
Intelligence, Surveillance and Reconnaissance Task
Specifications in Temporal Logics

Laura L. Pullum
AI R&D

The POM Group, LLC
Oak Ridge, USA

laurapullum@gmail.com

Sumit Kumar Jha
Computer Science Department
Florida International University

Miami, USA
sumit.jha@fiu.edu

Rickard Ewetz
Electrical and Computer Engineering

University of Florida
Gainesville, USA

rewetz@ufl.edu

Abstract—The DoD desires to incorporate autonomous systems
into its capabilities. These systems are notoriously difficult to
validate, though they require assurance to be used. One area of
interest is Intelligence, Surveillance and Reconnaissance (ISR),
whose tasks are typically written in natural language. Temporal
logics, e.g., Linear Temporal Logic (LTL) and Signal Temporal
Logic (STL), have been used in robotics, cyber-physical systems,
and electronics design domains to provide confidence and assur-
ance in the correctness, reliability, and safety of system designs.
ISR tasks written as temporal logic specifications enables their
properties to be validated. We found that recent natural language
to LTL/STL specification translators incorrectly translate natural
language ISR descriptions. In this paper, we provide manual
translations of ten ISR tasks to temporal logic and validate the
specifications. We believe this is the first research to provide a
set of ISR tasks specified in temporal logic and checked by a
satisfiability solver.

Index Terms—specification, linear temporal logic, signal tem-
poral logic, ISR

I. INTRODUCTION

Intelligence, Surveillance and Reconnaissance (ISR) is im-
portant as it provides decision-makers with better situational
awareness of conditions, be they on the ground, in the air,
at sea, in space, or in cyberspace. ISR is used in a variety
of domains, including defense, policing, medical surveillance,
and humanitarian missions. ISR actions are based on tasking
or goals, and those tasks need to be specified in some way.
Describing ISR tasks in temporal logic formalizes the tasks
and enables verification of their properties. Temporal logics
have been used to verify specifications in a variety of domains,
including robotics, booking systems, databases, and cyber-
physical systems. In this paper, we describe a range of ISR
tasks in natural language, translate the tasks into linear and
signal temporal logics, and then evaluate the validity of the
specifications. A future goal is to develop an automated natural
language to linear temporal logic (LTL) and signal temporal
logic (STL) translator for ISR tasks.

The authors acknowledge support from DARPA under agreement number
FA8750-23-2-0501. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

Intelligence, Surveillance and Reconnaissance is the coor-
dinated and integrated acquisition, processing and provision
of accurate, relevant, timely information and intelligence to
support the decision-making process. There are several forms
of ISR – route, area, zone and reconnaissance in force [1].
Route search is an operation focused on obtaining detailed
information on a specific route and all adjacent terrain. Area
search is a directed effort to obtain detailed information on
the terrain or activity within a prescribed area of interest.
Zone search is a directed effort to obtain detailed information
concerning all entities, routes, obstacles, and terrain within a
zone defined by boundaries. We do not cover reconnaissance
in force.

Temporal logics are used to formalize task descriptions and
enable verification of their properties. There are numerous
types of temporal logic. We use LTL and STL given their
ability to specify ISR tasks and the availability of tools to
determine the validity of the logics.

LTL, introduced by Pnueli [2], forms the basis of many
practical specification languages, including STL. LTL is used
to reason about the behavior of systems that evolve over dis-
crete time, e.g., software and hardware. Its formulas describe
properties of paths in a state transition diagram of a system. An
LTL formula is defined recursively according to the following
syntax:

ϕ ::= π | ¬ϕ | ϕ ∧ ψ | Fϕ | Gϕ | ϕUψ | Xϕ

where ϕ and ψ are LTL formulas, and π is an atomic predicate.
¬ (negation), ∧ (and), ∨ (or), → (imply), and ↔ (equal) are
logical operators. F (eventually/finally), G (always/globally),
U (until) and X (next, i.e., the condition must hold in the next
state) are temporal operators. LTL is contained by STL when
the time is discrete (v. continuous).

