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ABSTRACT
Processing in-memory has the potential to accelerate high-data-rate
applications beyond the limits of modern hardware. Flow-based
computing is a computing paradigm for executing Boolean logic
within nanoscale memory arrays by leveraging the natural "ow
of electric current. Previous approaches of mapping Boolean logic
onto "ow-based computing circuits have been constrained by their
reliance on binary decision diagrams (BDDs), which translates into
high area overhead. In this paper, we introduce a novel framework
called FACTOR for mapping logic functions into dense "ow-based
computing circuits. The proposed methodology introduces Boolean
connectivity graphs (BCGs) as a more versatile representation, ca-
pable of producing smaller crossbar circuits. The framework con-
structs concise BCGs using factorization and expression trees. Next,
the BCGs are modi!ed to be amenable for mapping to crossbar
hardware. We also propose a time multiplexing strategy for sharing
hardware between di#erent Boolean functions. Compared with
the state-of-the-art approach, the experimental evaluation using
14 circuits demonstrates that FACTOR reduces area, speed, and
energy with 80%, 2%, and 12%, respectively, compared with the
state-of-the-art synthesis method for "ow-based computing.
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1 INTRODUCTION
Advances in computer hardware and system have long relied on
Moore’s law for continuous performance improvements [10]. How-
ever, we are quickly approaching the physical limit of the minimum
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reliable transistor size. Moreover, today’s computing systems are
also constrained by the von Neumann bottleneck [15] which sep-
arates a system into two key components: the central processing
unit (CPU) and the memory unit(s). The majority of data is stored
in the memory unit and is shuttled to and from the CPU when a
computation takes place. The limited bandwidth of the data bus be-
tween the two units has a negative e#ect on the overall computing
performance for high-data-rate applications. This has spurred the
interest in emerging computing technologies and paradigms for
future computing systems. Recent investigations include quantum
computing [2], photonic computing [14], and in-memory comput-
ing using non-volatile memory (NVM) [12].

Many in-memory computing paradigms using memristors have
been proposed, such as Memristor Ratioed Logic (MRL) [7], Mem-
ristor-Based Material Implication (IMPLY) [8], Memristor-Aided
Logic (MAGIC) [9], and "ow-based computing [1]. However, MRL
operates on voltage levels instead of stored memory, IMPLY su#ers
from being destructive, and MAGIC is mainly e$cient for parallel
and regular computational patterns [11]. In contrasts, "ow-based
computing has been shown to be e$cient for executing irregular
Boolean functions.

Flow-based computing is based on programming the non-volatile
memory devices within a nanoscale crossbar to a speci!c pattern
based on an input instance of a Boolean function. This layout is
designed such that two wires within the crossbar will be connected
by a low-resistance path if and only if the data stored in the mem-
ristors satisfy a desired logic function. This allows for near-instant
execution of digital functions by applying a voltage to the top-
most wordline and measuring the output current/voltage from the
bottom-most wordline. While the design of these crossbar circuits
can be done by hand [1], automated methods have recently been
explored in [4]. A crucial design choice within these methods is the
selection of the representation for the Boolean function. Techniques
have been developed based on disjunctive/conjunctive normal form
(DNF/CNF) [17], binary decision diagrams (BDDs) [5], and free
binary decision diagrams (FBDDs) [6]. The state-of-the-art tool
COMPACT [16] is based on !rst converting Boolean functions into
BDDs, which are directly mapped into crossbar designs for "ow-
based computing. With respect to the provided BDD, COMPACT
is optimal in terms of hardware resources. Unfortunately, the size
of BDDs are known to scale poorly for some Boolean functions,
which translates into high area overheads.
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In this paper, we introduce FACTOR, a framework for map-
ping Boolean functions to area-e$cient "ow-based computing cir-
cuits. The framework is based on introducing Boolean connectivity
graphs (BCGs), which are used to concisely represent Boolean
functions. The BCGs allow a single node to have more than two
outgoing edges, which leads to an inherent advantage over BDD-
based approaches. Next, the BCGs are slightly modi!ed to satisfy
crossbar imposed hardware constraints, and the resulting graph is
subsequently bound to a nanoscale array. While BCGs are straight-
forward for single-output Boolean functions, the construction of
BCGs for multi-output Boolean functions is achieved using time
multiplexing. The time multiplexing allows hardware reuse across
di#erent outputs, which translates to further area savings. We eval-
uate our proposed FACTOR framework on 14 Revlib benchmarks.
Compared with the previous state-of-the-art synthesis method for
"ow-based computing [16], FACTOR reduces area, latency, and
energy by 80%, 2%, and 12% on average.

