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Abstract—Large language models (LLMs) are capable of
creating small programs including those in hardware description
languages. However, there are no guarantees on the correctness of
such generated programs. Our approach seeks to create correct-
by-construction hardware designs using LLMs by employing
formal verification to verify the designs and by using counterex-
amples to guide the synthesis of such hardware designs in a
counterexample-guided refinement loop. Grammar-constrained
decoding is used to ensure that the generated code always
satisfies the grammar of the hardware description language. We
demonstrate the capability of our automated synthesis approach
by generating a multiplier using LLMs and their assurance
artifacts using model checking. Our approach provides a step in
the direction of high-assurance synthesis of hardware artifacts
using LLMs and formal methods.

Index Terms—LLM, grammar-constrained decoding, auto-
mated synthesis, circuits

I. INTRODUCTION

Neural representations learned using backward gradient
propagation and optimization over large corpora of data sets
have led to great leaps in the capabilities of AI models over
the last decade. In particular, the rise of transformers and
associated models coupled with the idea of pre-training on
internet-scale data sets and instruction-tuning to allow post-
poning of the definition of the downstream task to inference
time has led to an inflexion point where pre-trained models
are becoming the dominant technology choice across areas as
diverse as automated theorem proving and robotics [1]–[4].

Despite the astounding success of large language models
(LLMs) on multiple tasks such as translation and code gen-
eration, the current generation of large language models have
difficulty synthesizing a simple 4-bit multiplier. One solution
to the problem would be to train customized LLMs on large
corpora of Verilog and other hardware definition languages.

However, even such future LLMs trained on large Verilog
and other HDL corpora are not guaranteed to produce correct
responses for all design queries.

In this paper, we propose to resolve this problem by
(i) using grammar-constrained decoding [5]–[7] to enforce
syntax constraints on generated hardware designs, and (ii)
employing formal methods [8]–[13] to verify the correctness
of the generated design against formal specifications. If the
generated design is correct, we present a formal assurance
artifact together with the design. On the other hand, if a
counterexample is produced, we provide the counterexample
as a symbolic feedback to the LLM and ask it to produce
another LLM design. The process continues until a design is
produced and verified, or resources such as time and energy
are exhausted.

Our approach brings together the inductive generation capa-
bilites of LLMs with deductive capabilities of formal methods,
such as model checking. If a design is produced and verified,
it is bound to be correct. If the LLM produces a correct design,
it will indeed be verified by the model checker. However, it is
possible that the LLM continues to produce incorrect designs
without ever yielding the correct design.

Our approach leverages neuro symbolic reasoning allowing
the LLM to benefit from the purely data-driven learning at
training time and still providing it with symbolic guidance
during inference based on its interactions with a formal deduc-
tive reasoning system, such as a model checker or a theorem
prover, as well as the constrained generation of tokens using
grammars. Such a procedure has the advantage of creating
provably correct circuit designs.

However, LLMs often create free-flowing text in their output
which is not readily parsed into artifacts for formal deductive
reasoning systems, and may not even follow the syntax of



Fig. 1. Overview of our neuro symbolic approach to high-assurance synthesis of hardware circuits using grammar-constrained generation from large language
models and feedback from formal deductive reasoning engines.

hardware description languages. Hence, we employ grammar-
constrained decoding [5] in our approach to ensure that the
emitted text is bound by the syntax of the Verilog language
and can be parsed by Verilog simulators as well as model
checkers. In this paper, we make the following contributions:

• We propose a neuro symbolic approach to synthesis of
circuit designs that leverages both LLMs and feedback
from formal deductive reasoning systems, such as model
checkers.

• We show that the current generation of commercial and
local LLMs, including GPT-4, Claude and Llama 3, are
not able to directly produce reliable designs for relatively
simple circuits, such as multipliers with small bit widths.

• We highlight that feedback generation in the setting of
hardware designs is curtailed by the lack of structured
response from models, and suggest the use of grammar-
constrained decoding to create syntactically valid re-
sponses. Grammar-constrained decoding ensures that the
generated response satisfies the syntax of the hardware
description language, such as Verilog.

• We suggest that LLMs coupled with feedback from a
verification engine are capable of synthesizing correct
circuit designs, whose correctness is established by model
checking. We demonstrate the success of our effort by
automatically synthesizing a 4-bit multiplier.

II. APPROACH

Our approach combines the inductive capabilities of large
language models with the deductive capabilities of formal
methods, and extends our earlier work [14]–[16] on neuro
symbolic reasoning from the planning domain to the arena
of design synthesis using hardware description languages. In
our methodology, the user provides three inputs:

(i) A high-level specification of the circuit is provided, such
as a natural language statement asking the LLM to design
a 4-bit multiplier design in Verilog.

