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Abstract. Protein folding prediction models like AlphaFold and ColabFold have revolutionized struc-
tural biology by providing accurate protein structures. However, these models present challenges when
it comes to understanding how they arrive at their decisions. In this paper, we propose the application of
Explainable AI (XAI) techniques, specifically Integrated Gradients and Attention Mechanisms, to elu-
cidate the decision-making process of these complex networks. We conduct computational experiments
to evaluate the effectiveness of these methods and discuss potential implications for the field.
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1 Introduction

Protein folding represents a central and enduring challenge within computational biology, as the elucidation
of these intricate processes is paramount to deciphering the molecular underpinnings of biological function
and disease etiology. The functionality of a protein is inextricably linked to its complex three-dimensional
conformation, a structure uniquely determined by the physicochemical attributes inherent in its amino acid
sequence. The precise prediction of protein structures is therefore of considerable importance, finding broad
utility in diverse applications such as drug discovery [12], enzyme engineering [71], the study of genetic
regulation [50], and the detailed analysis of molecular interactions [40].

The advent of deep learning methodologies has instigated a paradigm shift within the realm of protein struc-
ture prediction. Groundbreaking models, notably AlphaFold2 [46] and ColabFold [58], have demonstrated
an unprecedented capacity to predict protein structures with accuracy approaching experimental levels [1].
These sophisticated innovations have effectively revolutionized the field of structural biology, empowering
researchers to address and resolve intricate structural complexities previously deemed intractable [95].

Despite the remarkable predictive capabilities of these deep learning models, their operation as complex,
‘black-box’ systems presents significant challenges. The inherent opacity of their decision-making processes
raises critical concerns regarding interpretability. Organizations encounter difficulties in discerning the ra-
tionale behind model predictions, evaluating performance consistency across diverse applications, and iden-
tifying potential systematic errors or biases embedded within the model’s learning and predictive mech-
anisms [57, 73]. This lack of transparency not only undermines trust in model outputs but also impedes
the seamless integration of these powerful tools into critical domains demanding high confidence and ac-
countability, such as clinical diagnostics and therapeutic development, necessitating the urgent address of
interpretability to fully realize their transformative potential in biological research [88].

Prior to the deep learning era, protein structure prediction relied primarily on computational modeling tech-
niques rooted in established biophysical principles. Homology modeling, a prominent approach, constructs
atomic-resolution models of target proteins by exploiting sequence similarity with homologous templates [25],
with widely used tools including IntFOLD [56], RaptorX [64], and Modeller [32]. Protein threading, con-
versely, tackles structure prediction for proteins lacking clear homologous templates by leveraging statistical
relationships between known protein folds and target sequences, exemplified by tools such as I-TASSER [72],
HHpred [81], and Phyre [47].

Both traditional methodologies and contemporary machine learning models are fundamentally underpinned
by the physics governing protein folding [31]. The incorporation of these foundational principles into machine
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learning interpretability frameworks offers a promising avenue for achieving a more profound understanding
of model predictions. Experimental observations have consistently demonstrated that proteins typically adopt
well-defined three-dimensional structures, denoted as the ‘native state’ [48, 91]. Furthermore, the transition
of many proteins from an unfolded state to their native state is characterized by an ‘all-or-none’ mechanism
[5,67]. This characteristic transition imparts robustness to protein structures, thereby ensuring their requisite
biological functionality, and understanding these internal mechanisms is critical for deciphering complex
cellular functions, molecular interactions, and disease mechanisms [4, 14,40,90].

Explainable AI (XAI) techniques offer a potent framework for interpreting the intricacies of complex mod-
els [28]. These methodologies are designed to bridge the gap between model complexity and user comprehen-
sion by providing insights into the determinants of model predictions [60]. For instance, feature attribution
methods [35,36,61] can identify critical sequence motifs, physicochemical properties, or interaction patterns
that exert significant influence on predicted structures. Similarly, attention mechanisms [10, 55, 87] within
deep learning architectures can elucidate relationships between input sequence regions within a structural
context. Visualization tools, including saliency maps [80] and gradient-based overlays [76], further facilitate
the correlation of model outputs with underlying biological, physical, and chemical phenomena, thereby
aiding hypothesis generation, experimental validation, and broader acceptance of computational predictions
within high-stakes applications such as precision medicine and drug design [88]. Integrating domain-specific
knowledge, particularly principles of protein physics and thermodynamics, into XAI methodologies further
enhances interpretability by grounding model predictions within established biological frameworks, foster-
ing cross-disciplinary collaboration and making computational outputs more accessible and actionable for
experimental biologists and clinicians [17,19,68,74].