STL, introduced by Maler and Ničković [3], extends LTL
to continuous signals (or functions of time) and has become
increasingly popular as a specification formalism for require-
ments of cyber-physical systems (CPS), robotics and control
theory. It is commonly used to verify safety and performance
properties because it allows specifications such as “signal
should always remain within a certain range” and “signal
should eventually reach a certain threshold” and others. An

STL formula is defined recursively according to the following
syntax:

ϕ ::= π | ¬ϕ | ϕ ∧ ψ | F[a,b]ϕ | G[a,b]ϕ | ϕU[a,b]ψ | X[a,b]ϕ

with the same logical operators as in LTL. F[a,b] (eventually/fi-
nally), G[a,b] (always/globally), U[a,b] (until) and X[a,b] (next)
are temporal operators with real-time constraints t ∈ [a, b].

Though LTL and STL are similar, LTL is focused on
discrete-time systems, whereas STL extends LTL to contin-
uous time signals. Where LTL operates over a sequence of
states, STL operates over continuous time. LTL is suitable
for specifying systems with discrete event types of behavior,
e.g., computer programs or digital circuits. STL is suitable
for specifying systems with continuous or analog behaviors,
e.g., control systems or cyber-physical systems. Verifying LTL
can be computationally expensive, however, reasoning over
continuous signals leads to computationally more demanding
STL verification. Similarly, while there are mature tools for
verifying LTL, research continues in finding efficient algo-
rithms for STL model checking.

There has been a recent surge in research in natural language
to temporal logic translators and associated tools [4]–[7].
Despite the recent availability of these tools, we found the
resulting specifications are not correct translations of the ISR
natural language specifications. The reasons for this are that
a) the tools are meant to be domain-agnostic and b) there are
few examples of ISR task specifications available in LTL or
STL. This and the DOD’s desire to incorporate autonomous
systems into its capabilities motivate the research described in
this paper.

This paper is organized as follows. This Section (1) provides
the introduction. Section 2 presents related work in ISR-
relevant specification patterns, real-time system specification
languages and structured English grammars. Section 3 presents
descriptions of ISR tasks in natural language (English) and
their translations to LTL and STL. Section 4 describes speci-
fication evaluation results, with Section 5 concluding the paper
and noting upcoming research.

II. RELATED WORK

A. ISR-Relevant Specification Patterns

Menghi and colleagues [8] provide mission specification
patterns for mobile robots, together with tooling (PSALM) for
instantiating, composing, and compiling the patterns to create
mission specifications. The mission specifications are written
in LTL (Linear Temporal Logic) and CTL (Computation Tree
Logic). The PSALM tool is available at [9]. The PSALM tool
converts a pattern to LTL or CTL.

Quantitative patterns are built on top of the twenty-two
qualitative patterns and are available [10], [11]. Elementary
and Composite quantitative patterns are provided. The under-
lying DSL (Domain-Specific Language) is QUARTET, whose
syntax is available [12]. The QUARTET tool is a multi-robot
mission specification tool that also translates the specifications
into PRISM.

Garcia et al [13], [14] and Dragule et al [15] present a
domain specification language (DSL) for robot mission spec-
ification and describe PROMISE, a framework for specifying
high-level missions for multiple robots. Gil et al [16] continue
the multirobot specification work by adding specification de-
composition and implementing the work in a tool MutRoSe
[17].

Humphrey et al [18], [19] provide some ISR-relevant mis-
sion specification patterns in LTL, however, they do not start
with a higher-level natural language. The patterns provided are
for the following properties: Safety, Reachability, Coverage,
Recurrent Coverage, Sequencing, Avoidance, Avoidance with
Reachability, Sequencing with Avoidance, Previously, and
Never After. Similarly, Salamah et al [20] defined general LTL
formulas that can be used to generate LTL specifications of
properties defined by patterns, scopes, and composite propo-
sitions. They do not provide natural language descriptions of
the patterns other than a descriptive pattern name. Though
the patterns are general, they can be used for UAV-relevant
mission specification. Salameh et al [21] extend this work
to provide validated templates for specifying complex LTL
patterns. He et al [7] identified common STL templates,
namely invariance/reachability, immediate response, temporal
response, and stabilization/recurrence.

