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Abstract—In-memory computing using non-volatile memory
is a promising pathway to accelerate data-intensive applications.
While substantial research efforts have been dedicated to ex-
ecuting Boolean logic using digital in-memory computing, the
limitation of state-of-the-art paradigms is that they heavily rely
on repeatedly switching the state of the non-volatile resistive
devices using expensive WRITE operations. In this paper, we
propose a new in-memory computing paradigm called path-based
computing for evaluating Boolean logic. Computation within the
paradigm is performed using a one-time expensive compilation
phase and a fast and efficient evaluation phase. The key property
of the paradigm is that the execution phase only involves cheap
READ operations. First, we define an analogy between binary
decision diagrams (BDDs) and one-transistor one-memristor
(1T1M) crossbars that allows Boolean functions to be mapped
into crossbar designs. When such crossbar design becomes too
large to be physically realizable, we propose to synthesize the
Boolean function into a path-based computing system. A path-
based computing system consists of a topology of staircase
structures. A staircase structure is a cascade of hardwired
crossbars, which minimizes inter-crossbar communication. We
evaluate the proposed paradigm using ten circuits from the Revlib
benchmark suite, eight control circuits of the EPFL benchmark
suite, and eight ISCAS85 benchmarks. Compared with state-
of-the-art digital in-memory computing paradigms, path-based
computing improves energy and latency with 1006× and 10× on
average, respectively.

I. INTRODUCTION

The growth of digital data accelerates at a high pace. In
2025, the total amount of digital data is expected to be
175ZB [1]. This growth is driven by a variety of factors,
one being the collection of sensor data using IoT devices [2].
The development of 5G and 6G networks will only accelerate
the amassment of this data further [3]. Another contributing
factor is the emergence of data-driven technologies, such as
deep neural networks [4], and foundational AI models, which
require internet-scale amounts of digital data for unsupervised
pre-training [5]. Unfortunately, these data-intensive techniques
suffer from the Von Neumann bottleneck [6]. The bottleneck
denotes the energy-inefficiency of a bus to transfer data
between a computer’s memory and computing units. Several
other factors, such as the End of Moore’s law [7] and the End
of Dennard Scaling [8], are challenging the performance of
these data-intensive applications.

Processing in-memory using non-volatile memory has re-
cently attracted significant attention to mitigate the afore-
mentioned limitations [17]. Non-volatile memory technol-
ogy includes memristors, resistive random access memory
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TABLE I
COMPARISON OF IN-MEMORY LOGIC STYLES IN TERMS OF UNDERLYING

OPERATION AND EVALUATED LOGIC COMPLEXITY.

Digital logic Representative Operations in each phase
style Studies Compile Execute
IMPLY [9], [10] WRITE WRITE+READ
MAGIC [11], [12] WRITE WRITE+READ
MAJORITY [13], [14] WRITE WRITE+READ
FLOW [15], [16] WRITE WRITE+READ
Path-based (this paper) WRITE READ

(ReRAM) [18], phase change memory (PCM) [19], and
spin-transfer torque magnetic random access memory (STT-
MRAM) [20]. Analog in-memory computing is well-known
for performing matrix-vector multiplication at high speed
and with low energy consumption. These computations are
carried out in dense crossbar arrays. Unfortunately, analog in-
memory computing is limited to matrix-vector multiplication,
and related arithmetic operations [21]. Some efforts have been
made to improve accuracy while maintaining these energy and
latency advantages [22]. Unfortunately, despite these efforts,
analog in-memory computing cannot deliver the deterministic
precision required for high-assurance applications. However,
digital computing is more robust due to the clear distinct states
for a logical zero and one [23]. For comprehensive reviews on
in-memory computing, we refer to [24]–[26].

Several noteworthy digital in-memory computing paradigms
are IMPLY [9], MAGIC [11], MAJORITY [13], and
FLOW [15]. These in-memory computing paradigms more or
less have the following in common: the paradigms consist of
two broad phases. First, there is a one-time compilation phase
and, second, an execution phase that is performed for each
function input. In Table I, we show the READ and WRITE
operations performed in each phase for the different logic
styles. It can be observed that all previous paradigms use
WRITE operations in the execution phase. WRITE operations
are orders of magnitude more expensive than READ opera-
tions [27]. Further, WRITE operations are detrimental to the
endurance of the memristor’s lifetime [28]. In contrast, the
proposed path-based computing paradigm evaluates Boolean
logic using READ operations in the execution phase, mitigat-
ing the high energy consumption for the WRITE operations
and thus extending the system’s lifetime.

Further, design automation tools are essential to map com-
putation into hardware designs. Hardware-software co-design
is a trending approach in a variety of novel computing
schemes, including photonic computing [29], [30], quantum
computing [31], [32], and in-memory computing [33], [34]
to optimize the hardware resources. In this work, we explore
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a tight hardware-software co-design for 1T1M crossbars and
Boolean functions. To achieve this strong relation between
hardware and software, we base ourselves on an analogy
between BDDs and 1T1M crossbars.

Lastly, in previous works [12], [16], little or no attention
is made to the underlying architecture. Many of these rely
on a simple computing architecture consisting of multiple
crossbars connected to a bus. Unfortunately, such bus-crossbar
architecture is not energy- and latency-efficient. In our work,
we target staircase architectures where a staircase is a hard-
wired collection of crossbars. The main idea is that the bus
utilization will be reduced, which translates into energy and
latency improvements of the overall computing system.

In this paper, we propose a new computing paradigm called
path-based in-memory computing. The paradigm is capable
of evaluating Boolean functions using 1T1M crossbar arrays.
We also propose a framework called PATH to automatically
map computation to 1T1M crossbars or path-based computing
systems with staircase structures. The main innovations of the
paper are summarized, as follows:

• A new computing paradigm, called path-based in-
memory computing, is introduced. The paradigm executes
Boolean functions fast and efficiently using only READ
operations instead of using slow and energy-consuming
WRITE operations.

• We introduce a framework, called PATH, to synthesize
Boolean functions into a single crossbar design. The
PATH framework exploits an analogy between BDDs and
1T1M crossbars to map Boolean functions into crossbar
designs. A BDD with |V | nodes and |E| edges can be
mapped into a to a crossbar of dimensions |V | × |E|.

• We further introduce an equivalent bipartite graph data
structure for the BDD. By means of node merging, this
bipartite graph can be further compressed into a smaller,
equivalent graph. This compression results in an area
reduction of 16%.

• When the crossbar design becomes too large to be phys-
ically realizable, the PATH framework provides a parti-
tioning algorithm to map Boolean functions to staircase
structures. The objective is to minimize the bus utilization
by minimizing the hardware resources in terms of the
number of staircases.

• The experimental evaluation is performed on ten cir-
cuits from the Revlib benchmark suite, eight control
circuits from the EPFL benchmark suite, and eight IS-
CAS85 benchmarks. Compared with the state-of-the-art
in-memory paradigm COMPACT [16], PATH improves
energy and latency with 1006× and 10× on average.

The remainder of the paper is organized as follows: prelim-
inaries are provided in Section II. The path-based computing
paradigm is introduced in Section III. In Section IV, we review
some state-of-the-art digital in-memory computing paradigms.
Problem formulation and a high-level overview of the PATH
framework are given in Section V. The crossbar-level synthesis
framework is detailed in Section VI, and the partitioning
algorithm is provided in Section VII. Optimization steps are
introduced in Section VIII. The experimental evaluation is
performed in Section IX. The paper is concluded in Section X.

