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Abstract

We address the problem of detecting out-of-context

(OOC) objects in a scene. Given an image, we aim to de-

tect whether the image has objects that are not present in

their usual context and localize such OOC objects. Existing

approaches for OOC detection rely on defining the common

context in terms of the manually constructed features, such

as the co-occurrence of objects, spatial relations between

objects, and shape and size of the objects, and then learn-

ing such context for a given dataset. But context is often nu-

anced ranging from very common to very surprising. Fur-

ther, learned context from specific datasets may not be gen-

eralized as datasets may not truly represent the human no-

tion of what is in context. Motivated by the success of large

language models and more generally, foundation models

(FMs) in common sense reasoning, we investigate the FM’s

ability to capture a more generalized notion of context. We

find that a pre-trained FM, such as GPT-4, provides a more

nuanced notion of OOC and enables zero-shot OOC detec-

tion when coupled with other pre-trained FMs for caption

generation such as BLIP-2, and image in-painting with Sta-

ble Diffusion 2.0. Our approach does not need any dataset-

specific training. We demonstrate the efficacy of our ap-

proach on two OOC object detection datasets, achieving

90.8% zero-shot accuracy on the MIT-OOC dataset and

87.26% on the IJCAI22-COCO-OOC dataset.

1. Introduction

Integrating context in machine learning models is cru-
cial to fostering robust inference capabilities, particularly
in tasks like object detection in a scene. Typically, objects
in natural images appear in an appropriate context. These
contextual cues can aid object detection [4,7,23,33,42,52].
However, incorrect contextual cues can adversely affect the
performance of object detection in both humans [7, 38, 49]
and machine learning models [30, 38].

Thus, creating robust and reliable object detection sys-
tems requires identifying and appropriately handling ob-

Figure 1. Left: An OOC sample from MIT-OOC dataset. Right:
Generated non-OOC image by removing the OOC object by in-
painting the image.

jects appearing in atypical contexts - scenarios where pre-
dictions may not exhibit expected reliability. While detect-
ing in-context objects is extensively studied [3,5,17,28,44],
the problem of detecting out-of-context (OOC) objects [1,
11] is not thoroughly explored and existing approaches have
relied on dataset-specific training. In this work, we use FMs
for zero-shot OOC detection without any retraining or fine-
tuning to learn the usual context relations.

The quintessential example of an out-of-context object is
the proverbial elephant in the room [38]. In Figure 1 (left),
we show a similar example from the MIT-OOC dataset first
studied in [11]. It would be extremely out of context for
an elephant to be perched in a nest atop a tree. When a
caption generation model, BLIP-2 [26], is queried with this
image, it generates the caption “a large elephant statue sit-
ting in a tree with a nest”. An elephant statue nestled in
a tree is also unusual but perhaps less contextually jarring
than an actual elephant. When GPT-4 [34] is queried with
this caption, it identifies the caption as unusual and indica-
tive of an out-of-context scene. By applying an image in-
painting model, Stable Diffusion 2 [37], to mask and com-
plete parts of the image, we successfully create an image



Figure 2. OOC images from the MIT-OOC dataset [11]. The top
two images are out of context with a couch on the top of a floater
in a swimming pool, and an elephant in the room. The bottom
row images are more subtle and not as surprising as the samples in
the top row. For example, airplanes flying at a low altitude over a
beach are usually rare but common at Maho Beach.

Figure 1 (right) where the OOC object has been eliminated,
and the caption generated by BLIP-2 is deemed normal by
GPT-4. This enables localization of the out-of-context ob-
ject(s) in the image.