2 Background

Machine learning (ML) models have garnered significant attention and efficacy, broadening their impact
beyond computer science into fields such as medicine, environmental science, and physics. Key innovations
like the Multi-headed Attention mechanism in Transformer models [87] have transformed medical applica-
tions, enhancing diagnostics, preventive care, and medical workflow management. Specifically, Transformer-
based models like ScoreNet [82], T2T-ViT [98], IL-MCAM [22], and SEViT [3] have been instrumental in
histopathology image classification, while Uni4Eye [16] and LAT [85] are used for fundus image classification.
Models like Chest L-Transformer [38] and FeSTA [63] demonstrate robust performance in X-ray classification.

Additionally, Transformer models have advanced medical image segmentation with examples like RANT [62],
PCAT-UNet [20], and AMGB-Transformer [52];medical image detection through models such as UTRAD [24]
and STCovidNet [89]; and medical image reconstruction via models like SSTrans-3D [92] ReconFormer [39],
and DSFormer [99]. In clinical information extraction, BioBERT [51], ClinicalBERT [42], and BlueBERT [65]
have made notable contributions. Finally, applications in critical care employ models such as SimTA [94],
and BENDR [49], while public health monitoring has benefited from models like BERTweet [2].

Moreover, breakthroughs in protein structure prediction include trRosetta [93], ESMFold [53], RoseTTAFold2
[9], and AlphaFold2 [46]. In pharmacology, models like TranSynergy [54], TP-DDI [97], and MolTrans [43]
address drug interactions, while drug synthesis is facilitated by Molecular Transformer [75]. These advance-
ments demonstrate the broad and transformative potential of attention based models across diverse sectors.

2.1 AlphaFold, AlphaFold2 and ColabFold

AlphaFold, a deep learning model developed by DeepMind, accurately predicts protein structures. Introduced
in 2018 [77], AlphaFold generates a mean force potential for a given protein, allowing the 3D structure to be
obtained via gradient descent in this potential space. This prediction is enabled by a central convolutional
residual network that computes a distogram — a matrix representing distances between Cβ atoms of residue
pairs in a protein sequence — based on multiple sequence alignment (MSA) features. For each residue pair
(i, j), AlphaFold predicts a discrete probability distribution over distances from 2 Å to 22 Å, split into 64
bins. Cubic spline interpolation is then used to construct the protein’s distance potential from these discrete
distributions. The torsion angles of side chains are modeled as Von Mises distributions, whose parameters
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are also predicted by AlphaFold. The final mean force potential is computed by summing the log-likelihoods
of the distance distributions across all residue pairs (i, j), along with the log-likelihood of the torsion angle
distributions across all residues.

In 2020, DeepMind significantly advanced their previous work with the introduction of AlphaFold2 [46], a
model that set a new standard in protein structure prediction by achieving unprecedented performance in
the CASP14 competition. This breakthrough was largely attributed to AlphaFold2’s innovative Transformer-
based architecture and the integration of novel attention mechanisms, including Axial Attention [41] and
Invariant Point Attention [46]. Axial Attention generalizes the Self-Attention operation to multiple dimen-
sions while maintaining computational efficiency, while Invariant Point Attention offers self-attention that is
invariant to global euclidean transformations. Together, these mechanisms allowed AlphaFold2 to accurately
model complex spatial relationships within protein structures, setting it apart from competing approaches.