In Section 2, we provide preliminaries on negation normal form,
crossbar arrays, and "ow-based computing. In Section 3, we provide
motivation for our framework and in Section 4, we introduce the
FACTOR framework. An extension to sharing logic in multi-output
Boolean functions is provided in Section 5. Experimental evaluation
is discussed in Section 6, and the paper is concluded in Section 7.

2 PRELIMINARIES
2.1 Negation Normal Form and Factoring
A Boolean expression in Negation Normal Form (NNF) is character-
ized by the ¬ (not) operation being exclusively applied to individual
Boolean variables, and otherwise only uses the Boolean operators
→ (logical AND) and ↑ (logical OR). Any arbitrary Boolean expres-
sion can be converted into NNF form by applying De Morgan’s
law to any ¬ operation that is applied to more than a single literal.
The simpli!cation may need to be applied recursively to the sub-
expressions produced, until the expression is in NNF form. The NNF
form is of interest because crossbars within "ow-based computing
only supports negation operations on the primary inputs.

Boolean functions in NNF form can be factored to reduce the
literal count. Factoring involves extracting subexpressions that are
common for multiple parts of a function or multi-output functions.
For example, the Boolean function 𝐿 = (𝑀 → 𝑁) ↑ (¬𝑂 → 𝑁) can be
factored into 𝐿 = (𝑀 ↑¬𝑂) → 𝑁 , which reduces the literal count from
four to three. Several logic synthesis tools are available for this
purpose, including SIS [13].

2.2 Memristor Crossbars and Flow-based
Computing

Figure 1: Memristor crossbar and
bipartite graph model.

Nanoscale crossbar arrays
organize memristors into
a cross-point structure us-
ing wordlines and bitlines
to store large amounts of
data [12]. A memristor is
placed at each intersection,
with one end connected to
the nearby wordline and the
other to the nearby bitline.

An example of a memristor crossbar is shown in Figure 1(a). A
memristor crossbar can be modeled as a bipartite graph 𝑃 where
each wordline𝑄𝑅𝐿 and bitline 𝑃𝑅𝑀 are modeled as a node. The
memristor𝑆𝐿 𝑀 at their intersection is modeled as an edge between
the nodes𝑄𝑅𝐿 and 𝑃𝑅𝑀 . The graph model is shown in Figure 1(b).

Figure 2: Example of !ow-based Computing

Flow-based computing is a digital in-memory computing par-
adigm, executing Boolean functions using a 3-stage process on
nanoscale crossbars. First, an abstract crossbar design is synthe-
sized from a Boolean function. The design dictates where Boolean
variables (or their complements) should be stored in the mem-
ristor array. A crossbar representation of the Boolean function
𝐿 = (𝑀 →𝑂) ↑ ¬𝑁 is shown in Figure 2(a). Second, the crossbar hard-
ware is programmed with respect to an instance of the Boolean
variables. In Figure 2(b), the crossbar is programmed with respect
to the instance of the Boolean variables (𝑀,𝑂, 𝑁) = (1, 1, 1). Third,
the function is evaluated by applying a positive voltage to the des-
ignated 𝑇𝑈 wordline and measuring the voltage at the designated
𝑉𝑊𝑋 wordline alongside a pull-down resistor. The voltage will only
be high if there exists a low-resistance path between the 𝑇𝑈 and 𝑉𝑊𝑋
wordlines through the memristors with a stored value of 1. The
function is shown to evaluate to 𝑋𝑌𝑊𝑍 in Figure 2(c).