II. PRELIMINARIES

A. Binary Decision Diagrams

A binary decision diagram (BDD) is a graph representation
of a Boolean function. The directed acyclic graph (DAG)
consist of internal decision nodes and two leaf (terminal)
nodes. The terminal nodes represent the output ‘0’ and ‘1’, re-
spectively. The internal decision nodes are assigned a Boolean
variable, and each internal decision node has a positive and
negative output edge. The positive edge corresponds to the
positive literal, and the negative edge corresponds to the
negative literal. A BDD is evaluated by traversing the graph
from the root nodes to one of the leaf nodes based on an
instance of the Boolean variables. BDDs commonly refer to
reduced order binary decision diagrams (ROBDDs) where
nodes and edge have been eliminated to reduce the size of
the representation [35]. When a BDD is used to represent a
multi-output function, the BDD will have a separate root node
for each output of the Boolean function [36].

B. Memristor Crossbar Arrays

In this section, we will review one-transistor one-memristor
(1T1M) crossbars [37]. A model for a 1T1M crossbar is
illustrated in Figure 2(c). A 1T1M crossbar array consists
of wordlines, bitlines, and selectorlines. Each wordline is
connected to each bitline using a series-connected memristor
and access transistor. The vertically aligned access transistors
share a single selectorline. Both the memristors and the access
transistors act functionally as switches that can be turned ON
and OFF. The switch corresponding to a memristor is ON (or
OFF) based on if the memristor is programmed to have low
(or high) resistance. The switch corresponding to the access
transistor is turned ON (or OFF) based on if the selectorline is
charged (or discharged, depending on the type of transistor).

C. In-memory computing architecture

Traditionally, bus architectures have been leveraged for in-
memory computing [38]–[40]. In this computing architecture,
the crossbars are connected to a bus. An example of a bus
architecture with six crossbars is illustrated in Figure 1(a).
However, in our work, we target a path-based computing
system with staircase structures. A staircase structure is a
collection of crossbars that have hardwired inter-connections.
In Figure 1(b), we illustrate a staircase architecture of six
staircases where each staircase consists of five hardwired
crossbars.

(a) Bus architecture (b) Staircase architecture
Fig. 1. Comparison of a traditional bus architecture and a staircase architec-
ture. Each staircase is a collection of hardwired crossbars.
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(a) Verilog code (b) Crossbar design D (c) 1T1M crossbar reconfiguration (d) Crossbar instance I (e) Evaluation
Fig. 2. Flow for the synthesis and evaluation of Boolean functions for path-based computing. (a) A program in Verilog code. (b) The abstract crossbar design
obtained through synthesis. (c) The physical crossbar with the non-volatile memory devices programmed and Boolean variables assigned to the selectorlines.
(d) The state of the switches (open/closed) with respect to the state of the non-volatile memory devices (ON/OFF) and the instance (a,b,c)=(1,1,0) of the
Boolean variables. (e) The Boolean function f evaluates to 1 because there is a path from the input to the output.

III. PATH-BASED COMPUTING

Path-based computing aims to evaluate Boolean functions
using in-memory computing. An example of the flow for the
synthesis and evaluation of path-based computing is shown
in Figure 2. The flow for path-based computing consists of
a one-time slow and expensive compilation phase and a fast
and efficient execution phase. The input to the compilation
phase is a Boolean function specified in a hardware descriptive
language (Verilog, VHDL), which is shown in Figure 2(a).
The input is first synthesized into an abstract crossbar design
D, which is shown in Figure 2(b). The 1T1M crossbar
design specifies the state of each non-volatile memory device
(0/1) and the Boolean variable assigned to each selectorline.
Here, the Boolean literals a, b, and c are assigned to the
first, second, and third selectorline, respectively. The input
and output assignment to the wordlines are also specified.
Next, the memory devices within a nanoscale crossbar are
programmed ON (LRS) or OFF (HRS), which is shown in
Figure 2(c). The state of the devices are programmed to LRS
or HRS by applying a voltage with appropriate polarity and
magnitude [41]. We use a write-and-verify scheme to ensure
the correct programming [42].

In the execution phase, an instance of Boolean variables
is provided to the selectorlines. The selectorlines control
the switches represented by the access transistors. The state
of the switches controlled by the memory devices are also
shown in Figure 2(d). Next, an input voltage is applied to
the top-most wordline and an output voltage is measured
across a resistor connected to the bottom-most wordline. If
the output voltage is high, the Boolean function evaluates to
true. Otherwise, the function evaluates to false. For the input
instance (a,b,c)=(1,1,0), the function evaluates to true because
there exists a path from the input to the output, as illustrated in
Figure 2(e). In contrast, the function evaluates to false for the
input instance (1,0,0). Observe that the memristors must not
be reprogrammed to evaluate the same Boolean function for
different input vectors. In Figure 3, a more detailed example is
shown for the Boolean function f = a∨¬b. More specifically,
we show the state of the crossbar for all four input vectors.
Again, the crossbar must not be reprogrammed for different
input vectors.

The one-time compilation phase is both slow and expen-

sive. Mainly, due to the expensive WRITE operations used
to program the platform. On the other hand, the cost is
amortized across each execution of the Boolean function. The
execution phase is fast and efficient because it only involves
charging/decharging the selectorlines and performing READ
operations. The advantageous properties compared with other
in-memory paradigms comes from the novel use of the ac-
cess transistors. No previous paradigms have used the access
transistors to perform logic.

Fig. 3. Execution of all four input vectors on a crossbar for the Boolean
function f = a ∨ ¬b. Observe how the state of the memristors does not
change for different input vectors, but only the state of the access transistors
changes using the selectorlines.

IV. COMPARISON OF DIGITAL IN-MEMORY COMPUTING
PARADIGMS

In this section, we compare and review some of the
most prevalent state-of-the-art digital in-memory computing
paradigms and our proposed path-based in-memory comput-
ing paradigm (PATH). These digital in-memory computing
paradigms are IMPLY [45], MAGIC [11], MAJORITY [13],
and FLOW [44]. In Figure 4, we illustrate the steps during
execution for each of the logic styles to evaluate the Boolean
function f = (a ∧ b) ∨ ¬c for the input vector a = 1, b =
1, c = 1. For consistency, we employ the following basic
operations among these logic styles: READ, WRITE, and
COPY (READ+WRITE). The definitions are provided in the
legend at the top of Figure 4.

A. IMPLY

IMPLY logic is based on the Boolean operation material
implication (IMP) [43], [45]. The IMP operation P → Q
can be realized in hardware using two memristors P and
Q. By applying voltages over the memristors P and Q, the
result is obtained in the memristor Q. Thus, IMPLY logic is
destructive in terms of its inputs [43]. Further, extensive design
automation tools for IMPLY-based in-memory computing have
not been developed, usually requiring manual labor to design
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Fig. 4. Comparison of the last step of the compilation phase and the steps during the execution phase for digital in-memory logic styles IMPLY [43],
MAGIC [11], MAJORITY [13], FLOW [44], and the proposed PATH. For a given Boolean function, the compilation phase is only performed once and
the execution phase is performed many times. For the compilation phase, either a series of instructions or a crossbar is provided. The Boolean function
f = (a ∧ b) ∨ ¬c is computed for the input vector a = 1, b = 1, c = 1. Intermediate variables are denoted by a dollar sign ($). For each logic style, the
operations READ, WRITE, and COPY (= READ + WRITE) are provided, as defined in the legend at the top of the figure. The WRITE operation writes the
required resistive state to a memristor or executes the primary Boolean function for IMPLY/MAGIC/MAJORITY by applying the required input voltages. The
READ operation reads the resistive state of a memristor or evaluates the Boolean function for FLOW/PATH. The COPY operation performs both a READ
and WRITE operation. Observe how path-based computing does not require any WRITE operations during the execution phase.

circuits [46]. One of the few automation tools for IMPLY is de-
scribed in [47]. In Figure 4(a), we observe that IMPLY requires
many intermediate steps of READ and WRITE operations to
realize the Boolean function f . The required IMP operations
are also provided in Figure 4(a).

