009)

16. Gryglewicz, S., Kolb, A.: Strategic pricing in volatile markets. Kelley School of Business
Research Paper (2019)

17. Hu, Y., Øksendal, B.: Optimal time to invest when the price processes are geometric brown-
ian motions. Finance and Stochastics (1998)

18. Hui, B., Yang, Y., Yuan, H., Burlina, P., Gong, N.Z., Cao, Y.: Practical blind membership
inference attack via differential comparisons. arXiv preprint arXiv:2101.01341 (2021)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


20 No Author Given

19. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and adversarial
examples. NeurIPS (2019)

20. Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov,
A., Kliushkina, N., Araya, C., Yan, S., et al.: Captum: A unified and generic model inter-
pretability library for pytorch. arXiv preprint arXiv:2009.07896 (2020)

21. Kumari, K., Jadliwala, M., Jha, S.K., Maiti, A.: Towards a game-theoretic understanding of
explanation-based membership inference attacks. arXiv preprint arXiv:2404.07139 (2024)

22. Long, Y., Bindschaedler, V., Gunter, C.A.: Towards measuring membership privacy. arXiv
preprint arXiv:1712.09136 (2017)

23. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NeurIPS
(2017)

24. Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model expla-
nations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency.
pp. 1–9 (2019)

25. Nasr, M., Shokri, R., Houmansadr, A.: Machine learning with membership privacy using
adversarial regularization. In: CCS (2018)

26. Neyman, A.: Continuous-time stochastic games. Games and Economic Behavior (2017)
27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research (2011)

28. Reddy, K., Clinton, V.: Simulating stock prices using geometric brownian motion: Evidence
from australian companies. Australasian Accounting, Business and Finance Journal (2016)

29. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? explaining the predictions of
any classifier. In: ACM KDD (2016)

30. Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., Jégou, H.: White-box vs black-box:
Bayes optimal strategies for membership inference. In: ICML (2019)

31. Shokri, R., Strobel, M., Zick, Y.: On the privacy risks of model explanations. In: Proceedings
of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. pp. 231–241 (2021)

32. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against ma-
chine learning models. In: IEEE S&P (2017)

33. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating
activation differences. In: ICML (2017)

34. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: Learning im-
portant features through propagating activation differences. arXiv preprint arXiv:1605.01713
(2016)

35. Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling lime and shap: Adversarial
attacks on post hoc explanation methods. In: Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society. pp. 180–186 (2020)

36. Sobel, J.: Signaling games. Complex Social and Behavioral Systems: Game Theory and
Agent-Based Models pp. 251–268 (2020)

37. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806 (2014)

38. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML
(2017)

39. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: Analyzing
the connection to overfitting. In: CSF (2018)

40. Zhao, X., Zhang, W., Xiao, X., Lim, B.: Exploiting explanations for model inversion attacks.
In: IEEE/CVF ICCV (2021)

41. Zhou, Y., Kantarcioglu, M.: Adversarial learning with bayesian hierarchical mixtures of ex-
perts. In: ICDM (2014)


	Towards a Game-theoretic Understanding of Explanation-based Membership Inference Attacks