B. Real-Time System Specification Languages and Structured
English Grammars

Early work on real-time system specification languages and
patterns was conducted by Dwyer et al [22], Konrad and
Cheng [23], [24], and Bellini, Nesi and Rogai [25]. Dwyer
et al [22] provided a set of qualitative specification patterns
using LTL and CTL (Computational Tree Logic) focusing
on properties like occurrence and event ordering. Konrad
and Cheng extended Dwyer’s patterns by adding concepts
of duration, periodic and real-time ordering. They specified
the patterns in MTL (Metric Temporal Logic) among others,
but not in LTL or STL. Bellini et al add or renovate two
patterns: Time-Constrained Precedence and Time-Constrained
Response.

The PSPF Language is based on temporal logic and is
implemented by the PSPWizard tool. PSPWizard makes use of
a catalog of specification patterns described in Autili et al [26].
The Property Specification Patterns Website [27] provides
patterns and a structured English attribute grammar including
terms Recurrence, Response, Absence and Probability, for
example. A mapping of part of the grammar to MTL and a
mapping from the patterns to LTL and CTL are provided.

Kapinski et al [28], present ST-LIB, a set of STL formulae
particularly suited to the automotive control domain. The para-
metric formulae provided include Ringing, Spike, Overshoot
(Undershoot), Settling Time, Rise Time, Timed Relationships,
and Steady State Error. Vogel et al [29] provide a specification
pattern catalog for the real-time model checking tool UP-
PAAL. The qualitative and real-time requirements in patterns
in the Property Specification Patterns Website (see above) are
included and UPPAAL updated with an automated generator

that translates these requirements to observer automata and
TCTL formulae. The tool and patterns are provided at [30].
Klikovits [31] catalogs numerous formalisms used in cyber-
physical systems development, however, the most relevant and
more recent work is described above.

III. NATURAL LANGUAGE ISR TASKS TO LTL AND STL
SPECIFICATIONS

This section provides natural language descriptions of ten
ISR tasks and their representation as LTL and STL specifica-
tions. The LTL and STL are manually derived from the natural
language descriptions.

A. Zone Search

The mission class is a Zone Search with the objective of
finding an entity. The boundaries of the zone are defined.

Given the propositions P - the entity is in the zone being
searched, and Q - the UAV is in the search zone, the LTL
specification for Zone Search is

ϕ = F(P ∧ Q) (1)

where F means eventually and P ∧ Q means that eventually
the UAV and the entity will be in the search zone together.

For the STL specification of a Zone Search, given the
signals p(t) - the entity in the search zone at time t, and
q(t) - the UAV in the search zone at time t, then the STL
specification for a Zone Search is

ϕ = G[a,b]

(
p(t) → F[a,b]q(t)

)
(2)

where G means always. This specification states that if, during
the real-time constraints t ∈ [a, b], p(t) holds, then eventually
q(t) will hold within the same period.

B. Area Search for Static Entity

The mission class is an Area Search with the objective of
finding a static entity within one of the grids in the search
area. Given the propositions Pi - the presence of the entity in
grid i, where i = 1, . . . , n, and Qi - the search in grid i, the
LTL task specification for this case is

ϕ = F[0,T]

(n∨
i=1

(Pi ∧Qi)
)

(3)

Suppose a keep-out zone is added, in addition to prior belief
about the static entity’s location within grids in the search area.
Given the propositions Pi - the presence of the entity in grid
i, where i = 1, . . . , n, K - the presence of the UAV in the
keep-out zone, and Bi - prior belief probability that the entity
is in grid i, Bi ∈ [0.0, 1.0], then the LTL task specification is

ϕ = F[0,T]

(n∨
i=1

Pi

)
∧ ¬F[0,T]K ∧ F[0,T]

(n∨
i=1

(Pi ∧Bi)
)

(4)

Next, we define the STL specification of an Area Search
with the objective of finding a static entity within one of the
grids in the search area. Given the signals pi(t) - the presence

of the entity in grid i at time t, t ∈ [0, T], and q(t) - the search
action at time t, t ∈ [0, T], the STL specification is

ϕ = F[0,T]

(n∨
i=1

pi(t) ∧ q(t)
)

(5)