To construct diverse multiple sequence alignment (MSA) features, extensive protein sequence datasets from
both public and environmental databases [26] [59] are queried by AlphaFold2 using advanced homology
detection tools, specifically HMMer [29] and HHblits [83], which leverage hidden Markov models (HMMs).
Given the considerable volume of these databases, search processes for a single protein can require several
hours and demand multiple terabytes of storage. Additionally, deep neural network computations necessitate
graphics processing units (GPUs) with substantial GPU RAM, particularly for proteins with larger sequence
lengths. ColabFold [58] was thus introduced to accelerate single-protein predictions while maintaining a
performance comparable to AlphaFold2. ColabFold achieves this by substituting AlphaFold2’s homology
search with the significantly faster MMseqs2 (Many-against-Many sequence searching) [84], achieving a 40
to 60-fold speed increase. For batch predictions, ColabFold reduces runtime by approximately 90-fold by
eliminating recompilation and incorporating an early stopping criterion.

2.2 Explainable AI Techniques

Current interpretability methods can be broadly categorized into five approaches [7]: feature attribution,
inherently interpretable models, hierarchical explanations, contrastive explanations, and counterfactual ex-
planations.

Feature attribution methods aim to assign scores or ranks to parts of the input, quantifying their influence on
a model’s prediction. Techniques such as LIME [69] approximate neural network decision-making by fitting
an interpretable model, like a decision tree, to the local neighborhood of the input. Anchors [70] provides
explanations for individual predictions of any black-box classification model by identifying IF-THEN decision
rules that “anchor” the prediction. A rule is considered an anchor if rule-abiding changes to feature values
do not affect the prediction, ensuring robustness of the explanation. Other feature attribution methods like
relevance propagation [8] [78], Integrated Gradients [86], and Grad-CAM [76] generate feature importance
maps by back-propagating gradients through the network.

Inherently interpretable models produce a ‘rationale’ [11] [18] [96] [6], a concise, human-understandable
explanation of their predictions. These methods typically consist of two components: a generator that extracts
the rationale and an encoder that uses it to make a prediction. Such models are often termed ‘self-explainable’
due to their intrinsic transparency. Simpler models like linear regression [33], decision trees [15], and RuleFit
[34] also fall under this category, as they naturally lend themselves to straightforward interpretation.

Hierarchical explanations aim to elucidate model outputs at multiple levels. For example, [21] employs
Shapley values to provide both feature attributions and feature interactions, while [79] extends Integrated
Gradients to also capture these interactions. This multi-layered approach offers a more comprehensive under-
standing of the prediction process. On the other hand, contrastive explanations focus on building inherently
interpretable models capable of addressing questions of the form Why ‘p’? and Why ‘p’ instead of ‘q’?.
While most existing post-hoc techniques, such as gradient-based methods, are limited to addressing Why
‘p’?, contrastive methods fill this gap by explicitly comparing alternatives. Finally, Counterfactual explana-
tions identify minimal changes to the input data that would effectively “flip” the model’s prediction.
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3 Methodology

3.1 Integrated Gradients

Integrated Gradients (IG) is a popular technique used in XAI to attribute the contribution of each input
feature to a model’s prediction. Integrated Gradients quantify how much each feature contributes to the
model’s output relative to a baseline. The baseline is typically chosen to represent the “absence” of informa-
tion (e.g. a zero matrix of numerical inputs, a completely black image). IG then computes the cumulative
gradients of the model’s output with respect to the inputs, moving along a straight line from the baseline to
the actual input. The integrated gradient for the i-th feature is calculated as:

IGi(x) = (xi − x′
i)

∫ 1

α=0

∂F (x′ + α · (x− x′))

∂xi
dα

where x is the actual input, x′ is the baseline input, α is a scaling factor that interpolates between the baseline
and the actual input, and F is the model’s output function. Integrated Gradients (IG) offers several desirable
properties for feature attribution. It ensures that features with no impact on the output receive zero attribu-
tion, maintains consistency across mathematically equivalent model implementations (model-agnostic), and
satisfies the completeness property, where the sum of all feature attributions equals the difference between
the model’s prediction for the actual input and the baseline. In the context of protein structure prediction
with ColabFold, the output function corresponds to the calculation of the model confidence metric while the
baseline corresponds to absence of any input sequence (i.e. zero vectors) to the model.