(ii) A golden reference model or a specification is provided.
It could be as straightforward as an assertion, such as the

result of the multiplier with inputs a and b must be the
product of a and b. It could also be more complex and
involved Boolean or temporal logics in case of synthesis
of complex controllers or other hardware models using
state machines.

(iii) A grammar defining the language of the hardware de-
scription language is provided to aid in the decoding of
the tokens from the LLM. This is a one-time effort and
the grammar of languages like Verilog is readily available
in the standard EBNF [17] syntax.

LLMs conjecture a distribution of tokens that represent the
potential space of designs based on the instruction provided
by the user, such as a 4-bit multiplier in Verilog. However,
we do not greedily decode this distribution to simply find
its highest probability member. Instead, we rely on grammar-
constrained decoding [5]–[7] to identify a sequence of tokens
that both represent high-probability tokens in the output of
the LLM and rigorously satisfy the grammar of the hardware
definition language. This ensures that the text being generated
is syntactically-correct Verilog code and, hence, can be au-
tomatically parsed for downstream verification tasks, such as
simulation or model checking.

The generated design is then verified by a verification
engine against the corresponding specification or the golden
model. The fastest incomplete checks can be performed using
simulations and the resulting errors can be used to update the
prompts to the LLM. This has the benefit of being fast as well
as not sacrificing correctness. On the other hand, if simulations
do not discover any errors, we pose the verification problem
to a formal deductive system such as a model checker. Since
circuits often do not terminate and usually execute forever, we
employ k-induction [18]–[20] to verify that the circuit indeed
satisfies the property at all times by establishing an inductive
argument using a satisfiability solver.

If the formal deductive reasoning system establishes correct-
ness of the design, it creates an artifact such as an unsatisfiable
core that serves as a formal evidence of the correctness of
the design. On the other hand, if the deductive reasoning



leads to the discovery of a counterexample that violates the
specification, the same is provided to the LLM as a prompt.
An instruction-following LLM is unlikely to repeat the same
design with the information provided in the prompt. However,
it is possible that a sufficiently complex design can challenge
the LLM and the generate-and-verify loop may not terminate
without exhausting time and memory resources.

Several challenges remain in our neuro symbolic approach
aided by grammar-constrained generation. First, the context of
LLMs is often limited in practice and this limits the amount
of information that can be provided to the LLM from the
formal deductive reasoning system. Recent progress [21]–
[24] has led to rapid rise in the size of contexts and there
is ongoing work in providing infinite context windows. So,
this problem may cease to be a bottleneck in the future.
Second, while formal methods for verifying hardware has
been well studied for at least the last four decades, the tools
may not have the same scalability as LLMs. It is likely that
LLMs can generate complex circuit designs that the current
generation of model checkers may not be able to analyze.
Our approach provides a new neuro symbolic approach to
automated hardware circuit synthesis that couples advances
in LLMs with the potential of model checkers in finding
interesting non-trivial counterexamples as well as establishing
formal correctness guarantees of designs.

III. RESULTS

We tested our automated circuit synthesis approach on the
design of a 4-bit multiplier without any additional constraints.
Our analysis used both commercial off-the-shelf systems such
as GPT-4 and Claude-3 Opus, as well as locally executed
Llama 3 8B models whose output distribution could be further
controlled using grammar-constrained decoding.

A. Direct Synthesis using LLMs

1) GPT-4: We prompted the state-of-the-art GPT-4 model
to create a 4-bit multiplier in Verilog and received the response
in Fig. 2. Our test bench harness showed that the design
was not correct. For example, for the input a = 7 and b =
13, the expected result is 91. However, this circuit design
produces 231. This is not surprising as the partial products
have all been shifted left with the same number of bits, which
is a glaring error. It is likely that future versions of GPT
trained on additional Verilog models would correctly solve this
specific problem. However, our approach of neuro symbolic
synthesis using grammar-constrained decoding for LLMs and
feedback from symbolic analysis of the generated code using
formal methods may still be useful for larger hardware design
problems.

2) Claude 3: We prompted another state-of-the-art com-
mercial AI model, Claude 3 Opus, to produce a 4-bit multi-
plier. Its response is shown in Fig. 3. Our test bench harness
determines that the design is not correct. In particular, it does
not produce the correct output 117 while provided with inputs
a = 13 and b = 9.

Fig. 2. GPT-4’s attempt at the design of a 4-bit multiplier is not correct.

Fig. 3. Claude 3 Opus does not design a correct 4-bit multiplier.