B. MAGIC

The MAGIC logic style [11] is based on the Boolean opera-
tion NOR, and can be considered the successor of IMPLY. The
NOR operation can be realized using three memristors. The
NOT operation is a NOR operation where one input is always
‘1’. In contrast with IMPLY, MAGIC is not destructive for
its inputs [11] when applying the appropriate voltage. Further,
there is an additional memristor for the output to be realized.
Over the years, many papers have been proposed using the
MAGIC logic style [12], [46], [48]. In Figure 4(b), we show

the steps to realize the Boolean function f using READ,
WRITE, and COPY operations.

C. MAJORITY

The majority operation is a Boolean function that evaluates
to true when half or more of its inputs evaluate true. For in-
memory computing, the majority operation with three inputs is
primarily interesting due to its one-to-one correspondence with
a single memristor [13]. We define the majority operation as
Z ′ = M(X,¬Y,Z) = (X∧Z)∨(¬Y ∧Z)∨(X∧¬Y ). Then let
X and Y be the inputs to the two terminals of the memristor,
and let Z be the resistive state of the memristor. By apply-
ing the appropriate voltages to the inputs and programming
the memristor to the appropriate resistive state, the majority
function can be executed in-situ. The resulting value Z ′ is
then stored as a resistive value in the memristor [49]. Several
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synthesis methods have been proposed in recent years [14],
[49]–[52], many of which rely on majority inverter graphs
(MIGs) as data structure. In Figure 4(c), we illustrate the steps
using READ and WRITE operations for the majority logic
style.

D. FLOW

FLOW (flow-based computing) is a digital in-memory com-
puting paradigm which relies on the absence/presence of
electrical current to perform its computations [16], [44], [53].
Initially, the input variables, their negations, and the Boolean
truth values (0/1) are assigned to the memristors. Program
execution consists of two steps. In the first step, the memristors
are programmed to their resistive states (0 for high, 1 for low),
as shown in the first step of Figure 4(d). In the second step,
a high input voltage is applied to the input wordline (Vin),
and the Boolean function is read out as follows: if there is a
path from the input wordline to the output wordline through
memristors in a low resistive state, then the Boolean function
evaluates to true. Otherwise, the Boolean function evaluates
to false.

E. PATH

In our proposed path-based computing (PATH), the program
execution solely relies on READ operations, and the appli-
cation of an input voltage to perform computations. WRITE
operations are only performed once during the previous step,
i.e. the compilation phase, for a given Boolean function.
In the first step of Figure 4(e), we are show the crossbar
design. The memristors are in their resistive states, which
were programmed only once prior, during 1T1M crossbar
reconfiguration (see previous Section III). During program
execution there are no WRITE operations, and thus these
resistive states do not change. However, the selectorlines
are charged accordingly to open/close access transistors. The
memristors are programmed to their resistive states only once
for a given Boolean function. Given another input vector
a = 0, b = 1, c = 0, the crossbar design in Figure 4(e),
would remain, and is thus invariant to the input vector. Then,
in the second step, the evaluation is read out by sensing the
presence/absence of electrical current. The crossbar invariancy
makes PATH a strong contender for repeated computations.

V. THE PATH FRAMEWORK

First, we outline the problem formulations in Section V-A.
Then, we give a high-level overview the PATH framework in
Section V-B.

A. Problem formulation

Our overall objective is to synthesize a Boolean function ϕ
into a path-based computing system. We approach this larger
problem by solving two smaller problems, as follows:

• Problem I: We propose a synthesis method to construct
a crossbar design D for a Boolean function ϕ. The
algorithm is based on an analogy between a BDD for
the function ϕ and a 1T1M crossbar. We further improve
the synthesis method by transforming the BDD into an

equivalent graph-based data structure such that we can
reduce its graph size by merging nodes. This transforma-
tion results in smaller crossbar designs, and subsequently
power and latency improvements.

• Problem II: Based on the analogy of Problem I, we
propose a synthesis method to construct a topology T for
a path-based computing system of staircase structures Sj .
A staircase structure Sj is an ordered set of crossbars Xi.
Between each Xi and Xi+1, there are hardwired inter-
crossbar connections from the wordlines of crossbar Xi

to the selectorlines of crossbar Xi+1.

B. Overview of framework

In this section, we give an outline of the PATH framework.
An overview of the synthesis flow is shown in Figure 5. First,
in Section VI, we discuss synthesis for a single crossbar.
Then, in Section VII, we discuss the staircase partitioning.
For the crossbar synthesis, we introduce an algorithm to
construct a single crossbar design D based on an analogy
between a bipartite graph, derived from a BDD for the Boolean
function(s), and a 1T1M crossbar. This algorithm consists of
four steps: graph pre-processing, graph transformation, node
merging, and crossbar realization. Then, in Section VII, we
introduce a partitioning algorithm. The main steps for the
partitioning are the graph partitioning, and the realization
of staircase intra- and inter-connections. The framework is
illustrated with an example in Figure 6.

VI. CROSSBAR SYNTHESIS

The input to the framework is a BDD, and the output is
a crossbar design. The BDD is obtained using CUDD [54]
which is subsequently pruned into a graph G. The details
are provided in Section VI-A. In the next step, the graph
transformation step in Section VI-B, the pruned graph G
is converted into a bipartite graph B. This graph is then
compressed into a new bipartite graph B′ in Section VI-C.
The last step is the crossbar synthesis step, which constructs a
crossbar design D for the given bipartite graph B′. The details
are provided in Section VI-D.

A. Graph pre-processing

The input to the graph pre-processing step is a BDD. In
Figure 6(a), a multi-output BDD for a full adder is provided.
The Boolean functions are cout = (a0 ∧ b0) ∨ (a0 ∧ cin) ∨
(b0 ∧ cin) and s0 = a0 ⊕ b0 ⊕ cin, respectively. The graph
pre-processing involves removing the zero output node and
all the edges connected to the zero terminal node. The zero
terminal node can be removed because it corresponds to ¬cout
and ¬s0. The one terminal node will be connected to the input,
which we label in. The edges in the BDD are labeled with
their respective decision variables. The positive (negative) edge
connected to node with the decision variable xi will be labeled
xi (¬xi). Finally, we reverse the edges and we label the nodes
from 1 to |V | where |V | is the number of nodes. The resulting
graph of the BDD in Figure 6(a) is shown in Figure 6(b).
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Fig. 6. Example of the synthesis flow. (a) A multi-output BDD for a full adder with Boolean functions cout and s0. (b) The nodes of the BDD are relabeled
and the edges are assigned a Boolean literal based on their shape (positive literal for solid edges and negative literal for dashed edges). Further, the negative
terminal node 0 is removed. (c) The bipartite graph B = (U1, U2, F ) is constructed from the pruned graph G. (d) The bipartite graph B is compressed
into an equivalent bipartite graph B′ = (U ′

1, U
′
2, F

′) using node merging. (e) A crossbar design D is constructed with dimensions |U ′
1| × |U ′

2| where each
node u1 ∈ U ′

1 is assigned to a wordline and each node u2 ∈ U ′
2 is assigned to a bitline-selectorline pair. For each edge f = (u1, u2) or f = (u2, u1),

u1 ∈ U ′
1, u2 ∈ U ′

2, a memristor is programmed to a low resistive state (ON) to realize the connections.