Integrated Gradients (IG) has been effectively employed as a versatile interpretability technique across a
range of domains, underscoring its utility in elucidating the decision-making processes of deep learning mod-
els. Within drug discovery, IG has facilitated the analysis of retrosynthetic reaction predictions [44] and
the prediction of crucial drug-CYP3A4 enzyme interactions for understanding drug metabolism [45]. Fur-
thermore, IG has been instrumental in enhancing the transparency of AI-driven diagnostics by interpreting
disease detection models [27, 66] and in environmental science by identifying key factors in precipitation
predictions [30]. These diverse applications collectively illustrate the robustness of IG as an interpretability
tool, offering valuable insights for a spectrum of scientific and practical problems.

3.2 Attention Mechanisms

Attention mechanisms, introduced in the domain of machine translation, demonstrated significant improve-
ments in sequence-to-sequence models by dynamically focusing on relevant parts of the input during predic-
tion [10]. With the advent and subsequent success of Transformer models, attention mechanisms have gained
widespread adoption across a diverse array of tasks spanning domains such as speech recognition, natural
language processing, object detection, and time series prediction illustrating their versatility and efficacy.

A notable milestone in the evolution of attention-based models is AlphaFold2, which leveraged attention
mechanisms for predicting protein structures with remarkable accuracy. Specifically, AlphaFold2 employs
Axial Attention, a generalized and computationally efficient variant of self-attention, designed to handle high-
dimensional inputs such as protein sequences and their spatial features. The formulation of Self-Attention
(SA), a foundational mechanism in modern deep learning models, is expressed mathematically as follows:

SA(Q,K, V ) = softmax

(
QKT

√
dk

)
V

In self-attention mechanisms, query(Q), key(K), andvalue (V ) matrices, derived from input data, are utilized,
with dk representing the key vector dimensionality. Self-attention computes weighted sums of value vectors,
where weights are determined by compatibility scores between query and key vectors, thereby measuring the
attention one residue pays to another. Self-attention over these triplets enables the integration of contextual
information across the sequence, capturing long-range dependencies crucial for accurate structure prediction.
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Axial Attention (AA) [41] extends the standard self-attention mechanism by restricting the computation
of attention to specific axes of a high-dimensional input tensor. This approach enhances computational
efficiency by avoiding the full-dimensional attention computation, which can be prohibitively expensive for
large-scale inputs. When Axial Attention layers are stacked such that each layer corresponds to a different
axis of the input, the combined operation is equivalent to applying standard self-attention across all axes.

4 Computational Experiments

To interpret the inter-residue relationships learned by the model, we applied Integrated Gradients (IG) to
the attention, or compatibility, matrices. This approach was undertaken to extract the specific inter-residue
interactions that are most salient to the model’s predictions. The aim was to ascertain whether these identified
interactions align with established physicochemical principles known to govern protein folding and stability,
thereby providing a biologically meaningful interpretation of the model’s internal representations.

4.1 Dataset Selection

Protein sequences have been obtained from protein Data Bank (PDB) [13] and Uniprot [26]. The choice of
protein sequence has been determined by the availability of experimentally determined 3D structure for the
protein. In this context, the B1 domain of streptococcal protein G, and Sso10a from Sulfolobus solfataricus
have been explored.

B1 Domain - Steptococcal Protein G [37] Protein G helps Streptococcus evade host defenses by binding
to key host proteins. A repeating 55-residue domain in Protein G binds to the Fc region of immunoglobulin
G (IgG) and α2-macroglobulin, a major protease inhibitor in human plasma. Protein G from strain GX7809
contains two such repeats, while strain GX7805 has three, with over 90% sequence identity between repeats.
This domain of Protein G named as B1 domain is a significant analytical tool in immunology due to its ex-
treme physicochemical properties and has been extensively studied. Its experimentally determined structure
thus provides a benchmark for residue importance predictions by AlphaFold2.