To add a keep-out zone and prior belief about the static
entity’s location within grids in the search area, we add the
signals k(t) - the presence of the UAV in the keep-out zone
at time t, and bi(t) prior belief probability that the entity is
in grid i at time t, bi(t) ∈ [0.0, 1.0], and change the STL
specification to

ϕ = F[0,T]

(n∨
i=1

pi(t)
)
∧ G[0,T]¬k(t)∧

F[0,T]

(n∨
i=1

(
pi(t) ∧ bi(t)

)) (6)

C. Route Search

The mission class is a Route Search with the objective of
finding a moving entity on a route defined by waypoints. The
waypoints are to be visited in order. Following the route is of
primary importance, so the UAV must visit the waypoints in
order and stay within a band of defined width on either side of
the route. Given the propositions Pi - the presence of the UAV
at waypoint i, where waypoint number, i = 1, . . . , n, and Qi

- the UAV stays within a band around the route defined by the
waypoints, the LTL task specification is

ϕ = G[0,T]

((n−1∨
i=1

(
(Pi ∧Qi) → XPi+1

))
∧ (Pn ∧Qn)

)
(7)

This equation introduces the LTL unary operator X or next,
which asserts the truth of the subformula that follows it for
the next system state reached. So XPi+1 asserts that the next
waypoint is visited, allowing visitation of the waypoints in
order.

Suppose once the entity is found, a report is triggered. Then
the LTL task specification is

ϕ = G
(n−1∨

i=1

(
Qi → (Pi∧XQi+1)

)
∧(Qn → Pn)

)
∧F(L) (8)

where i is the waypoint number, i = 1, . . . , n, and L indicates
the entity’s location.

To specify the STL specification for a route search with
given waypoints, we first define the signals pi(t) - the presence
of the UAV at waypoint i at time t, i = 1, . . . , n and t ∈ [a, b],
and qi(t) - the distance between the UAV and the waypoint i
at time t, and the constraint qi(t) ≤ bandwidth - the UAV’s
distance from the defined route, on either side, at time t, must
be within the bandwidth.

ϕ = G[a,b]

((n−1∧
i=1

(
pi(t) ∧ qi(t)

)
→ F[t,t+ϵ]pi+1(t)

)
∧
(
pn(t) ∧ qn(t)

)) (9)

To include a report being triggered once the entity is found,
we add the symbol r(t) indicating the presence of a report
on the entity at time t and the STL formula changes to the
following:

ϕ = G[a,b]

(n∨
i=1

(
pi(t) → F[a,b]q(t)

)
∧ F[a,b]r(t)

)
(10)

stating that sometime after the entity is found a report is
triggered.

D. Area Search and Pursue On-Road

The mission class is an Area Search with the objective of
finding a moving entity on a road. Once the entity is detected,
the objective is to pursue the found entity and periodically
report perceptions. Given the propositions P - the presence of
the moving entity, Q - the pursuit of the entity, and R - the
reporting of perceptions, the LTL task specification is

ϕ = F
(
P ∧ (FQ ∧ F[a,b]R)

)
(11)

where F[a,b] means eventually during the time period [a, b],
where a is after the target is found.

To specify this task in STL, we define the signals p(t) -
presence of the entity at time t, i = 1, . . . , n and t ∈ [a, b], q(t)
- pursuit of the entity at time t, and r(t) - periodic reporting
at time t.

ϕ = G[a,b]

(
p(t) →

(
q(t) ∧ (F[a,b]r(t)

))
(12)

E. Area Search and Pursue Off-Road

The mission class is an Area Search with the objective of
finding a moving entity off-road. With the entity operating off-
road, there are more occlusions due to trees and landscape.
When the view is blocked due to trees, suppose the agent
(e.g., UAV) stops searching and when the view is clear, it
resumes the search. As with the on-road pursuit, once the
entity is detected, the objective is to pursue the found entity
and periodically report perceptions.