Both GPT-4 and Claude-3 Opus represent state-of-the-art
commercial systems that are significantly larger in size and
complexity than the other local models explored in this paper.
Failure to generate correct code by prompting shows the gap
that currently exists between the capability of these models in
software synthesis and in creating hardware designs.

While it is possible that larger models trained on more
hardware data can solve this specific problem – the design of
multipliers, our focus is to enable LLMs to synthesize provably
correct hardware circuit designs by using feedback from a
verification engine in the form of counterexamples.

3) Lllama 3: We queried the Llama 3 8B and CodeLlama
7B models and directly tested their responses using the fol-
lowing prompt:

Create a Verilog module for a n-bit binary multiplier. Please
ensure the code is well-commented to explain each step of the
process. Do not use this line in the code: assign product = a *
b; The test suite will instantiate this module using:
// Instantiate the multiplier module
multiplier uut (
.a(a),
.b(b),
.product(product)
);
Only output the code starting with module.

Both Llama 8B and CodeLlama 7B did not succeed in
producing a response directly in our experiments. Llama 8B
priduced the following response:
“Here is a 4-bit binary multiplier in Verilog:
‘‘‘verilog

module multiplier ( input [3:0] a, // 4-bit input A input [3:0] b, // 4-bit input
B output [7:0] product // 8-bit output product );
// Declare the necessary signals
wire [3:0] p0, p1, p2, p3;
// Partial products
wire [7:0] sum; // Accumulator for partial products
// Generate partial products
assign p0 = a[0] & b;
assign p1 = a[1] & b;
assign p2 = a[2] & b;
assign p3 = a[3] & b;
// Accumulate partial products
assign sum = p0 << 4|p1 << 3|p2 << 2|p3;
// Shift the sum to the left and add the next partial product
assign product = sum[7], sum[6], sum[5], sum[4], sum[3] & a[0], sum[2] &
a[0], sum[1] & a[0], sum[0] & a[0];
endmodule‘‘‘

This code generates the partial products of the multiplication
and then accumulates them. The partial products are shifted
to the left and added to the next partial product. The result is
the 8-bit product of the 4-bit inputs.”

The generated code is not correct and our test bench harness
identifies this. In particular, we find that the circuit does not
correctly multiple 13 and 9 to produce 117.

Both Llama 3 8B and CodeLlama 7B failed to generate
correct multiplier designs. This is not surprising given the
failures of the larger GPT-4 and Claude 3 Opus models.

B. Synthesis with Feedback using LLMs

Inspired by earlier work on use of feedback in planning, we
seek to use the instruction-tuned model and provide it feedback
to improve the design. In particular, we provide the inputs
that led to the incorrect design, the expected correct output,
as well as the output produced by the LLM’s previous design
suggestion. A prompt with the following format is used:

Create a Verilog module for a n-bit binary multiplier. Please
ensure the code is well-commented to explain each step of the
process. Do not use this line in the code: assign product = a *
b; The test suite will instantiate this module using:
// Instantiate the multiplier module
multiplier uut (
.a(a),
.b(b),
.product(product)
);
The following error {error message} was obtained on your last
design: {design}. So, try a new idea. Only output the code
starting with module.

The LLM does not always produce output in a structured
manner and is hence difficult to parse. The parsing often
fails after a few iterations. Hence, feedback by itself may not
be adequate to establish a feedback refinement loop for the
automated synthesis of circuits using LLMs.

module multiplier(
input [3:0] a, // 4-bit input A
input [3:0] b, // 4-bit input B
output [7:0] product // 8-bit output product

);

// Declare wires for partial products
wire [7:0] p0, p1, p2, p3;

// Declare wires for intermediate results
wire [7:0] temp0, temp1;

// Generate partial products for each bit of B
assign p0 = (a & {4{b[0]}}) << 0; // No shift needed for

the least significant bit
assign p1 = (a & {4{b[1]}}) << 1; // Shift left by 1
assign p2 = (a & {4{b[2]}}) << 2; // Shift left by 2
assign p3 = (a & {4{b[3]}}) << 3; // Shift left by 3

// Generate intermediate results by adding partial
products

assign temp0 = p0 + p1;
assign temp1 = p2 + p3;
assign product = temp0 + temp1;

endmodule

Fig. 4. Verilog code for a 4-bit multiplier generated by our approach.

C. Synthesis with Grammar Decoding and Feedback

In order to automatically execute Verilog models generated
by the LLM, we enforce an approximate variant of a Verilog
grammar on the output of the LLM. In grammar-based de-
coding, we do not simply emit the highest probability token
that is produced by the LLM. Instead, we ensure that the
token being emitted is a high-probability token that will fit
within the formal grammar of the artifact being synthesized.



This enables us to automatically parse the output and invoke
simulation as well as deduction tools on the hardware design
being generated.

