
Solving Mystery Planning Problems Using Category
Theory, Functors, and Large Language Models

Sumit Kumar Jha
Department of Computer Science
Florida International University

Miami, FL, USA
sumit.jha@fiu.edu

Susmit Jha
Computer Science Laboratory

SRI International
Menlo Park, CA, USA

susmit.jha@sri.com

Rickard Ewetz
ECE Department

University of Florida
Gainesville, FL, USA
rickard.ewetz@uf.edu

Alvaro Velasquez
Computer Science Department
University of Colorado Boulder

Boulder, CO, USA
alvaro.velasquez@colorado.edu

Abstract—Large language models (LLMs) have shown
remarkable capabilities in natural language understanding and
generation. However, they face challenges in solving complex
planning problems, especially those obscured by altered
terminologies and representations, known as mystery planning
problems. This paper presents a novel approach leveraging
category theory and functors to systematically map mystery
planning problems to their canonical forms, enabling effective
planning solutions. We demonstrate our methodology using the
Mystery Blocks World domain, showcasing significant
improvements in planning accuracy and efficiency.
Contemporary LLMs, such as GPT-4 and Claude-3.5 Sonnet,
conjecture the canonical form and the corresponding functor
only by observing the structure of the mystery planning
problem, and the resulting approach improves the accuracy of
the LLM-based planning solution to 60% for problems with 4
blocks.

Index Terms—Category Theory, Functors, Large Language
Models, Planning, Autonomous Systems

I. INTRODUCTION

In recent years, large language models (LLMs) such as
GPT-4 and Claude-3.5 Sonnet and their variants have
exhibited impressive capabilities in generating text, coding,
answering mathematical queries and even predicting
properties of biological sequences [1], [2]. Despite their
strengths, these models encounter significant difficulties
when tasked with solving complex planning problems,
particularly those presented in obfuscated formats [3].

While formal verification of generated plans has enabled
contemporary LLMs to synthesize plans with non-trivial
accuracy [4], [5], this success does not hold true for Mystery
domain planning as the accuracy of LLMs in these cases
falls miserably even when supported by verification engines.
This work introduces a category-theoretic framework that
utilizes functors to translate mystery planning problems into
their canonical forms, facilitating accurate and efficient
problem-solving. Our main contributions in this paper are:

1) We introduce an approach leveraging functors to
systematically map mystery planning problems to
canonical forms corresponding to popular problems.

2) We demonstrate the application of this approach using
the Mystery Blocks World domain, showcasing
improvements in planning capability, pushing the
accuracy to 60% for problems with 4 blocks.

Mystery Planning

(define (problem gen4)
(:domain mystery-4ops)
(:objects g j f b)
(:init
(harmony)
(planet g)
(planet j)
(planet f)
(planet b)
(province g)
(province j)
(province f)
(province b)

)
(:goal
(and
(craves g j)
(craves j f)
(craves f b)

)
)

)

Blocksworld Planning

(define (problem gen4)
(:domain blocks-world)
(:objects g j f b)
(:init
(ontable g)
(ontable j)
(ontable f)
(ontable b)
(clear g)
(clear j)
(clear f)
(clear b)
(armempty)

)
(:goal
(and
(on g j)
(on j f)
(on f b)

)
)

)

Fig. 1: Functor synthesized by a LLM maps the Mystery
planning problem into the Blocks World problem.

3) We show that contemporary LLMs, such as GPT-4 and
Claude-3.5 Sonnet, can conjecture the canonical form and
the corresponding functor only by observing the structure
of the mystery planning problem. For example, Fig. 1
shows a Mystery planning problem and its corresponding
Blocks World problem synthesized automatically using
the functor generated by GPT-4 in Table I of Sec. IV-B.

Our interest in solving Mystery planning stems from the
desire to enable LLMs to operate in novel hithero unseen
scenarios by mapping the problem to observed data and
experiences using category theory and functors [6].

II. RELATED WORK

A significant challenge in the deployment of LLMs is their
propensity to produce hallucinations, which are outputs that
are factually incorrect or nonsensical [7]. In the context of
planning and synthesis [8], formal verification has been used
to eliminate such hallucinations [4].

Recently, it has been argued that LLMs may enhance
planning and decision-making tasks by leveraging their vast
commonsense knowledge [9]. ADaPT [10], an approach that



decomposes tasks as needed, allowing LLMs to handle
complex tasks by breaking them into simpler sub-tasks.