To specify this in LTL, we define the following propositions:
S - the UAV is searching, B - the UAV’s view is blocked by
trees, D - the entity is detected, P - the UAV is pursuing the
entity, and R - The UAV is reporting perceptions. The LTL
task specification for this task is

ϕ = G
((
S → X(¬B)

)
∧ (B → XS) ∧ FD

∧
(

G(D → FP) ∧ G
(
P → F(P ∧ XR)

))) (13)

where the area search is defined by G
(
S → X(¬B)

)
∧ (B →

XS). Entity detection is defined by FD. And, entity pursuit
and reporting is defined by the last part of the equation, i.e.,
G(D → FP) ∧ G

(
P → F(P ∧ XR)

)
.

To specify this in STL, we define the following predicates
(signal functions) given t is time and t ∈ [a, b]: v(t) - UAV’s
view condition at time t, where v(t) = 1 when the view is
clear, and v(t) = 0 when the view is blocked; d(t) - Detection
of entity at time t, where d(t) = 1 when the entity is detected

at time t, and d(t) = 0 otherwise; p(t) - Pursuit of entity
at time t, where p(t) = 1 when the UAV is pursuing the
entity at time t, and p(t) = 0 otherwise; and r(t) - Reporting
perceptions of entity at time t, where r(t) = 1 when the
UAV is reporting at time t, and r(t) = 0 otherwise. The STL
formula is

ϕ = G[a,b]

(
v(t) → F[a,b]

(
v(t) = 1

))
∧

F[a,b]

(
d(t) = 1

)
∧

G[a,b]

(
d(t) = 1 → F[a,b]

(
p(t) = 1

))
∧

G[a,b]

(
p(t) = 1 → F[a,b]

(
p(t) = 1∧

F[a,b]

(
r(t) = 1

)))
(14)

where the area search is defined by G[a,b]

(
v(t) →

F[a,b]

(
v(t) = 1

))
. Entity detection is defined by F[a,b]

(
d(t) =

1
)
. And entity pursuit and reporting is defined by the last part

of the equation.

F. Area Search and Pursue Evasive

The mission class is an Area Search with the objective of
finding a moving entity within a defined search area. Once
found, the UAV pursues the found entity and periodically
reports perceptions about the entity. The entity performs
evasive maneuvers to add occlusions to the UAV’s field of
view (FOV). When the FOV is blocked due to the evasive
maneuvers, the UAV continues searching in a region with a
defined radius centered on where the entity left the FOV. When
the entity re-enters the FOV, the pursuit and reporting continue.
The entity is within the search area during the search period.

To specify this in LTL, we define the following propositions:
E - the entity is present, P - the UAV is pursuing the entity,
R - the UAV is reporting perceptions, O - the UAV’s view is
occluded, and S - the UAV continues searching in a region
with a defined radius. The LTL specification for this task is

ϕ = G
((
E → (P ∧ FR)

)
∧
(
G(O → FS)∧

G(S → FO)
)) (15)

To specify this in STL, we define the following predicates
(signal functions), given t is time and t ∈ [0, T]: e(t) -
presence of the entity at time t, p(t) - pursuit of the entity
at time t, r(t) - reporting on the entity at time t, o(t) - UAV’s
FOV occluded at time t, and s(t) - continuation of search at
time t in a region with a defined radius. The STL specification
for this task is

ϕ = G[0,T]

((
e(t) →

(
p(t) ∧ F[0,T]r(t)

))
∧(

G
(
o(t) → F[0,T]s(t)

)
∧ G

(
s(t) → F[0,T]o(t)

))) (16)

G. Overwatch and Route Search

In this task, there are boundaries that entities may try to
cross. The goal is to keep them outside the boundaries. There
are routes the entities can use to reach the boundaries, so this is
an overwatch of routes to search for moving entities. When an
entity is located, the UAV is to pursue it and report perceptions.

To specify this in LTL, we define the following propositions:
E - the entity is present, B - the presence of entities attempting
to cross the boundaries, and P - the UAV is pursuing the entity
and reporting on the entity. The LTL specification for this task
is

ϕ = G
((
E → (FP)

)
∧
(
G(B → FP)

))
(17)

To specify this in STL, we define the following predicates
(signal functions) given t is time and t ∈ [0, T]: e(t) - presence
of entities at time t, b(t) - presence of entities trying to cross a
boundary at time t, p(t) - pursuit of the entities at time t, and
r(t) - reporting on entities at time t. The STL specification
for this task is

ϕ = G[0,T]

((
e(t) →

(
p(t) ∧ F[0,T]r(t)

))
∧

G[0,T]

(
b(t) → F[0,T]p(t)

)) (18)

H. Evade and Reappear

The mission class is an area search for a moving entity. The
entity attempts to evade perception by going outside the search
area bounds, then reappears somewhere within the search area.
Once the entity is located, the UAV should pursue it and report
perceptions.