Fig. 5. Overview of the PATH framework, including the crossbar synthesis
and staircase partitioning.

B. Graph transformation

In this step, the resulting pruned graph is converted into
a directed bipartite graph. This graph transformation is intro-
duced as an intermediary data structure for the node merging
step. Let G = (V,E) be the pruned graph where V is a set
of nodes and E is a set of edges, and let B = (U1, U2, F )
be a bipartite graph where U1 and U2 are sets of nodes and
F is a set of edges. The sets U1 and U2 are disjoint and
independent [55], and F is a new set of edges between nodes
from U1 and U2. Let v ∈ V correspond to a node u1 ∈ U1,
and let e ∈ E correspond to a node u2 ∈ U2. For each node
v ∈ V , we introduce a node u1 ∈ U1. For each edge in the
BDD, we introduce a node with two edges. More specifically,
for an edge e = (v1, v2, l) ∈ E where v1 ∈ V , v2 ∈ V and
l is a literal, we create a new node u2 = (u1

1, u
2
1, l) ∈ U2

where u1
1 is the image of v1 and u2

1 is the image of v2.

Then, we realize the connections between nodes and edges by
introducing two new edges in F for each node u2 ∈ U2 such
that F = {(u1

1, u2), (u2, u
2
1) | u2 = (u1

1, u
2
1, l), u2 ∈ U2}. An

example of the transformation of the pruned graph G into a
bipartite graph B is illustrated in Figure 6(c). Note that we
represent the nodes in U2 with their literals l instead of the
triple (u1

1, u
2
2, l) for clarity.

C. Node merging

In the bipartite graph, we observe that a node u1 ∈ U1 may
have outgoing edges to more than one node u2 ∈ U2 with the
same literal l. For example, in Figure 6(c), we observe that
node 2 in the bipartite graph B has two outgoing edges to two
distinct nodes with both label ¬b. In this section, we propose
to merge such nodes with the same label into a single node.

More formally, let B = (U1, U2, F ) be the bipartite graph
and let u1 ∈ U1 be a node with outgoing edges to nodes ui

2 =
(u1, ui, l) and uj

2 = (u1, uj , l) where i ̸= j, and u1, ui, uj ∈
U1. Then we define a mapping B = (U1, U2, F ) → B′ =
(U ′

1, U
′
2, F

′) as follows:

U1 → U ′
1 : u1 7→ u1

U2 → U ′
2 : u2 = (u1, ui, l) 7→ u′

2 = (u1, l)

F → F ′ : f = (u1, (u1, ui, l)) 7→ f ′ = (u1, (u1, l)) and
f = ((u1, ui, l), u1) 7→ f ′ = ((u1, l), u1)

Based on the aforementioned mapping function, we can
merge the two nodes with label ¬b into one node such that
we obtain a compressed bipartite graph B′ as illustrated in
Figure 6(d). This operation is valid due to that the nodes
u2 ∈ U2 represent literals l, and the edges between u1 ∈ U1

and u2 ∈ U2 represent conjunctions between u1 and u2.
Thus, for two such edges (u1, ui) and (u1, uj), we have the
following: u1 ∧ ui = u1 ∧ l = u1 ∧ uj .
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Fig. 7. A high-level overview of the partitioning scheme. (a) The input of the partitioning scheme is the compressed bipartite graph B′ and the user-defined
parameter T = 2. (b) Using the graph partitioning algorithm explained in Section VII-A, the bipartite graph is decomposed into smaller bipartite subgraphs
Bi. (c) The individual subgraphs Bi are each synthesized into crossbar designs Di using the crossbar realization in Section VI-D. (d) Finally, a staircase
topology T is constructed by realizing the intra-staircase and inter-staircase connections, as explained in Section VII-B.

D. Crossbar realization

The outlined crossbar realization is based on an analogy
between the bipartite graph B′ = (U ′

1, U
′
2, F

′) and 1T1M
crossbars. The nodes u1 ∈ U ′

1 correspond to wordlines and
the nodes u2 ∈ U ′

2 correspond to bitline-selectorline pairs. The
path-based paradigm is based on creating paths by turning on
and off connections in the crossbar design. The connections
correspond with the edges f ∈ F ′, which are realized using
the memristors. The crossbar mapping consists of a node
assignment step and an edge assignment step.

1) Node assignment: The node assignment involves assign-
ing the nodes u1 ∈ U ′

1 to the wordlines of the crossbar design
D and the nodes u2 ∈ U ′

2 to the bitline-selectorline pairs of
crossbar design D.

2) Edge assignment: Next, for each edge f = (u1, u2) or
f = (u2, u1), u1 ∈ U1, u2 ∈ U2, f ∈ F , we program the
corresponding memristor at the intersection of wordline u1

and selectorline u2 to a low resistive state (ON). Further, the
input and output are assigned to the respective wordlines. The
resulting crossbar design D for the Boolean functions f1 and
f2 is shown in Figure 6(e).

VII. PARTITIONING FOR STAIRCASE STRUCTURES

In this section, we propose a partitioning algorithm to
synthesize the Boolean function ϕ into a topology T of
staircase structures. A topology is a directed acyclic graph
(DAG) of staircase structures with potentially multiple edges
between different staircase structures where each staircase
structure is an ordered set of crossbars with inter-crossbar
connections between two consecutive crossbars. An overview
of the partitioning scheme is illustrated in Figure 7.

The input of the partitioning algorithm is a bipartite graph
B = (U1, U2, F ) and the output is a topology T of staircase
structures. The bipartite graph B is obtained by means of
the pre-processing steps described in Section VI-A and VI-B.
The idea of the partitioning scheme is that the given bi-
partite graph B is partitioned into smaller bipartite graphs
Bi = (U1,i, U2,i, Fi), |U1,i + U2,i| ≤ |U1 + U2|. For each
Bi, a crossbar design Di is constructed, which is part of
a staircase structure. Unfortunately, it is not straightforward
to partition the graph B into Bi such that the size of Bi

is maximized while meeting the dimensions of crossbar Xi.

The partitioning makes that intermediate evaluations must be
propagated to other crossbars and/or staircases. Further, only
the first crossbar X1 in a staircase structure is connected
to the bus, which brings that the intermediate results and
literals can only be fed to this first crossbar. To address
these constraints, we propose the following: a user-defined
parameter defines the maximum dimensions which may be
used to synthesize a bipartite graph Bi. Here, we assume the
number of wordlines and the number of bitline-selectorline
pairs is equal for a crossbar. An algorithm to construct such
topology T is provided in Section VII-A. Next, staircase intra-
and inter-connections must be realized for the aforementioned
constraints. These are discussed in Section VII-B.