3 MOTIVATION
3.1 Limitations of BDD-based synthesis
There is an inherent limitation of synthesizing crossbars from BDDs.
Each node in a BDD has at most 2 output edges, so the total number
of edges can be no more than twice the number of nodes. On a
crossbar, the nodes represent rows and columns, and the edges
represent used memristors (which are not permanently set to 0 or
1). Thus—denoting the number of usedmemristors𝑈—the number of
rows and columns will be ↓ ω(𝑈), and the number of intersections
in the crossbar will be ↓ ω(𝑈2). For large 𝑈, this creates crossbars
that are very sparsely populated by used memristors, which is not
e$cient in terms of area.

Figure 3: (a) Crossbar design for a 10-input OR, and (b) an
overview of the area cost for an 𝑎 -input OR using either
BDDs or their optimal solutions for varying values of 𝑎 .

To justify our claim, we perform a small case study in Figure 3.
We illustrate an optimal crossbar design for a 10-input OR function
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Figure 6: An example of the synthesis !ow using the FACTOR framework. (a) The input is a Boolean function, which is
subsequently factorized (b). Next, the factorized expression is converted into an expression tree in (c). From this tree, a Boolean
connectivity graph is constructed in (d), which is a directed multigraph. Subsequently, the directed multigraph is converted
into an undirected simple graph in (e), which is then labeled in (f). Finally, a crossbar design is constructed in (g).

in a crossbar with dimensions 4 ↔ 4 in Figure 3(a). The equivalent
layout produced by a BDD can be no smaller than 10 ↔ 10. Clearly,
using an alternative data structure, it is possible to construct cross-
bar designs which are more dense, and consequently have smaller
area. In the next section, we introduce Boolean connectivity graphs,
which can be used to synthesize such dense crossbar designs.

3.2 Proposed Boolean Connectivity Graphs
(BCGs)

In this paper, we propose the use of Boolean Connectivity Graphs
(BCGs). A BCG is a graph representation of a Boolean function 𝐿 .
The graph 𝑏 = (𝑐 , 𝑑) has a set of nodes 𝑐 and a set of edges 𝑑
labeled with Boolean literals {𝑒0,¬𝑒0, ..., 𝑒𝑁,¬𝑒𝑁} or Boolean truth
values {0, 1}.

Figure 4: Comparison of graph
size for a BDD and a BCG repre-
senting the same Boolean func-
tion 𝐿 = (𝑀 → 𝑂) ↑ 𝑁.

In contrast with BDDs, the
graph is a directed multi-
graph where each node may
have more than two outgo-
ing edges. Binary decision di-
agrams (BDDs) are a subset
of BCGs and are commonly
used to synthesize memristor
crossbars. They have certain
structural restrictions that,
while making them easier to
map to layouts, prevent them
from accessing the full so-
lution space. In Figure 4(a),
we show a BDD and in Fig-
ure 4(b), we show an equivalent BCG. The BDD has !ve nodes
(including terminal nodes) and six edges whereas the BCG has
three nodes and three edges. In our proposed synthesis method,
we will leverage this alternative data structure to construct more
succinct crossbar designs than with BDDs.

4 THE FACTOR FRAMEWORK
In this section, we introduce our proposed FACTOR framework.
The input to FACTOR is a single-output Boolean function 𝐿 and
the output is a crossbar design 𝑓 𝑂 realizing the Boolean function
𝐿 . The framework consists of three main steps: (1) pre-processing,

(2) graph construction, and (3) crossbar construction. A high-level
overview of the FACTOR framework is shown in Figure 5. For the
crossbar construction, we seek a graph representation for a one-
to-one mapping between the graph and the crossbar. Based on the
graph properties of a crossbar design outlined in Section 2.2, we
identify two properties the graph must satisfy:

I. Property I: The graph must be a simple graph. This entails
that for every pair of nodes, there must be at most one edge
between them.

II. Property II: The graph must be a bipartite graph.

Another main objective of the FACTOR framework is to identify
multi-input OR operations, which can be realized e$ciently using
the dense crossbar structure, as shown in Figure 3(a).

Figure 5: Overview of the FACTOR framework.