While supervised learning of context for out-of-context
detection [1] has traditionally framed the contextual appro-
priateness of an object as a binary concept, the context of
an object is more nuanced and subjective. We illustrate
this in Figure 2 using a set of samples from the MIT-OOC
dataset. The notion of an object’s ‘usual context’ is not a di-
chotomous concept, and even humans can sometimes grap-
ple with accurately discerning context [7]. The detection of
out-of-context objects necessitates a comprehensive under-
standing of what is common or contextually consistent in
a scene. Existing approaches strive to learn this common
context from a finite labeled image dataset, where context
is defined by a predetermined set of relations, such as ob-
ject co-occurrence, spatial relations between objects, and
physical properties like shape and size. However, compre-
hensively enumerating all common contextual relations and
learning these from a limited image dataset is daunting. We
identify the following primary challenges in out-of-context
object detection:

• Context is a complex, subjective, and multifaceted con-
cept that is not simply binary. The detection of out-of-
context objects necessitates a comprehensive understand-
ing of the typical context for a variety of objects.

• Learning context from a small dataset faces the risk of
missing different possibilities and variations in the con-
text that may not be represented in the dataset.

• Hand-engineered features such as co-occurrences, spatial
relations, and relative sizes may not fully capture what is
in context and what is not.

Contributions. We posit that the detection of out-of-
context (OOC) objects can be framed as a multimodal prob-
lem, requiring a language-guided understanding of the con-
text for accurate image analysis. This hypothesis serves as
the motivation behind our utilization of foundational mod-
els for OOC detection. We use a large language model as
the source of contextual knowledge to detect OOC objects
in images. Our OOC detection pipeline is presented in Fig-
ure 3. We identify the key novel contributions below:

• We utilize the GPT-4 to capture a comprehensive under-
standing of context. Instead of learning context from a
limited, human-curated dataset, we rely on FMs trained
on a massive quantity of multimodal data to establish
what is commonplace and normal context.

• By employing FMs and vision-language models, we en-
capsulate a broad understanding of context, transcend-
ing the restrictions of hand-engineered features like co-
occurrences, relative sizes, and spatial relations. We
demonstrate that the pre-trained LLM’s innate under-
standing and common sense knowledge are effective in
capturing the notion of the usual context of objects.

• We propose a novel pipeline comprising pre-trained mul-
timodal models for scene understanding and caption
generation, natural language understanding to discern
whether a caption describes an out-of-context scene, and
image in-painting for counterfactual image generation.
This pipeline is capable of zero-shot OOC detection and
localization without any dataset-specific training.

• We evaluate our approach on two public datasets for
OOC detection: MIT-OOC dataset [11] and IJCAI22-
COCO-OOC dataset [1]. In comparison to the SOTA
method’s reliance on dataset-specific training, our zero-
shot approach using FMs achieves a high OOC detection
accuracy without any dataset-specific training (90.9%
vs 73.3% on MIT-OOC dataset and 87.26% vs 84.85%
on IJCAI22-COCO-OOC dataset where SOTA meth-
ods use a manual definition of context and learning on
the dataset). When compared to the baseline of visual
question-answering where we directly query BLIP-2, our
accuracy is 90.8% (ours) vs 23.4% (BLIP-2) on the MIT-
OOC dataset and 87.26%(ours) vs 26.8% (BLIP-2) on the
IJCAI22-COCO-OOC dataset.

• Not only does our approach accurately detect OOC ob-
jects, but it also quantifies context and provides a human-
interpretable natural language explanation for the result
using FMs.



Figure 3. The overview of the proposed zero-shot OOC detection method using FMs. The image captions generated from BLIP-2 are used
to prompt GPT-4 on whether the description is a normal context. For the identified OOC scenes, a candidate OOC object is determined. A
segmentation mask corresponding to the object guides the diffusion-based in-painting to generate counterfactual images. The counterfactual
images are further examined to detect the OOC scenario. For example, the OOC cow gets in-painted with a vehicle and the OOC airplane
gets in-painted with road and other vehicles. As in-painting objects make the updated image in context, we localize these objects as OOC.
The OOC images are shown on the bottom right and the in-painted images are shown on the bottom left.

2. Related Work

Context for object detection. Contextual cues are im-
portant for detecting objects in images. Common contextual
cues include co-occurrences of objects, object attributes,
and spatial relations between objects [23, 52]. While ac-
curate contextual cues are shown to be useful for object
detection [4, 7, 23, 33, 42, 52], inaccurate contextual cues
can negatively impact the performance of object detec-
tion [7, 30, 38, 49]. Thus, detecting OOC scenarios is im-
portant to develop a reliable object detection model.