Algorithm 1 Partitioning algorithm for staircase structures
Input: B = (U1, U2, F ), T = {T0, ..., TL}
Output: T // Set of staircase designs

1: function TOPOLOGICALSTAIRCASEPARTITIONING(B, T )
2: i = 1, Vi,1 = ∅, Vi,2 = ∅, S ← ∅
3: T ← ∅
4: for u2 ∈ TOPOLOGICALSORT(U2) do
5: V ′

i,1 ← Vi,1∪{u1|f = (u1, u2)∨f = (u2, u1), ∀f ∈ F}
6: V ′

i,2 ← Vi,2 ∪ {u2}
7: if |V ′

i,1| ≤ Ti ∧ |V ′
i,2| ≤ Ti then

8: Vi,1 ← V ′
i,1

9: Vi,2 ← V ′
i,2

10: else
11: Fi ← {f |∃u1 ∈ Vi,1, u2 ∈ Vi,2 :

f = (u1, u2) ∨ f = (u2, u1), f ∈ F}
12: Bi ← (Vi,1, Vi,2, Fi) // Create bipartite subgraph
13: S ← S ∪ {Bi}
14: i← i+ 1
15: Vi,1 = {u1|f = (u1, u2) ∨ f = (u2, u1),∀f ∈ F}
16: Vi,2 = {u2}
17: if |S| = L then
18: T ← T ∪ {S}
19: i← 1, S ← ∅
20: end if
21: end if
22: end for
23: return T
24: end function

A. Graph partitioning

In Algorithm 1, we provide the first part of the partitioning
scheme. We are given a bipartite graph B = (U1, U2, F ) as
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input, and a user-defined threshold Ti for the amount of logic
that will placed within each crossbar Xi. The output of the
algorithm is a topology T of staircase structures S where each
S is an ordered set of crossbars Xi such that Xi precedes
Xi+1. The partitioning algorithm has two auxiliary variables
Vi,1 and Vi,2 which will contain the nodes assigned to the
wordlines and selectorlines, respectively. The nodes that are
assigned to Vi,1 are in U1, and the nodes that are assigned to
Vi,2 are in U2.

The algorithm iterates in a topological sort over the nodes
u2 ∈ U2. In each iteration, node u2 is assigned to a crossbar,
together with its neighboring nodes. Recall that the nodes u2

are the edges e ∈ E in our original graph G = (V,E). When
assigning a node u2 ∈ U2 to a crossbar Xi, we want each
neighboring node u1 to be assigned to Xi as well. This is
due to that u2 represents an edge e = (v1, v2) ∈ E between
two nodes v1, v2 ∈ V . Thus, we want both its endpoints to be
present in the crossbar Xi.

When assigning a node u2 to the wordlines of a crossbar
Vi,2, we must not exceed the logic threshold Ti we have
set. Similar for its neighboring nodes u1 when assigning to
the selectorlines Vi,1 (condition of if statement on line 7).
If the condition fails, we create a bipartite subgraph Bi =
(Vi,1, Vi,2, Fi) (line 11 − 12), and we add Bi to the current
staircase S (line 13). When the current staircase S has reached
its maximum depth L (line 17), then we will add the current
staircase S to the topology T (line 18), and we create a new
staircase S (line 19). The algorithm stops when all nodes
u2 ∈ U2 have been processed.

In Figure 7(a), we take the compressed bipartite graph
B′ and the user-defined parameter T = 2 as input for
the partitioning algorithm. In Figure 7(b), we illustrate the
partitioning of the bipartite graph into multiple subgraphs Bi.
Each subgraph Bi is delineated by a dashed line, and all its
nodes have the same number i. These subgraphs are subse-
quently synthesized into crossbar designs Di, as explained in
Section VI-D and grouped into staircase structures.

(a) Edge prep. (b) Node prop. (c) Literal prop.

Fig. 8. Example of the intra-connections.

B. Realization of staircase intra- and inter-connections

While the algorithm partitions the bipartite graph B into
bipartite subgraphs Bi, which are mapped to crossbars, the
hardware architecture imposes additional constraints on the
design. We have identified three staircase intra- and inter-
connections that must be made to realize the crossbar mapping
to a partitioning over staircase structures: edge preparation,
node propagation, and literal propagation. In Figure 7(c), we
take the crossbar designs Di as input. The output is a topology
T of staircases by realizing the staircase intra- and inter-
connections, as illustrated in Figure 7(d).

1) Edge preparation: For each crossbar Xi, i > 1, the
selectorlines are connected to the wordlines of previous cross-
bar Xi−1. In the mapping algorithm in VI-D, the nodes
u2 ∈ U2 are assigned to the selectorlines. This entails that
the nodes must be prepared in crossbar Xi−1. In Figure 8(a),
is illustrated how the nodes u2, j for crossbar X1 (in black)
are prepared in crossbar X0 (in gray).

2) Node propagation: A node u1 ∈ U1 may appear in
multiple crossbars Xi among multiple staircases Sj . From the
structure of a pruned graph G, we know that each node v ∈ V
has at most two outgoing edges. At some point, the node will
be realized, i.e., its two outgoing edges have been assigned. Let
that point be denoted as Xr. From this point Xr forward, any
other occurrence of v is to realize incoming edges of v. When
v occurs at some later point in the same staircase Xi, i > r,
we must propagate v to that crossbar Xi. This is illustrated
in Figure 8(b) where node v is realized in crossbar X1 and
propagated to crossbar X4. The intermediary nodes v′ are in
gray, and the start and end point are in black. Similarly, when v
occurs in multiple staircases, then node v must be propagated
from its point of realization Xr to all other staircases.

3) Literal propagation: A literal l may appear in a crossbar
Xi, i ≥ 2. For each such literal l, we must propagate the literal
up to layer Xi−2. For example, in Figure 8(c), the literal l
appears in crossbar X4, and is thus propagated from the first
crossbar X1 to the last crossbar X4.

Algorithm 2 Binary search over the threshold
Input: B = (U1, U2, F ), D
Output: T // Set of staircase designs

1: function BINARYSEARCH(T )
2: low ← 0, high← D
3: T ← ∅
4: T ← ⌊(low + high)/2⌋
5: while low ̸= high do
6: T ′ ←TOPOLOGICALSTAIRCASEPARTITIONING(B, T )
7: if T ′ ̸= ∅ then // Solution found
8: T ← T ′

9: low ← T // Increase lower bound
10: else // No solution found
11: high← T // Decrease upper bound
12: end if
13: T ← ⌊(low + high)/2⌋
14: end while
15: return T
16: end function

VIII. ADDITIONAL OPTIMIZATION

In this section, we introduce two additional optimization
steps. In Section VIII-A, we propose a method to improve
the search over the user-defined threshold T , and in Sec-
tion VIII-B, we propose an optimization to have a more fine-
grained exploration of the search space.

A. Partitioning search

The partitioning algorithm presented in Section VII requires
a user-defined parameter T , which is a threshold for the
amount of logic that will be placed in a crossbar X . As this
variable is unknown in advance, we propose a binary search
over T . Let all crossbars Xi in a staircase structure have the
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same dimensions D×D. In Algorithm 2, we provide the binary
search algorithm for the topological staircase partitioning.
The input is the bipartite graph B = (U1, U2, F ), and the
dimensions D of the crossbars. The output is a topology T .
The idea is that when for a given threshold T , no solution can
be found, we decrease the threshold T . Potentially, no solution
is found due to the intra- and inter-connections explained in
Section VII-B. The node propagations, literal propagations,
and edge preparations may result in that a crossbar exceeds its
dimensions while constructing, and consequently the partition-
ing algorithm fails to find a solution for the given constraints.
In the other case, when for a given T , a solution can be found,
we retain this solution and attempt to find a better solution by
increasing the threshold T .