The B1 domain (Figure 1c) exhibits a novel topology with a four-stranded β-sheet containing a central parallel
pair and a +3x crossover connecting outer strands via an α-helix, a configuration unprecedented in structural
databases. Its exceptional thermal stability arises from several features: (1) 95% of its residues participate
in secondary structures, contributing 45 hydrogen bonds (41 backbone-backbone, 3 side chain-backbone, and
1 side chain-side chain), which stabilize turns and helices; (2) a hydrophobic core formed by tightly packed
aromatic residues, such as Trp43 and Tyr45, and hydrophobic interactions involving residues like Leu5, Leu7,
and Val39; and (3) a solvent-exposed surface enriched in polar and charged residues, including Thr, Lys,
Glu, and Asp. These structural features together enhance stability and functionality, making the B1 domain
a remarkable model for protein studies.

Sso10a - Sulfolobus Solfatarius [23] The crystal structure of Sso10a reveals an elongated dimer formed
through crystallographic 2-fold rotation, with dimensions of 27 Å × 80 Å × 27 Å. Each monomer comprises
four α-helices and three β-strands arranged in an H1–B1–H2–H3–B2–B3–H4 topology, with α-helices making
up 76% of the structure and β-sheets contributing 13%. The protein is organized into two distinct domains:
an N-terminal Winged Helix Domain (residues 1-59) that contains a DNA-binding helix-turn-helix motif and
a wing structure formed by β-strands, and a C-terminal H4 Helix Domain that forms an essential antiparallel
coiled-coil for dimerization.

The C-terminal domain’s H4 helix (residues 60-92) forms a nine-turn structure that pairs with its counter-
part to create a coiled-coil interface spanning 3.7 heptad repeats. This interface is stabilized by hydrophobic
residues at the heptad’s a and d positions, with an unusual feature being Asp69 occupying a typically
hydrophobic d position to form a solvent-exposed ion pair with Lys86. The dimerization interface is char-
acterized by a left-handed coiled-coil with a crossing angle of approximately 25°, stabilized by hydrophobic
interactions, specific ion pairs (including Glu65-Lys86), and hydrogen bonds.
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5 Results

5.1 B1 Domain - Steptococcal Protein G

(a) Relative importances of the residues (b) Relative importances in pseudo 3D

(c) Relative importances in 3D (d) Attention Map

Fig. 1: B1 Domain of protein G

Despite the remarkable thermal stability of protein G, arising from its intricate structural features, including
45 hydrogen bonds (41 backbone-backbone, 3 side chain-backbone, and 1 side chain-side chain) that stabilize
essential structural motifs such as turns and helices; robust hydrophobic interactions involving residues like
Leu5, Leu7, and Val39; and a solvent-exposed surface enriched with polar and charged residues, our analysis
suggests that current interpretation techniques, such as Integrated Gradients and Attention, do not fully
capture the underlying physicochemical principles in a meaningful way.

From a physiochemical perspective, the pairwise attention that each residue allocates to other residues should
logically align with physiochemical interactions, such as disulfide (S-S) bonds, hydrogen bonds and other
molecular interactions, which play critical roles in stabilizing protein structure. However, such relationships
are conspicuously absent in the attention maps shown in Fig-1d. For example in an α helix structure, there
exists a hydrogen bond between the ith and (i− 4)th peptides but such a pattern of attention is not visible
in the figure. The misalignment between the attention matrix and fundamental biophysical interactions
indicates that this matrix fails to capture the core physical principles that determine how protein residues
interact with one another.

Similarly, while integrated gradients highlight certain residues in the protein structure, as depicted in Fig-1a,
Fig-1b, and Fig-1c, these highlighted residues do not correspond meaningfully to their importance from the
perspective of physics, chemistry, or biology. For instance, residues critical for forming stabilizing interactions
or participating in catalytic activity remain underemphasized or misrepresented.
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5.2 Sso10a - Sulfolobus Solfatarius

Correspondingly, while the Sso10a protein exhibits a well-defined structure with four α-helices and three β-
strands (comprising 76% and 13% of the structure respectively), current attempts to interpret AlphaFold2’s
predictions using methods like Integrated Gradients and Attention have not aligned with our understanding
of these structural elements.