Category theory offers a powerful framework for
understanding and formalizing various concepts in computer
science and AI. Category theory [11], [12] has been used to
structure and solve complex problems by defining
relationships between different components systematically.
To the best of our knowledge, we are the first to suggest the
use of category theory and functors to deobfuscate mystery
planning problems into other well-known planning problems.

III. TECHNICAL APPROACH

Our approach begins by providing the PDDL description
of the mystery planning problem to an LLM. The LLM is
then tasked with conjecturing a known planning domain
from which this problem may have originated or to which
this problem could be mapped. This involves the LLM
identifying the category for both the original mystery domain
and the conjectured planning domain. Based on these
categories, the LLM is asked to construct a functor that
translates objects and actions from one domain to the other.

Once the functor is formulated, it is used to translate
specific problems from the mystery domain to the
conjectured planning domain. Subsequently, we apply
LLM-based planning using formal verification [4] to
synthesize a verifiable plan within the conjectured planning
domain. The functor is then employed again to map the
synthesized plan back from the conjectured domain to the
original mystery domain. The process is illustrated in Fig. 2.

It is acknowledged that the process may encounter failures
at either the planning or conjecturing stages if the conjectured
planning domain is not a suitable match. In such instances,
feedback is provided to the LLM to facilitate the generation
of a new planning problem or plan. While there is a possibility
that the feedback loop may not yield successful results, our
experiments have shown that contemporary models are capable
of performing the necessary category-theoretic analysis and
functor synthesis effectively.

A. Categories and Functors

We briefly recapitulate the definition of categories and
functors and then discuss their use in planning problems.

Definition III.1. A category C consists of three components:
(i) A class of objects Ob(C).

(ii) For each pair of objects A,B ∈ Ob(C), a set of
morphisms (or arrows) HomC(A,B) from A to B.

(iii) A binary operation called composition, defined on
compatible pairs of morphisms. For any morphisms
u : A → B and v : B → C, there exists a morphism
v ◦ u : A → C, read as “the composition of u followed
by v”.

These components must satisfy the following axioms:
(a) Associativity: For any morphisms u : A → B, v : B →

C, and w : C → D, the composition must be associative,
i.e., (w ◦ v) ◦ u = w ◦ (v ◦ u).

Fig. 2: Overview of our approach using category theory and
functors to map mystery planning problems to canonical forms
for LLM-assisted planning and formal verification.

(b) Identity: For each object A ∈ Ob(C), there exists identity
morphisms idA ∈ HomC(A,A) and idB ∈ HomC(B,B)
such that for any morphism u : A → B, we have idB ◦
u = u and u ◦ idA = u.

In case of planning problems, the identity morphism
simply denotes no changes in the state of the object.
Composition of morphisms or actions in planning problems
is indeed associative, as the grouping of the actions does not
affect the state of the world. Hence, categories serve as
effective mathematical models for planning problems.

Definition III.2. A functor F between two categories C and D
is a structure-preserving mapping, consisting of:

(i) An assignment to each object A ∈ Ob(C), an object
F (A) ∈ Ob(D).

(ii) An assignment to each morphism u ∈ HomC(A,B), a
morphism F (u) ∈ HomD(F (A), F (B)), such that the
following conditions hold:

(a) Identity Preservation: For every object A ∈ Ob(C),
F (idA) = idF (A).

(b) Composition Preservation: For all morphisms u : A →
B and v : B → C in C, F (v ◦ u) = F (v) ◦ F (u).

We will observe that our synthesized functors generated by
LLMs indeed satisfy identity preservation, since the identity
function maps an entity to itself in both categories.

B. Mapping Mystery Planning Problems

A B

F (A) F (B)

f

F (f)

F F

Fig. 3: A functor
F mapping objects
and morphisms from
category C to category
D.

The core idea of mapping
Mystery planning problems
to other well-known planning
problems is to create a functor,
say F , that can map objects
in the category corresponding to
the Mystery planning problem, say
A, to an object, say F (A), in the
well-known planning problem. The
functor F maps another object B
in the Mystery planning problem to
F (B). Now, let f be a morphism
from A to B. Then, the functor
ensures that the morphism F (f)



maps F (A) to F (B). In other words, the action of the
functor on objects and morphisms is consistent, i.e., applying
the morphism f on A and then the functor F on B = f(A)
has the same effect as first applying the functor F on A and
then applying the morphism F (f) on F (A). Both of them
produce F (B). F maps objects and morphisms from the
Mystery planning to the well-known planning domain.