4.1 Pre-processing
The input of the !rst step is the Boolean function 𝐿 , as shown in
Figure 6(a). The Boolean function 𝐿 is described in a hardware
descriptive language such as Verilog or VHDL. Next, the Boolean
function 𝐿 is converted into NNF and factorized, as shown in Fig-
ure 6(b). For factorization, we use the logic synthesis tool SIS [13].
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4.2 Graph construction
In this section, we construct a labeled graph from the given fac-
torized Boolean function 𝐿 using a Boolean connectivity graph.
The graph construction has four substeps: (1) construction of an
expression tree, (2) construction of a Boolean connectivity graph,
(3), construction of an undirected simple graph, and (4) construction
of a labeled graph.

4.2.1 Expression tree. First, we construct an expression tree from
the factorized Boolean function, as shown in Figure 6(c). All nodes
in the tree, except for the leaf nodes, are labeled with the Boolean
operators → or ↑. The leaf nodes are labeled with Boolean literals
{𝑒1,¬𝑒1, ..., 𝑒𝑁,¬𝑒𝑁}. The expression tree is constructed bottom-up
where the binary operators are converted into nodes according to
the order of operations. These nodes have two outgoing edges, one
to each operand.

Figure 7: Construction of a Boolean connectivity graph (a di-
rected multigraph) from an expression tree using a recursive
algorithm. Each node corresponds to a recursive step and is
indicated by a number between brackets, from which a BCG
is subsequently constructed.

4.2.2 Boolean connectivity graph. Given the expression tree, we
construct a Boolean connectivity graph using the recursive Algo-
rithm 1. The Boolean connectivity graph is a directed multigraph
where the edges are labeled with literals. The algorithm works as
follows: !rst, it constructs the graphs for the left and right sub-trees
of the expression. Then, it merges those graphs based on the top-
level operation for the expression. If the operation is a conjunction
(→), then the two graphs are placed into series. Otherwise, if the
operation is a disjunction (↑), then the two graphs are placed in
parallel. It is precisely this disjunction operation which provides the
expressive power for Boolean connectivity graphs. Where binary
decision diagrams have at most two outgoing edges, BCGs may
have more than two. The recursion halts when the expression is
empty. A detailed example of the algorithm is provided in Figure 7.
4.2.3 Undirected simple graph. Given the Boolean connectivity
graph, we want to construct a new graph to satisfy Property I.
The input is the Boolean connectivity graph, and the output is
an undirected simple graph. The Boolean connectivity graph is a
directed multigraph, which entails that there may be more than
one edge between two pairs of nodes. To construct the simple
graph, we will split nodes into new nodes, and connect these newly
constructed nodes. More speci!cally, given two pairs of nodes 𝑊
and 𝑔 with  edges between them, we will construct 𝑖(𝑊)↗1 and
𝑖(𝑔)↗1 duplicate nodes respectively, such that 𝑖(𝑊) ↔ 𝑖(𝑔) ↘  . Then,
the duplicate nodes and the original node are connected using an
edge with Boolean truth value 1 (true).

Algorithm 1 Expression tree to Boolean connectivity graph

1: procedure C!"#$%&(expression)
2: if expression.operation == None then
3: return Graph(expression.literal)
4: end if
5: left≃ Convert(expression.left)
6: right ≃ Convert(expression.right)
7: if expression.operation == → then
8: Merge(left.output, right.input)
9: return Graph(left, right)
10: else if expression.operation == ↑ then
11: Merge(left.input, right.input)
12: Merge(left.output, right.output)
13: return Graph(left, right)
14: end if
15: end procedure

In Algorithm 2, we provide an algorithm to determine the number
of duplicate nodes that must be constructed for each node to satisfy
the condition. Initially, we set 𝑖 = 1 for all nodes. Subsequently, we
iterate over all edges between every pair of nodes. The algorithm
tries to evenly distribute the duplicate nodes by incrementing 𝑖 for
either 𝑊 or 𝑔 as long as 𝑖(𝑊) ↔ 𝑖(𝑔) <  . In Figure 8(a), we show the
values of 𝑖 for three nodes, in (b) the duplication of nodes, and in
(c) the resulting simple graph.

Figure 8: Construction of a simple undirected graph from a
directed multigraph.