Using neuro symbolic feedback, we were able to synthesize
the 4-bit multiplier design in Fig. 4. We ran a test bench
harness of 1,000 random inputs using the Icarus Verilog
simulation engine to gain confidence in the correctness of our
design. We then employ the EBMC model checker with k-
induction to verify the property “a × b = product”. With a
bound of 1, the property could be established at all times, as
shown in Fig. 5.

Fig. 5. The model checker EBMC formally proves that the multiplier design
produced by the LLM is correct for all time.

IV. RELATED WORK

A. Large Language Models

The transformative potential of Large Language Models
(LLMs) has been felt across numerous domains, including text
generation, code synthesis, and even hardware design. These
models, built on transformer architecture and its variations,
have been pre-trained on vast internet-scale datasets, enabling
them to perform a wide range of tasks without needing task-
specific training [1]–[4]. However, high-assurance applications
of LLMs in synthesizing hardware designs such as Verilog
code are often plagued by outputs that lack correctness, requir-
ing the need for formal verification and subsequent refinement.

B. Grammar Based Decoding

Grammar-based decoding involves constraining the output
of LLMs to adhere to the specific syntax of target languages,
such as Verilog. This method [5]–[7] ensures that the outputs
are syntactically correct and can be parsed by subsequent tools
like simulators and model checkers. It addresses the challenge
of LLMs generating syntactically incorrect or incoherent code,
which is particularly critical in high-assurance domains that
require further processing of the response from the LLM.

C. Neuro Symbolic Feedback in LLMs

Integrating neuro symbolic feedback within the framework
of LLMs offers a promising approach [14], [15], [25] to refine
the outputs based on specific domain knowledge or feedback
loops. This approach leverages the strengths of LLMs in gener-
ating potential solutions while employing symbolic methods to
guide and correct the model’s outputs in a targeted manner. By

using feedback from verification processes, such as counterex-
amples from model checking, LLMs can iteratively improve
towards generating correct and reliable designs. While earlier
work has pursued such a neuro symbolic approach in the
context of planning [14]–[16], we present a new application in
this paper exploring the neuro symbolic approach in context
of hardware design synthesis.

D. Counterexample Guided Synthesis

Counterexample Guided Synthesis (CEGIS) has emerged
as a powerful paradigm [26]–[28] in automated program syn-
thesis [29], where the synthesis process is iteratively refined
based on counterexamples provided by a verification engine.
In the context of hardware design, employing CEGIS allows
for the automated generation of hardware descriptions that
meet formal specifications, leveraging both the generative
capabilities of LLMs and the rigor of formal verification
methods to ensure the correctness of designs.

These related works collectively motivate our approach to
high-assurance synthesis of hardware artifacts using LLMs,
emphasizing the need for integrating diverse methodologies
to address the limitations of current generation of LLMs in
hardware design synthesis.

V. CONCLUSIONS AND FUTURE WORK

This work has demonstrated a new approach to the synthesis
of hardware designs using Large Language Models (LLMs)
integrated with formal verification methods. By combining the
generative capabilities of LLMs with the rigorous verification
provided by model checking, we have successfully synthesized
correct-by-construction design for hardware circuit, such as 4-
bit multiplier.

Our method leverages grammar-based decoding to ensure
syntactic correctness and employs counterexample-guided syn-
thesis to iteratively refine the designs based on feedback from
the verification process. This approach not only enhances the
reliability of the synthesized designs but also has the potential
to significantly reduce the manual effort involved in hardware
design and verification.

Several directions for future work remain open. We plan
to investigate scaling the approach to handle more complex
hardware designs and larger circuits, which will require im-
proved context handling by LLMs to manage longer synthesis
sessions. We aim to develop domain-specific optimizations in
the training or fine-tuning process of the model to generate
artifacts tailored for specific industries like automotive or
aerospace.

Another longer-term goal is to achieve deeper integration
with electronic design automation (EDA) tools, streamlining
the transition from high-level synthesis to physical design.
We will also explore expanding the methodology to areas
such as analog circuit design, which remains predominantly
manual and heuristic-based. Approaches such as attribution
analysis [30] may be used to further enhance causal reason-
ing to create better feedback between LLMs and symbolic
reasoning systems. Lastly, we plan to enhance the feedback



mechanisms used in our process, integrating more symbolic
approaches to highlight potential flaws, thereby improving the
overall robustness of the automatically synthesized design.

We did not create a feedback loop with commercial tools
such as GPT-4 and Claude Opus, as they currently do not
provide the ability to control the generation of the tokens
using grammar-constrained decoding. Hence, we would have
to rely on ad hoc approaches for parsing the free-flowing text
responses from these commercial systems.
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