To specify this in LTL, we define the following propositions:
E - the moving entity is present in the search area bounds, P -
the UAV is pursuing the entity and reporting on the entity, and
R - the UAV is reporting perceptions. The LTL specification
for this task is

ϕ = G
(
E → (P ∧ FR)

)
(19)

To specify this in STL, we define the following signals: e(t)
- presence of the moving entity at time t, p(t) - pursuit of the
entity at time t, and r(t) - reporting on the entity at time t.
The STL specification for this task is

ϕ = G[0,T]

(
e(t) →

(
p(t) ∧ F[0,T]r(t)

))
(20)

IV. RESULTS

A. Satisfiability of the LTL Specifications

To evaluate the LTL specification satisfiability, we used the
tool BLACK, a recently developed software tool for satisfia-
bility checking of LTL formulas. BLACK uses an incremental
SAT encoding of the one-pass tree-shaped tableau for LTL
developed by Reynolds [32], which guarantees completeness
due to its pruning rule. Given an LTL formula ϕ, the tool
encodes in a SAT formula the tableau for ϕ up to depth
k, for increasing values of k, until an accepted branch is
found or a witness of unsatisfiability is detected. Experimen-
tal evaluations performed against other state-of-the-art tools

show BLACK’s competitive performance and low memory
consumption [33].

BLACK is an easy-to-use tool for checking the satisfiability
of LTL formulas. For example, for the Zone Search LTL
formula, ϕ = G(P → FQ), translate the formula into the
BLACK grammar, that is, G(p->Fq). Then save the BLACK
grammar formula in a file, ZoneSearch.pltl and run the
command black solve ZoneSearch.pltl. BLACK
returns either SAT or UNSAT, in this case it returns SAT,
the LTL specification is satisfiable.

Let’s look at a more complex formula, that for Area
Search and Pursue Off-Road (see equation (13)). Translating
this into the BLACK grammar yields G((s->X(!b))
&& (b->Xs)) && Fd && (G(d->Fp) &&
G(p->F(p && Xr)))). After saving the formula in
AreaSearchPursueOff.pltl, run the command black
solve AreaSearchPursueOff.pltl. BLACK returns
SAT, the LTL specification is satisfiable.

For formulas that use the OR operator over an interval
(i = 1, . . . , n) we chose to evaluate the case where n=4,
as in four quadrants in a grid. This is the case for the
following specifications: Area Search for a Static Entity, Route
Search, and Route Search with Report. For example, the
associated formula in BLACK grammar for an Area Search for
a Static Entity with n=4 is F((p1 && q1) || (p2 &&
q2) || (p3 && q3) || (p4 && q4)). Running the
BLACK tool on this formula yields SAT, the LTL specification
is satisfiable. Each of the LTL specifications were found to be
satisfiable using BLACK.

B. Satisfiability of the STL Specifications

Typically, satisfiability checkers for STL specifications re-
quire a model of the system in addition to the specification.
Without such a model, a trace of system behavior is used.
To evaluate the STL specification satisfiability, we generated
a trace of the natural language specification. Using that trace
and the STL specification, we used STLRom [34], [35] to
evaluate the specifications.

STLRom enables online monitoring of the satisfaction of a
formula. In fact, the tool allows robust online monitoring of
partial traces, i.e., traces for which there might not be enough
data to decide the Boolean satisfaction. The tool incorporates
an efficient algorithm to compute a robust satisfaction value,
that is, a function mapping a property ϕ and a trace x(t) to a
real number.