B. Node splitting

In this section, we provide an optimization step to improve
the overall synthesis. Due to the node merging optimization
laid out in previous Section VI-C, the node degree for all
nodes u2 ∈ U2 may increase. The partitioning algorithm in
Algorithm 1 assigns such nodes u2 and its neighboring nodes
u1 ∈ U1 to a single crossbar in a staircase. When the node
degree of u2, δ(u2), is greater than the logic threshold T ,
such node cannot be assigned to a crossbar. A solution would
be to increase the threshold T , but this brings with it that
there is less room for node propagations, literal propagations,
and edge preparations. Hence, there is a fine balance which
must be sought between the threshold T and the node degree
δ(u2). Therefore, we propose to split nodes u2 ∈ U2 for which
δ(u2) > T into two nodes u1

2 and u2
2.

In Algorithm 3, we present an algorithm to cope with
such nodes. The algorithm can be used in combination with
Algorithm 2. More specifically, line 6 in Algorithm 2 can be
replaced with T ′ ←SPLITWRAPPER(B, T ).

Algorithm 3 consists of two parts: SPLITWRAPPER(B, T ),
and an auxiliary function SPLITNODE(B, T ). The former
continues to split nodes u∗

2 ∈ U2 with maximum degree
δ(u∗

2) as long as a node in B is changed (line 16). We
use the auxiliary function SPLITNODE(B, T ) to perform
this operation. On line 2, we seek such a node u∗

2 ∈ U2

with maximum node degree δ(u∗
2). When this node degree is

smaller than the threshold, we do not need to split. Hence we
return our current bipartite graph B (lines 3− 5). Otherwise,
we create a new bipartite graph B′ where u∗

2 is replaced by
two new nodes u1

2, and u2
2 such that its number of edges is

equal, or differs at most by one edge (lines 6− 12).

IX. EXPERIMENTAL EVALUATION

The experiments are conducted on a machine with 20 Intel
Core i9-9900X and 128GB RAM. The framework is imple-
mented in Python 3.8 and the source code is publicly available
on GitHub1. We use the ABC [56] binding for CUDD [54] to
construct the BDDs with dynamic variable reordering based
on symmetric sifting [57]. In Table II, an overview is provided
of ten benchmarks from the Revlib benchmark suite [58], eight

1https://github.com/sventhijssen/path

Algorithm 3 Node splitting algorithm
Input: B = (U1, U2, F ), T
Output: T // Set of staircase designs

1: function SPLITNODE(B, T )
2: u∗

2 ← argmax δ(u2), ∀u2 ∈ U2

3: if δ(u∗
2) ≤ T then

4: return B
5: end if
6: X ← {u1|(u1, u

∗
2) ∈ F}

7: Y ← {u1|(u∗
2, u1) ∈ F}

8: U ′
1 ← U1

9: U ′
2 ← U2 \ {u∗

2} ∪ {u1
2, u

2
2}

10: F ′ ← {(u1, u
1
2)|u1 ∈ X} ∪ {(u1, u

2
2)|u1 ∈ X} ∪

{(u1
1, u

1
2), (u

2
1, u

2
2)|u1

1 ∈ Y1, u
2
1 ∈ Y2,

Y1 ⊆ Y, Y2 ⊆ Y, ||Y1| − |Y2| ≤ 1|}
11: B′ ← (U ′

1, U
′
2, F

′)
12: return B′

13: end function

14: function SPLITWRAPPER(B, T )
15: B′ ← ∅, T ← ∅
16: while B′ ̸= B do
17: T ←TOPOLOGICALSTAIRCASEPARTITIONING(B, T )
18: if T ≠ ∅ then
19: return T
20: else
21: B′ ←SPLITNODE(B, T )
22: end if
23: end while
24: return T
25: end function

control benchmarks from the EPFL benchmark suite [59], and
eight ISCAS85 benchmarks [60]. We report the number of
inputs, outputs for each benchmark, as well as the number of
nodes and edges for the respective BDD.

We evaluate the path-based computing systems by building
an architectural model. In Figure 9, we illustrate the high-level
architecture. The architecture consists of several tiles T on a
bank, as illustrated in Figure 9(a). Each tile T has a H-Tree of
staircases S as topology [61], [62], as shown in Figure 9(b).
Four staircases with an I/O of 128 bits are connected to a
Wide-I/O bus. Each staircase S is a series of crossbars X , as
illustrated in Figure 9(c).

(a) Bank (b) Tile (c) Staircase

Fig. 9. High-level overview of the architecture. (a) A bank consists of multiple
tiles T . (b) Each tile T contains multiple staircases S. The topology of the
staircases is according to a H-Tree. (c) Each staircase S contains a series of
crossbars X .

In our experimental evaluation, we will compare the per-
formance of the proposed PATH framework with COM-
PACT [16], ArC [50], and CONTRA [12]. The performance is
compared in terms of energy, latency, and area. The parameters
for the comparisons are given below. To evaluate our architec-
ture, we set the power consumption for the bus and 128x128
crossbar to 13mW, 0.3mW [38]. For our design, we have a 4-
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TABLE II
OVERVIEW OF TEN REVLIB BENCHMARKS, EIGHT EPFL CONTROL

BENCHMARKS, AND EIGHT ISCAS85 BENCHMARKS. FOR EACH
BENCHMARK, THE NUMBER OF INPUTS AND OUTPUTS IS GIVEN. FOR

THEIR RESPECTIVE BDDS, THE NUMBER OF NODES AND EDGES IS GIVEN.

Benchmark
Benchmark BDD Pruned

Inputs Outputs Nodes Edges Nodes Edges
(num) (num) (num) (num) (num) (num)

Revlib
in0 15 11 385 766 384 680
apex2 39 3 567 1130 566 1042
spla 16 46 594 1184 593 864
pdc 16 40 621 1238 620 887
misex3 14 14 674 1344 673 1094
tial 14 8 897 1790 896 1717
apex4 9 19 990 1976 989 1874
cps 24 109 1080 2156 1079 1633
apex5 117 88 1259 2514 1258 2387
seq 41 35 1302 2600 1301 2041

EPFL
arbiter 256 129 25109 50214 25108 49758
cavlc 10 11 436 868 435 776
ctrl 7 26 89 174 88 128
dec 8 256 512 1020 511 510
i2c 147 142 1204 2404 1203 1936
int2float 11 7 159 314 158 301
priority 128 8 772 1540 771 1539
router 60 30 219 434 218 379
ISCAS85

c432 36 7 1291 2578 1290 2463
c499 41 32 111146 222164 111114 212466
c880 60 26 5776 11448 5750 11151
c1355 41 32 111146 222164 111114 212466
c1908 33 25 30605 61110 30580 57308
c2670 233 140 8249 15940 8109 14621
c5315 178 123 15454 30416 15331 27477
c7552 207 108 33983 67534 33875 65400
Normalized 1.00 1.00 1.00 0.85

channel 128-bit Wide-IO bus with a rate of 400MHz [63]. The
area for the respective components are 0.2µm2, 15.7mm2 [38].
For COMPACT, we extrapolate the area. The latency for the
bus and crossbar components are 15ns and 100ns, respectively.