By leveraging category theory, we can represent the Mystery
planning problem and its canonical counterpart in a structured
manner by asking the LLM to perform the following:

(i) Define the categories for Mystery planning problem and
the known planning problem.

(ii) Specify the objects and morphisms in each category.
(iii) Formulate a functor to map between these categories,

enabling translation of problems into canonical forms.

Prompt

Map the given Mystery Planning PDDL into a popular
planning domain (referred to as domain X). Generate
a planning PDDL in domain X that is analogous to the
given Mystery Planning PDDL and compare the two.
Define the categories for both the Mystery Planning
problem and the generated problem in domain X.
Specify the objects and morphisms in each category.
Make sure that both PDDLs have the same number
of predicates and actions. Formulate a functor that
maps the Mystery Planning problem to the problem in
domain X, illustrating how the objects and morphisms
of the Mystery Planning problem correspond to those
in domain X.

IV. EXPERIMENTS

In this section, we describe the use of the GPT-4o large
language model for mapping the Mystery planning problem
into a known planning domain, specifically the classical
Blocks World domain, using category theory. The LLM
defines the categories, specifies the objects and morphisms in
each category, and formulates a functor to map the Mystery
Planning problem to the Blocksworld problem.

A. Categories, Objects, and Morphisms

To effectively map the Mystery planning problem to the
Blocksworld domain, the LLM first defines the categories,
objects, and morphisms for each problem.

1) Category for Mystery Planning (Cmystery): The
Mystery planning problem is defined by the following
objects and morphisms. The objects include Provinces,
Planets, Harmony, Pain, and Craves. The morphisms or
actions that define the relationships between objects in the
Mystery Planning domain are attack, succumb, overcome,
and feast. These actions manipulate the state of the objects
and are represented in the PDDL.

3 Blocks 4 Blocks 5 Blocks 6 Blocks
0

2

4

6

8

10 9

6 6

4

C
or

re
ct

So
lu

tio
ns

Performance with Multiple Blocks

Fig. 4: Translating the Mystery Blocksworld problem
using functor synthesized by GPT-4o leads to significant
improvement in accuracy.

2) Category for Blocksworld Problem (Cblocks): The
Blocksworld domain is a well-known planning domain
involving the manipulation of blocks. The LLM identifies
this as the target planning PDDL for transforming the
mystery PDDL into a well-understood planning problem.
The LLM identifies the following objects:

(i) Blocks - The primary entities to be manipulated.
(ii) OnTable - The surface on which blocks can be placed.

(iii) Clear - A state indicating that a block is free,
(iv) On - A relation indicating a block is on top of another.
(v) Holding - A state indicating if an agent has a block.

The actions corresponding to the morphisms that define state
transitions in the Blocks World domain are:

(i) pick-up - The action transitions a block from being on
the table and clear to being held.

(ii) put-down - This action transitions a block from being
held to being on the table and clear.

(iii) stack - This action transitions a held block to being on
another clear block, changing the clear status of both.

(iv) unstack - This action transitions a stacked block to being
held, restoring the clear status of the underlying block.

B. Functor Construction

Mystery Blocks World

Objects

province clear
planet ontable

harmony armempty
pain holding

craves on

Morphisms (Actions)

attack pick-up
succumb put-down
overcome stack

feast unstack

TABLE I: LLM & Functor.

Table I illustrates
the functor F that maps the
objects and morphisms from
the Mystery planning problem
(Cmystery) to the Blocks
World problem (Cblocks).
The LLM automatically
generated the functor mapping
the objects and the morphisms
of the Mystery planning
category to the Blocks World
category. Using the functor
F , we can transform a given
Mystery planning problem
into an equivalent problem in
the Blocks World domain. An
example of this transformation is in Fig. 1.



C. Mystery Blocks World Planning Results

The performance of GPT-4 on Mystery planning problem
with multiple blocks after the category-theoretic mapping is
shown in Fig. 4. The bar chart shows the number of correct
solutions out of 10 problems for configurations with 3, 4, 5,
and 6 blocks.

V. GENERALIZATION TO OTHER MODELS

A. Claude Sonnet 3.5

Mystery Blocks World

Objects

province clear
planet ontable

harmony balanced
pain held

craves on

Morphisms (Actions)

attack pick-up
succumb put-down
overcome stack

feast unstack

TABLE II: Claude & Functor.