The robust interval semantics implemented in STLRom map
a trace and an STL property to an interval (l, u), interpreted as
follows. For any suffix u(t), l is the greatest lower bound on
the quantitative semantics of the trace, and u is the correspond-
ing lowest upper bound. As stated by the tool developers, there
is a natural correspondence between the interval semantics and
three-valued semantics:

• the truth value of ϕ is false according to the weak view
iff (if and only if) u is negative, and true otherwise;

• the truth value is true according to the strong view iff l
is positive, and false otherwise; and

• a neutral semantics, e.g., based on some predictor, can
be defined when l < 0 < u, i.e., when there exist both
suffixes that can violate or satisfy ϕ.

To use STLRom, we need a trace and the specification. We
developed traces for each natural language description of a
specification and implemented each specification in a program
using STLRom’s STLDriver and its functionality. The result is
[0.5, 0.5, 0.5], that is, [robustness estimate, robustness lower
bound, robustness upper bound]. If the specification can be
fully evaluated by the data, then all three values are equal
to the actual robust satisfaction of the formula. We evaluated
all STL specifications and found that three were in error
(not satisfiable). We repaired and re-evaluated those formulas,
resulting in all STL specifications provided herein found to be
robustly satisfied.

The bottom line is that for each LTL and STL specification
presented in this paper, the satisfiability was shown to be true.

V. CONCLUSIONS

We have provided natural language descriptions along with
LTL and STL specifications for ten ISR tasks. Each specifica-
tion was evaluated and shown to be satisfiable. Future research
includes automating the development of ISR specifications
from their natural language descriptions.

ACKNOWLEDGMENT

L.L.P. thanks Alexandre Donzé for his assistance using the
STLRom tool.

REFERENCES

[1] “Offense and defense,” Department of the Army, Washington, DC, Tech.
Rep. ADP 3-90, 1987.

[2] A. Pnueli, “The temporal logic of programs,” in Symposium on Foun-
dations of Computer Science, Providence, USA, 1977, pp. 46–57.

[3] O. Maler and D. Ničković, “Monitoring temporal properties of contin-
uous signals,” in FORMATS/FTRTFT, Y. Lakhnech and S. Yovine, Eds.
Heidelberg, Germany: Springer, 2004, pp. 152–166.

[4] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “Nl2tl: Transforming
natural languages to temporal logics using large language models,” in
Conference on Empirical Methods in Natural Language Processing,
Singapore, Dec. 2023, pp. 15 880–15 903.

[5] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec:
Interactively translating unstructured natural language to temporal logics
with large language models,” in Computer Aided Verification, Paris,
France, Jul. 2023, pp. 383–396.

[6] F. Fuggitti and T. Chakraborti, “Nl2ltl – a python package for converting
natural language (nl) instructions to linear temporal logic (ltl) formulas,”
in AAAI Conference on Artificial Intelligence AAAI-23, Washington, DC,
Feb. 2023, pp. 16 428–16 430.

[7] J. He, E. Bartocci, D. Ničković, H. Isakovic, and R. Grosu, “Deepstl
- from english requirements to signal temporal logic,” in International
Conference on Software Engineering, Pittsburgh, USA, May 2022, pp.
610–622.

[8] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification patterns for robotic missions,” IEEE Trans. Software
Eng., vol. 47, no. 10, pp. 2208–2224, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2945329

[9] “Specification patterns for robotic missions,” http://www.roboticpatterns.
com/, 2023, accessed 2023-11-06.

[10] C. Menghi, C. Tsigkanos, M. Askarpour, P. Pelliccione, G. Vázquez,
R. Calinescu, and S. Garcı́a, “Mission specification patterns for mobile
robots: providing support for quantitative properties,” IEEE Transactions
on Software Engineering, vol. 49, no. 4, pp. 2741–2760, Apr. 2023.

[11] “Quantitative specification patterns for robotic missions,” http://www.
roboticpatterns.com/quantitative, 2023, accessed 2023-11-06.

[12] “Quantitative specification patterns for robotic missions – quartet dsl:
syntax,” https://dsg.tuwien.ac.at/staff/ctsigkanos/patterns/quantitative/
quartet/, 2023, accessed 2023-11-06.

[13] S. Garcı́a, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “Promise:
High–level mission specification for multiple robots,” in International
Conference on Software Engineering, Seoul, South Korea, Jul. 2020, pp.
5–8.