From a biophysical perspective, one would expect the attention matrix to reflect fundamental physicochem-
ical interactions that stabilize protein structure, such as disulfide bonds and hydrogen bonding networks.
However, the attention maps presented in Fig-2d do not appear to clearly reflect these essential molecular re-
lationships. The attention patterns appear disconnected from the underlying physical principles that govern
residue-residue interactions in protein structures.

(a) Relative importances of the residues (b) Relative importances in pseudo 3D

(c) Relative importances in 3D (d) Attention Map

Fig. 2: Sso10a protein

The Integrated Gradients analysis, visualized across multiple representations in Fig-2a, Fig-2b, and Fig-2c,
similarly falls short of providing biologically meaningful insights. The residues highlighted by this method do
not correlate well with their known functional or structural importance. Key residues involved in structural
stability or enzymatic function are often overlooked or incorrectly weighted.
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6 Discussion

6.1 Implications for Structural Biology

Our analysis reveals significant challenges in applying current explainable AI methodologies to protein struc-
ture prediction networks, particularly AlphaFold2. While techniques such as Integrated Gradients and At-
tention mechanisms have shown promise in other domains of deep learning, their application to protein
folding networks presents challenges in deriving biochemically meaningful interpretations. The disconnect
between these computational outputs and established physicochemical principles underscores a fundamental
limitation in our ability to decode the decision-making processes within these networks.

This interpretability gap has profound implications for structural biology. As protein structure prediction
models become increasingly integrated into biological research workflows, the inability to validate their
predictions against known biophysical principles poses potential risks. While these models achieve high
accuracy, their black-box nature poses challenges in leveraging insights for advancing our understanding of
protein folding mechanisms.

Following the paradigm established by Rudin [73] in other machine learning domains, we propose that the
field of protein structure prediction would benefit from a fundamental shift toward inherently interpretable
architectures. Rather than attempting to retrofit explanation methods onto existing models, future devel-
opment should prioritize architectures that incorporate explicit representations of physical and chemical
principles. Such models would ideally maintain or exceed the accuracy of current approaches while providing
transparent reasoning paths that align with established biological knowledge.

6.2 Limitations and Future Directions

While our study highlights the inadequacy of current interpretability methods for AlphaFold2, several im-
portant caveats merit consideration. First, the limitations we observe may be specific to the particular
combination of model architecture and explanation techniques employed.

The complexity and scale of protein folding networks, may demand novel interpretability approaches that
are specifically designed for this domain. We propose that future work should focus on developing custom
interpretability frameworks that explicitly incorporate biochemical and physical principles. Such frameworks
might include: Physics-aware attention mechanisms that track and visualize specific types of molecular
interactions, Gradient-based methods that are calibrated to known structure-stability relationships, Inter-
pretability layers that map network activations to recognized biological motifs and interaction patterns,
Hybrid approaches that combine machine learning interpretability with molecular dynamics insights. These
developments would not only enhance our confidence in model predictions but also potentially provide new
insights into the physical principles governing protein folding and structure.

7 Conclusion

Our investigation into explainable AI methods for protein folding networks, focusing on Integrated Gradients
and Attention Mechanisms, has revealed both opportunities and significant challenges. While these methods
offer initial insights into model behavior, their current implementations fall short of providing interpretations
that align meaningfully with established biochemical principles and protein folding mechanisms. We plan to
conduct extensive computational experiments to evaluate the robustness of proposed interpretation meth-
ods across diverse protein structures. Future work will also focus on incorporating physical principles into
interpretability methods by developing attribution methods that reflect molecular interactions and creating
attention mechanisms aligned with physical force fields.

While our current work has established a foundation for explaining protein folding networks, there are still
notable challenges in developing interpretability methods that align closely with biochemical principles.
The path forward requires close collaboration between computational scientists and structural biologists
to ensure that future methods not only provide mathematical explanations but also offer genuine insights
into the biological principles governing protein structure. Success in this endeavor would not only advance
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our understanding of protein folding networks but also contribute to the broader goal of creating more
interpretable and trustworthy AI systems for scientific applications.
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