In Section IX-A, we first evaluate the crossbar synthesis.
Then, in Section IX-B, we evaluate the proposed PATH frame-
work, including the proposed node merging and partitioning
algorithm. Finally, in Section IX-C, we make a comparison of
the PATH framework with other digital in-memory computing
paradigms.

A. Evaluation of crossbar synthesis

In this section, we will evaluate the crossbar synthesis.
For the evaluation, we do not impose any restrictions on the
crossbar dimensions, such that the number of wordlines (rows),
and the number of bitline-selectorline pairs (columns) can be
infinitely large. We evaluate the crossbar synthesis first without
and then with the proposed node merging. In Table III, we
provide the number of nodes and edges for the pruned graph
G, as well as the hardware resources for both approaches.
For the synthesis without node merging, we observe that the
number of rows and the number of columns correspond to the
number of nodes and edges of the pruned graph, respectively.
This is due to the analogy between BDDs and 1T1M crossbars.
Next, we report the number of rows and columns for the
approach with node merging. We observe that the number
of columns (selectorline-bitlines pairs) reduces by 16% on
average, resulting in an area reduction of 16% on average.
From this, we conclude that it is advantageous to work with

the compressed bipartite graph B′, and we will use this graph
in subsequent sections. Thus, a BDD with |V | nodes and
|E| edges can be synthesized into a crossbar of dimensions
|V |× |E|, which is an upper bound. Empirically, we conclude
that on average a BDD with |V | nodes and |E| edges can be
synthesized into a crossbar of dimensions |V | × 0.84|E|.

B. Evaluation of the PATH framework
In this section, we evaluate the PATH framework. In our first

experiment, we evaluate the hardware resources for varying
staircase depth L, i.e., the number of crossbars in a stair-
case structure. These hardware resources are the number of
staircases, the number of staircase inter-connections, and the
critical path length. In Table IV, we give an overview of these
hardware resources as well as the synthesis time for varying
staircase depths L ∈ {1, 2, 4, 6}.

We observe that the number of required staircases decreases
when the staircase depth L increases, with a reduction of 24%
on average for a staircase structure of six layers compared with
a single crossbar. For example, for the benchmark arbiter of
the EPFL benchmark suite, the number of staircases reduces
from 889 for L = 1 to 691 for L = 6. The number of
inter-connections may increase or decrease, depending on the
benchmark. For example, for arbiter, the number of inter-
connections increases from 49, 973 to for L = 1 to 51, 035
for L = 6. This is due to that the logic threshold tends to
be lower for larger staircase structures, requiring more node
splits, and consequently more node propagations. However, for
the majority of the benchmarks (17 out of 26), the number of
inter-crossbar connections decreases, with a reduction of 8%
on average for six layers compared with a single crossbar. For
example, for benchmark cavlc of the Revlib benchmark suite,
the number of staircase inter-connections decreases from 610
for L = 1 to 566 for L = 6. Finally, we observe that the critical
path length reduces by 17% on average for L = 6 compared
with L = 1. The reduction of the number of staircases brings
with it that the critical path length decreases. This is because
the critical path length is at most the number of staircases, and
the number of staircases for L = 6 is lower than the number
of staircases for L = 1. From these results, we conclude it
is best to utilize a path-based computing system with larger
staircase structures.

Fig. 10. Number of staircases in terms of BDD size for eight ISCAS85
benchmarks.

Next, we make an analysis of the hardware utilization in
terms of the intermediate data structure. More specifically,
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TABLE IV
COMPARISON OF THE HARDWARE RESOURCES AND SYNTHESIS TIME (T) FOR VARYING PATH-BASED COMPUTING ARCHITECTURES. THE HARDWARE

RESOURCES ARE EXPRESSED IN TERMS OF NUMBER OF STAIRCASES (S), NUMBER OF INTER-CONNECTIONS (I), AND CRITICAL PATH LENGTH (C).

Benchmark
L = 1 L = 2 L = 4 L = 6

S I C T S I C T S I C T S I C T
(num) (num) (num) (min) (num) (num) (num) (min) (num) (num) (num) (min) (num) (num) (num) (min)

Revlib
in0 11 547 11 0.1 10 527 10 0.2 9 526 9 0.4 9 529 9 0.4
apex2 16 767 16 0.1 13 706 13 0.2 11 630 11 0.2 10 579 10 0.4
spla 14 694 14 0.2 12 666 12 0.3 9 513 9 0.2 7 430 7 0.2
pdc 14 645 14 0.2 12 622 12 0.2 9 526 9 0.2 8 457 8 0.2
misex3 16 835 15 0.2 15 839 15 0.2 13 819 13 0.3 12 814 12 0.4
tial 27 1422 23 0.2 23 1404 21 0.4 21 1429 19 0.3 21 1414 19 0.8
apex4 31 1683 31 0.2 27 1693 26 0.5 25 1686 24 1.0 25 1698 24 1.0
cps 27 1393 25 0.4 24 1388 23 0.5 20 1368 20 0.4 20 1364 20 0.7
apex5 47 2077 27 0.4 36 2060 26 0.5 34 2102 28 0.9 33 2110 27 0.9
seq 37 1826 25 0.4 31 1821 27 0.6 28 1811 22 1.1 28 1831 27 0.9

EPFL
arbiter 889 49973 302 8.6 762 50348 314 12.7 717 50546 311 17.8 691 51035 307 15.5
cavlc 11 610 11 0.0 11 627 11 0.0 9 593 9 0.0 9 593 9 0.1
ctrl 1 0 1 0.0 1 0 1 0.0 1 0 1 0.0 1 0 1 0.0
dec 6 192 4 0.9 6 202 4 0.0 5 206 4 0.1 5 196 4 0.1
i2c 32 1616 25 0.4 30 1664 27 1.6 28 1639 25 0.3 29 1647 25 0.5
int2float 4 146 4 0.0 3 115 3 0.0 3 106 3 0.0 2 67 2 0.0
priority 19 495 18 0.1 15 425 14 0.3 14 426 14 0.0 16 481 16 4.3
router 4 87 4 0.0 4 95 4 0.1 4 99 4 0.0 4 97 4 0.2
ISCAS85

c432 40 2121 40 0.3 36 2086 36 0.5 33 2071 33 1.6 32 2049 32 1.0
c499 3592 160724 108 26.4 3212 163939 101 32.7 3020 165236 91 106.9 2884 161093 88 82.0
c880 189 8004 43 1.5 167 7931 43 4.5 155 7750 42 4.9 150 7666 43 4.8
c1355 3592 160724 108 26.1 3212 163939 101 32.0 3020 165236 91 112.1 2884 161093 88 80.4
c1908 939 39903 50 8.7 835 39959 42 9.5 765 40000 45 31.3 731 38959 43 24.9
c2670 352 8576 45 2.7 314 8235 41 5.1 295 7914 40 8.1 272 7199 41 11.3
c5315 393 10699 25 3.9 353 10114 22 7.0 293 8694 20 7.8 277 7834 19 10.6
c7552 1032 35470 108 7.7 894 34416 87 14.6 779 32417 82 21.2 694 30593 78 365.2
Normalized 1.00 1.00 1.00 1.00 0.89 0.98 0.92 1.72 0.80 0.95 0.85 2.27 0.76 0.92 0.83 5.66

TABLE III
THE NUMBER OF NODES AND EDGES FOR THE PRUNED GRAPH G, AND

THE CORRESPONDING HARDWARE RESOURCES FOR A CROSSBAR DESIGN
USING THE UNCOMPRESSED AND COMPRESSED BIPARTITE GRAPH.