Algorithm 2 Computing the number of duplicate nodes

1: for node in graph.nodes do
2: 𝑖(node) = 1
3: end for
4: for node1 in graph do
5: for node2 in graph do
6:  ≃ graph.CountEdges(node1, node2)
7: while 𝑖(node1) ↔ 𝑖(node2) <  do
8: if 𝑖(node1) < 𝑖(node2) then
9: 𝑖(node1) ≃ 𝑖(node1) +1
10: else
11: 𝑖(node2) ≃ 𝑖(node2) +1
12: end if
13: end while
14: end for
15: end for
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Table 1: Comparison of the graph properties (nodes and edges) and the hardware resources for the crossbar design (rows,
columns, semiperimeter, area, and number of non-zero memristors) for both multiple single-output Boolean functions and a
single multi-output Boolean function.

Benchmark

Multiple single-output Boolean functions Single multi-output Boolean function
Graph Crossbar design Graph Crossbar design

Nodes Edges Rows Cols Semi Area Mems Time Nodes Edges Rows Cols Semi Area Mems Time
(num) (num) (num) (num) (num) (num) (num) (s) (num) (num) (num) (num) (num) (num) (num) (s)

cm150a 32 47 22 27 49 594 47 0.34 33 48 12 21 33 252 48 0.019
t481 44 70 23 31 54 713 64 0.265 45 71 31 25 56 775 65 0.153
x2 52 66 24 36 60 864 60 0.893 36 62 19 27 46 513 58 0.016
cm163a 77 88 33 48 81 1584 73 0.841 44 73 24 33 57 792 68 0.017
misex1 76 96 37 47 84 1739 92 0.623 37 66 23 26 49 598 61 0.02
cordic 97 152 63 58 121 3654 145 0.343 97 154 40 70 110 2800 147 36.8
5xp1 124 175 61 84 145 5124 161 1.09 105 164 56 83 139 4648 160 0.024
clip 159 251 89 112 201 9968 231 0.531 165 250 93 116 209 10788 241 0.029
alu4 1189 1706 648 800 1448 518400 1649 15.336 1296 1834 697 863 1560 601511 1813 3.12
misex3 1245 1864 636 828 1464 526608 1812 8.637 752 1220 418 540 958 225720 1194 0.89
apex2 390 571 217 257 474 55769 546 39.471 415 599 227 280 507 63560 578 1.27
apex4 4206 5525 2241 2797 5038 6268077 5479 8.2 1402 3120 813 1030 1843 837390 2840 5.22
apex5 2117 3003 1136 1302 2438 1479072 2652 11.383 1851 2911 964 1198 2162 1154872 2740 0.117
seq 2733 3665 1408 1742 3150 2452736 3557 37.11 1459 2202 749 1016 1765 760984 2165 0.539
Geomean 271.0 380.9 143.9 180.9 325.2 26017.6 357.2 2.3 204.5 328.8 108.6 141.9 251.5 15402.9 313.8 0.2
Ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.9 0.8 0.8 0.8 0.6 0.9 0.1

4.2.4 Node labeling. To satisfy Property II from Section 4, we must
convert the undirected simple graph into an undirected bipartite
graph. In previous work, a labeling algorithm was proposed where
nodes are labeled with 𝑐 , 𝑗 , or 𝑐𝑗 , indicating whether they will
be assigned to vertical, horizontal, or both vertical and horizontal
nanowires in the crossbar design [16]. An integer linear program-
ming solution (ILP) was proposed which is NP-hard and thus time-
consuming.We employ a faster andmore practical greedy algorithm
to label the nodes with𝑐 ,𝑗 , or𝑐𝑗 based on the constraints in [16].

4.3 Crossbar construction
The !nal step is the construction of a crossbar design based on the
labeled undirected simple graph. In [16], an analogy was de!ned
between a the graph of a binary decision diagram and a memristor
crossbar. In this analogy, the nodes are assigned to the wordlines
and bitlines in a crossbar according to their label 𝑐 , 𝑗 , or 𝑐𝑗 . The
edges with the literals as labels are assigned to memristors in a
crossbar. For this last step, we use the same analogy to construct
the crossbar design using the labeled undirected simple graph.