We illustrate
the functor F synthesized
by the Claude Sonnet 3.5
model in Table II that maps
the objects and morphisms
from the Mystery planning
problem to the Blocksworld
problem. Comparing
to Table I produced
by GPT-4o, we notice
that there are only two
differences: (i) ‘harmony’
is mapped to ‘balanced’
instead of ‘arm-empty’, and
‘(ii) ‘pain’ is mapped to
‘held’ instead of ‘holding’.
These are minor idiomatic
differences that do not
change the semantics of the
Blocks World problem.

B. Llama 3.1 405B and Gemini 1.5 Pro

We queried the Llama 3.1 405B parameter model using
the same prompt and obtained a mapping which was not
correct. Llama’s largest model had mapped both ‘province’
and ‘planet’ to ‘block’ and both ‘pain’ and ‘craves to ‘on’,
which was surprising. Smaller Llama 3.1 models also
produced incorrect responses. We queried the Gemini 1.5
Pro model using the same prompt, and it produced an almost
correct answer with only one deficiency: it swapped the
assignments of ’province’ and ’planet’ to ’clear’ and
’ontable’ respectively.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we have introduced an approach that
leverages category theory and functors to systematically map
mystery planning problems to their canonical forms,
enabling more effective planning solutions with LLMs.
Second, we demonstrated improvements in planning
accuracy and efficiency in the Mystery Blocks World
domain, with accuracy increasing to 60% for problems with
4 blocks. Third, we showed that contemporary LLMs can
conjecture the canonical form and the corresponding functor
by observing the structure of the mystery planning problem.

However, this work has known limitations. First, we
conducted insufficient experiments across multiple planning
problems to fully generalize the results. Second, we did not

include discussions on our findings for smaller LLMs. Future
work will address these limitations by providing rigorous
proofs, expanding experiments to multiple planning
problems, and including results from smaller LLMs. We will
also extend our work to synthesis of verified code [6], [13].
Our interest in solving mystery planning stems from the
desire to enable LLMs to operate in novel, hitherto unseen
scenarios by using functors to transfer knowledge across
domains.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research (ASCR) program,
Reaching a New Energy Sciences Workforce (RENEW)
under Award Number(s) DE-SC0024576 and
DE-SC0024428. The authors acknowledge support from
DARPA awards FA8750-23-2-0501 and HR00112490420.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the Department of Defense or the United
States Government.

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] M. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez,
A. Clyde, B. Kale, D. Perez-Rivera, H. Ma, et al., “Genslms: Genome-
scale language models reveal sars-cov-2 evolutionary dynamics,” The
International Journal of High Performance Computing Applications,
vol. 37, no. 6, pp. 683–705, 2023.

[3] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati, “On
the planning abilities of large language models-a critical investigation,”
Advances in Neural Information Processing Systems, vol. 36, pp. 75993–
76005, 2023.

[4] S. Jha, S. K. Jha, P. Lincoln, N. D. Bastian, A. Velasquez, and S. Neema,
“Dehallucinating large language models using formal methods guided
iterative prompting,” in 2023 IEEE International Conference on Assured
Autonomy (ICAA), pp. 149–152, IEEE, 2023.

[5] S. K. Jha, S. Jha, P. Lincoln, N. D. Bastian, A. Velasquez, R. Ewetz,
and S. Neema, “Counterexample guided inductive synthesis using large
language models and satisfiability solving,” in MILCOM 2023 - 2023
IEEE Military Communications Conference (MILCOM), pp. 944–949,
2023.

[6] S. K. Jha, S. Jha, R. Ewetz, and A. Velasquez, “Co-synthesis of
code and formal models using large language models and functors,”
in Applications of Artificial Intelligence in Code Analysis (AICA) at the
IEEE Military Communications Conference (MILCOM), 2024.

[7] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[8] S. K. Jha, Towards automated system synthesis using sciduction.
University of California, Berkeley, 2011.

[9] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as
commonsense knowledge for large-scale task planning,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[10] A. Prasad, A. Koller, M. Hartmann, P. Clark, A. Sabharwal, M. Bansal,
and T. Khot, “Adapt: As-needed decomposition and planning with
language models,” in Findings of the Association for Computational
Linguistics: NAACL 2024, pp. 4226–4252, 2024.

[11] H. Simmons, An introduction to category theory. Cambridge University
Press, 2011.

[12] D. E. Rydeheard and R. M. Burstall, Computational category theory,
vol. 152. Prentice Hall Englewood Cliffs, 1988.

[13] C. Spiess, D. Gros, K. S. Pai, M. Pradel, M. R. I. Rabin, S. Jha,
P. Devanbu, and T. Ahmed, “Quality and trust in llm-generated code,”
arXiv preprint arXiv:2402.02047, 2024.