Benchmark

Pruned Without With
graph node merging node merging

Nodes Edges Rows Cols Rows Cols
(num) (num) (num) (num) (num) (num)

Revlib
in0 384 680 384 680 384 565
apex2 566 1042 566 1042 566 879
spla 593 864 593 864 593 767
pdc 620 887 620 887 620 750
misex3 673 1094 673 1094 673 849
tial 896 1717 896 1717 896 1143
apex4 989 1874 989 1874 989 1157
cps 1079 1633 1079 1633 1079 1248
apex5 1258 2387 1258 2387 1258 2132
seq 1301 2041 1301 2041 1301 1560

EPFL
arbiter 25108 49758 25108 49758 25108 41441
cavlc 435 776 435 776 435 530
ctrl 88 128 88 128 88 100
dec 511 510 511 510 511 510
i2c 1203 1936 1203 1936 1203 1837
int2float 158 301 158 301 158 265
priority 771 1539 771 1539 771 1539
router 218 379 218 379 218 351

ISCAS85
c432 1290 2463 1290 2463 1290 1929
c499 111114 212466 111114 212466 111114 198936
c880 5750 11151 5750 11151 5750 8540
c1355 111114 212466 111114 212466 111114 198936
c1908 30580 57308 30580 57308 30580 53100
c2670 8109 14621 8111 14622 8111 13337
c5315 15331 27477 15331 27477 15331 23850
c7552 33875 65400 33875 65400 33875 53708
Normalized avg. 1.00 1.00 1.00 1.00 1.00 0.84

in Figure 10, we show the number of required staircases in
terms of the number of BDD nodes for different staircase
depths. The crossbar dimensions are 128x128, and the BDDs

are collected from the eight ISCAS85 benchmarks. From this
figure, we clearly observe there is a linear trend between
these two dimensions. Further, we observe at first glance that
the number of required staircases decreases for increasing
staircase depth (the line for L = 2 lies higher than for L = 4,
and L = 4 lies higher than for L = 6). This corresponds with
the results in Table IV. For L = 2, L = 4, and L = 6, the
trendline is described by the following equations, respectively:
0.0285x− 0.0126, 0.0268x− 0.02782, and 0.0255x− 0.3139
where x is the number of BDD nodes.

Now, we will evaluate the PATH framework in terms of the
crossbar dimensions. We evaluate on the benchmark arbiter
using a staircase depth of six crossbars. In Figure 11(a), we
show the trendline for the number of staircases in function
of the crossbar dimensions. We observe that for increasing
crossbar dimensions, the number of staircases decreases. This
is expected as there is more room in a crossbar for both
logic and node propagations. In Figure 11(b), we observe
that the number of inter-connections decreases as the crossbar
dimensions increase. This is also expected as more logic can be
realized within a single staircase, and thus less inter-staircase
communication is required.

In Section VII-B, we have highlighted that the partitioning
method requires some intra- and inter-connections in order to
be a functional computing paradigm. We make an analysis of
the components that constitute to the overall synthesis using
partitioning. These components are logic, edge preparation,
node propagation, and literal propagation. This analysis may
give further insight in the synthesis method with the objective
to improve any future work on our proposed framework.
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(a) Staircases (b) Inter-connections
Fig. 11. Number of staircases and inter-connections for the EPFL benchmark
arbiter for varying dimensions D.

In Figure 12, we show the percentages for each of the com-
ponents for varying number of layers L where L ∈ {1, 2, 4, 6}.
We observe that the percentage of logic, which is defined by
the threshold T , decreases for increasing number of layers L.
This is due to that the number of node propagations increases
when the number of layers L increases, which can also be seen
in the figure. As mentioned earlier in Section VIII-B, there is
a fine balance between the threshold T and the node degree
δ(u2). When the node degree decreases, the number of node
propagations increase, and vice versa.

Fig. 12. Percentage for each of the components in a staircase topology using
the PATH framework. These components include logic, node propagation,
edge preparation, and literal propagation. The percentages are the averages
over the ten Revlib, eight EPFL benchmarks, and eight ISCAS85 benchmarks.

C. Comparison with other digital in-memory computing
paradigms

In this section, we make a comparison of the path-based
computing paradigm with other digital in-memory comput-
ing paradigms. More specifically, we compare with COM-
PACT [16], ArC [50], and CONTRA [12]. COMPACT is the
state-of-the-art synthesis method for flow-based computing,
ArC for MAJORITY, and CONTRA is the state-of-the-art
MAGIC-based general-purpose synthesis method. No com-
parison is provided with IMPLY based logic [9], [43] as
recent papers have shown that IMPLY-based logic is inferior
to MAGIC-based logic [46], [64].

In Figure 13, a detailed comparison is given for the normal-
ized energy consumption, latency, and area for all benchmarks
(except spla and pdc as CONTRA failed to generate a result)
using PATH, COMPACT, and CONTRA. For ArC, only the
ISCAS85 benchmarks are reported based on the results in [12].
Note that the latency only reflects the execution time, i.e., the
runtime to evaluate Boolean functions, and does not include
the synthesis time as reported in Table IV nor the crossbar
programming. Compared with PATH, COMPACT requires
approximately 1006× more energy, and has approximately
10× longer latency on average. The advantageous performance

mainly stems from that COMPACT is a flow-based comput-
ing framework where the devices are continuously switched
for each evaluation, resulting in many expensive (in terms
of energy and latency) WRITE operations. No partitioning
scheme exists for COMPACT, so we extrapolated the crossbar
size of a 128x128 crossbar to the required dimensions. For
COMPACT, some benchmarks require more area than PATH,
so we have truncated the plot at unity for clarity (e.g. arbiter
has 4× area). On average, COMPACT requires 5.8× of the
area of PATH. Further, we observe that CONTRA consumes
approximately 2166× more energy and is approximately 15×
slower than PATH on average. Similarly to previous argument,
CONTRA is much less energy-efficient and slower than PATH
due to the large number of write operations. The path-based
paradigm only utilizes WRITE operations in the compilation
phase, which is amortized across many function evaluations.
On average, CONTRA requires only 2% of the area of PATH.
Lastly, ArC requires on average 175.96× more energy than
PATH and is 8.30× slower than PATH due to the many WRITE
operations.

X. SUMMARY AND FUTURE WORK

In this paper, we have introduced a new READ-based in-
memory computing paradigm, called path-based computing,
by leveraging access transistors to perform logic. We have
introduced a framework, called PATH, to automatically syn-
thesize Boolean circuits to path-based computing systems.
The PATH framework relies on an analogy between bipartite
graphs and 1T1M crossbars. The bipartite graphs are derived
from BDDs, and serve as an intermediate data representation.
Further, we have introduced an optimization technique wherein
these bipartite graphs are compressed, resulting in an area
reduction of 16%. Finally, we have introduced a partition-
ing algorithm to map Boolean functions to a topology of
staircase structures, where a staircase structure is an ordered
set of crossbars, which have hardwired connections between
them. By introducing staircases, the bus utilization diminishes,
which results in high energy and latency improvements. Our
experimental results demonstrate that the paradigm is orders
of magnitude faster than state-of-the-art in-memory computing
paradigms with energy improvements of 1006× on average.
The latency improvements are 10× on average. For future
work, we envision that leveraging alternative intermediate
data structures may improve the overall synthesis method.
Further, alternative or orthogonal approaches to our proposed
partitioning algorithm are an interesting trajectory for further
research.
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