5 MULTI-OUTPUT BOOLEAN FUNCTIONS
Real-world combinational functions typically have multiple out-
puts. Sharing logic among multiple Boolean functions may result
in smaller crossbar designs. Therefore, we propose a multi-step
evaluation methodology based on multiplexing for multi-output
Boolean functions. More speci!cally, for each output function 𝐿𝐿 , we
introduce a selector variable 𝑘𝐿 . Then the overall Boolean function
is constructed as a disjunction of the selector variable 𝑘𝐿 conjoined
with the function 𝐿𝐿 , as shown below:

𝐿1 = (𝑀 ↑ 𝑂) → 𝑁 (1)
𝐿2 = 𝑀 ↑ 𝑂 (2)

𝐿 = (𝑘1 → 𝐿1) ↑ (𝑘2 → 𝐿2) (3)
The Boolean function 𝐿 (line 3) then follows the same synthesis

method as in Section 4. Evaluation of the multi-output Boolean
function with 𝑎 outputs is then accomplished using 𝑎 steps. In
each step 𝑇, 𝑇 ↓ [1, ..,𝑎 ], only the selector variables 𝑘𝐿 are set to 1
while the other selector variables 𝑘 𝑀 , 𝑙 ω 𝑇 , are set to 0. In Figure 9,
we illustrate the evaluation of a multi-output Boolean function.

Figure 9: Multi-step evaluation for a multi-output Boolean
function with outputs 𝐿1 and 𝐿2. For each step, we have high-
lighted the paths for the respectively Boolean functions using
dashed lines in red. The paths for both outputs are di"erent
due to the di"erent state of the memristors with variables
𝑘1 and 𝑘2. For 𝐿1, the selector variables are set to 𝑘1 = 1 and
𝑘2 = 0, and for 𝐿2 to 𝑘1 = 0 and 𝑘2 = 1.

6 EXPERIMENTAL RESULTS
In this section, we will evaluate our proposed FACTOR framework
and compare the framework with other digital in-memory com-
puting paradigms. The code for FACTOR is written in Python and
the experiments are conducted on a machine with a 12th Gen In-
tel® Core™ i7-12700 × 20 processor. The code is on GitHub1. The
experiments are conducted on 14 benchmarks from RevLib [18].

6.1 Evaluation of the FACTOR framework
First, we evaluate the proposed FACTOR framework in terms of
graph properties and hardware resources. The graph properties
are the number of nodes and edges for the Boolean connectivity
graph. The hardware resources are the number of rows, columns,
semiperimeter (rows+columns), area (rows↔columns), the number
of non-zero memristors, and the synthesis time. In Table 1, we com-
pare the graph properties and hardware resources for the crossbar
design for two approaches. In the !rst approach, the benchmarks
are synthesized as multiple single-output Boolean functions and
in the second approach as a single multi-output Boolean function.
We observe that the number of nodes and the number of edges is
reduced by 20% and 10% when the logic is shared. Consequently,

1https://github.com/sventhijssen/factor

https://github.com/sventhijssen/factor
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Table 2: Comparison of the hardware resources in terms of rows, columns, semiperimeter, area, non-zero memristors, and
synthesis time for di"erent synthesis methods for !ow-based computing.

Benchmark
Chakraborty et al. [4] COMPACT [16] FACTOR

Rows Cols Semi Area Mems Time Rows Cols Semi Area Mems Time Rows Cols Semi Area Mems Time
(num) (num) (num) (num) (num) (min) (num) (num) (num) (num) (num) (min) (num) (num) (num) (num) (num) (min)