[14] “Promise implementation,” https://github.com/SergioGarG/PROMISE
implementation/tree/dev, 2023, accessed 2023-11-08.

[15] S. Dragule, S. G. Gonzalo, T. Berger, , and P. Pelliccione, “Languages
for specifying missions of robotic applications,” in Software Engineering
for Robotics, A. Cavalcanti et al., Eds. Cham: Springer, 2020, pp. 377–
411.

[16] E. B. Gil, G. N. Rodrigues, P. Pelliccione, and R. Calinescu, “Mission
specification and decomposition for multi-robot systems,” Robotics and
Autonomous Systems, vol. 163, no. C, p. 104386, May 2023.

[17] “Mutrose-artifacts,” https://github.com/lesunb/MutRoSe-Artifacts, 2023,
accessed 2023-11-06.

[18] L. R. Humphrey, E. M. Wolff, and U. Topcu, “Formal specification and
synthesis of mission plans for unmanned aerial vehicles,” in Formal
Verification and Modeling in Human-Machine Systems Workshop of the
AIAA Spring Symposium, Palo Alto, USA, Mar. 2014.

[19] B. U. Kim and L. R. Humphrey, “Satisfiability checking of ltl speci-
fications for verifiable uav mission planning,” in AIAA SciTech Forum,
National Harbor, USA, Jan. 2014.

[20] S. Salamah, A. Q. Gates, V. Kreinovich, and S. Roach, “Automatic
generation of complex ltl specifications through patterns and composite
propositions,” University of Texas at El Paso, El Paso, TX, Tech. Rep.,
2007.

[21] S. Salamah, A. Q. Gates, and V. Kreinovich, “Validated templates for
specification of complex ltl formulas,” Journal of Systems I& Software,
vol. 85, no. 8, pp. 1915–1929, Aug. 2012.

[22] M. B. D. G. S. Avrunin and J. C. Corbett, “Patterns in property speci-
fications for finite-state verification,” in IEEE International Conference
on Software Engineering, Los Angeles, USA, May 1999, pp. 411–420.

[23] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
IEEE International Conference on Software Engineering, St. Louis,
USA, May 2005, pp. 372–381.

[24] ——, “Facilitating the construction of specification pattern-based prop-
erties,” in IEEE International Conference on Requirements Engineering,
La Sorbonne, France, Aug. 2005, pp. 329–338.

[25] P. Bellini, P. Nesi, and D. Rogai, “Expressing and organizing real-
time specification patterns via temporal logics,” Journal of Systems I&
Software, vol. 82, no. 2, pp. 183–196, Feb. 2009.

[26] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, p. 620–638, Jul. 2015.

[27] “Property specification patterns,” http://ps-patterns.wikidot.com, 2023,
accessed 2023-11-01.

[28] J. Kapinski et al., “St-lib: A library for specifying and classifying model
behaviors,” SAE, Tech. Rep., 2016.

[29] T. Vogel, M. Carwehl, G. N. Rodrigues, and L. Grunske, “A property
specification pattern catalog for real-time system verification with up-
paal,” Information and Software Technology, vol. 154, p. 107100, Nov.
2022.

[30] “Specification pattern catalogue for uppaal,” https://github.com/hub-se/
PSP-UPPAAL/wiki, 2021, accessed 2024-02-12.

[31] S. Klikovits et al., “State-of-the art on current formalisms used in cyber-
physical systems development,” COST European Cooperation in Science
and Technology, Tech. Rep. hal-03168832, 2019.

[32] M. Reynolds, “A new rule for ltl tableaux,” in 7th International Sym-
posium on Games, Automata, Logics and Formal Verification, Catania,
Italy, Sep. 2016, p. 287–301.

[33] L. Geatti, N. Gigante, and A. Montanari, “A sat-based encoding of the
one-pass and tree-shaped tableau system for ltl,” in 28th International
Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, London, England, Sep. 2019, p. 3–20.

[34] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, , and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Form
Methods Syst Des, vol. 51, p. 5–30, 2017.

[35] (2024) Github decyphir / stlrom. [Online]. Available: https://github.
com/decyphir/STLRom