cm150a 32 48 80 1536 48 0.0 12 22 34 264 48 0.0 22 27 49 594 47 0.0
t481 32 37 69 1184 58 0.0 17 23 40 391 58 0.0 23 31 54 713 64 0.0
x2 52 74 126 3848 89 0.0 33 35 68 1155 89 0.1 19 27 46 513 58 0.0
cm163a 66 90 156 5940 92 0.1 25 31 56 775 78 0.0 24 33 57 792 68 0.0
misex1 72 92 164 6624 101 0.0 21 29 50 609 72 0.0 23 26 49 598 61 0.0
cordic 99 131 230 12969 170 0.0 42 44 86 1848 142 0.1 63 58 121 3654 145 0.0
5xp1 117 155 272 18135 185 0.1 52 53 105 2756 162 0.1 56 83 139 4648 160 0.0
clip 148 186 334 27528 253 0.0 84 84 168 7056 253 0.0 89 112 201 9968 231 0.0
alu4 1281 1461 2742 1871541 2299 0.4 683 686 1369 468538 2299 1.5 648 800 1448 518400 1649 0.3
misex3 1552 1670 3222 2591840 2486 0.4 674 676 1350 455624 2292 2.2 418 540 958 225720 1194 0.0
apex2 1644 1645 3289 2704380 2759 1.4 909 936 1845 850824 2759 1.1 217 257 474 55769 546 0.7
apex4 1644 1789 3433 2941116 2912 0.4 508 528 1036 268224 1910 2.3 813 1030 1843 837390 2840 0.1
apex5 2674 3591 6265 9602334 4352 1.0 1409 1497 2906 2109273 4352 0.9 1136 1302 2438 1479072 2652 0.2
seq 3231 3690 6921 11922390 4982 1.5 1743 1778 3521 3099054 4982 1.1 749 1016 1765 760984 2165 0.0
Geomean 282.0 348.6 631.6 98307.5 458.7 0.0 128.6 145.5 275.1 18709.5 417.4 0.0 114.6 143.6 258.6 16459.9 307.6 0.0
Ratio 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.4 0.4 0.2 0.9 2.6 0.4 0.4 0.4 0.2 0.7 1.8

the required hardware resources are also lower on average with an
average reduction of 20% for the semiperimeter, 40% for the area,
and 10% for the number of non-zero memristors.

Figure 10: Comparison of average energy consumption and
latency over fourteen Revlib benchmarks for CONTRA [3],
COMPACT [16], and our proposed framework FACTOR.
6.2 Comparison for digital in-memory

computing
In this section, we compare our proposed FACTOR framework
with other frameworks for digital in-memory computing. First, we
compare with previous work for "ow-based computing, and then
we compare with other digital in-memory computing paradigms.

In Table 2, we compare our proposed synthesis method with the
previous state-of-the-art synthesis methods for "ow-based comput-
ing [4, 16]. For FACTOR, we use the results with the least number
of non-zero memristors from Table 1. We observe that our proposed
method uses the least amount of resources with a reduction of 60%
for the semiperimeter, 80% for the area, and 30% for the number
of non-zero memristors. This is due to that previous work relies
on BDDs as underlying data structure whereas FACTOR relies on
Boolean connectivity graphs, which are more expressive.

Next, we evaluate the energy and latency for our proposed FAC-
TOR framework for "ow-based computing with CONTRA [3] for
the MAGIC computing paradigm, and with COMPACT for "ow-
based computing. The READ/WRITE energy to program a ReRAM
device is 1.08𝑚𝑛 and 3910𝑚𝑛 , and the READ/WRITE latency is
29.31𝑈𝑘 and 50.88𝑈𝑘 [19]. In Figure 10, we show the normalized
energy and latency over the 14 benchmarks for all three frame-
works. We observe that our proposed FACTOR framework outper-
forms CONTRA and COMPACT in terms of energy and latency
with an energy and latency reduction of 65% and 90% compared
with CONTRA, and 12% and 2% with COMPACT. This is due to the
low number of WRITE operations.

7 CONCLUSION AND FUTUREWORK
In this paper, we have presented FACTOR, a framework for synthe-
sizing crossbar designs for "ow-based computing. Our innovation

lies in the exploration of data structures, called Boolean connectiv-
ity graphs, which are more succinct than binary decision diagrams.
In contrasts with BDDs, BCGs are not limited to two outgoing edges
for each internal node in the graph. This has a !rst-order impact on
the overall energy e$ciency and latency for the "ow-based com-
puting system. Using FACTOR, the semiperimeter (rows+columns)
reduces by 60% and the number of non-zero memristors by 30%
compared with the state-of-the-art. This results in an area, energy
and latency reduction of 80% and 12%, and 2% compared with the
state-of-the-art. In our future work, we will explore other computa-
tional structures that can supports "ow-based computing systems.
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