Out-of-context object detection. [11] introduced OOC
detection as a scene understanding task. They capture con-
textual information using global scene categorization, ob-
ject co-occurrences, and geometric context such as relative
positions and scales of objects. [7] consider neural network-
based models to learn contextual relations in a data-driven
manner. Some approaches consider context as the generic
background and do not exploit informative cues such as la-
bel dependencies and relative object properties in the im-
age [4,49]. [1] considered a graph contextual reasoning net-
work (GCRN) to detect OOC objects. GCRN consists of
two separate graphs: a representation graph to learn ob-
ject features based on the neighboring objects, and a context
graph to explicitly capture contextual cues from the neigh-
boring objects. These approaches rely on learning context
from a relatively small dataset. We use pre-trained foun-
dation models for OOC detection and demonstrate compa-

rable or better performance to the SOTA methods without
explicit learning of context relations.

Vision-language models. Vision-language models aim
to learn a representation to align visual information and nat-
ural language to perform various downstream tasks such
as image captioning [20, 25, 26], visual question answer-
ing [2, 14], and grounded caption generation [15]. As the
size of the dataset and the models are increasing, recent
approaches focus on learning representation with frozen
vision and/or language backbones. It is usually common
to consider a frozen vision model and adopt a language
model [9, 27, 35, 50] as visual features from a well-trained
vision model can provide informative visual cues. However,
due to the growth of large language models [12, 34, 45, 51],
learning with frozen language models too is becoming pop-
ular where a transformation layer is learned to bridge the
gap between frozen visual and language features [8, 14, 19,
20, 31, 43]. Despite the success of vision-language models,
it is not yet feasible to directly query such a model with a
prompt to determine whether an image is out of context. We
experimentally demonstrate this in our evaluation. This mo-
tivates our approach connecting the vision-language model
BLIP-2 with GPT-4.

Commonsense in foundation models and their use for

zero-shot tasks. FMs such as GPT-3 and GPT-4 [34, 36]
currently provide the SOTA performance in tasks such as
natural language translation, predicting long-range text de-
pendencies and even translation to structured representa-



tions such as program synthesis. These models are capa-
ble of simple reasoning tasks [22, 41] with some reserva-
tions [32, 46]. FMs can be made to generate a coherent
chain of thought - a series of short sentences that mimic
the reasoning process of a person when responding to a
question. We exploit this common sense reasoning capa-
bility of FMs. [22] shows impressive zero-shot FM per-
formances on diverse tasks including arithmetic and sym-
bolic reasoning, and other logical reasoning tasks such as
tracking shuffled objects. FMs have also been used for
zero-shot retrieval [2, 40] and zero-shot visual question-
answering [19, 26, 43], zero-shot image captioning [2, 26].
[18] used FMs for detecting five types of traffic-related
anomalies with carefully designed prompts. Our work is
the first to demonstrate the use of FMs for zero-shot OOC
detection in general scenes.

3. Technical Approach

The task of detecting out-of-context (OOC) objects de-
mands a comprehensive understanding of what is consid-
ered commonplace or contextually consistent. We lever-
age the knowledge embedded within foundational models
(FMs) that have been exposed to a vast array of multimodal
data from varied sources. This allows us to detect OOC ob-
jects in a zero-shot fashion without any retraining or fine-
tuning. For an input image, we aim to detect whether the
objects in the image are in context or not. If the image is
deemed out of context, we proceed to localize the OOC ob-
ject(s). We employ an FM to provide a quantitative OOC
score along with an explanation derived from the FM.

Given an image, we first generate a caption using BLIP-
2 [26], a multimodal FM, detailing the objects and their re-
lationships in the image. We query GPT-4 [34] to ascertain
whether the object configurations in the image, as depicted
by the caption, are commonplace or if any objects appear
out of context. To localize the OOC object, we generate
counterfactual images by removing the possible OOC ob-
ject(s) from the image by in-painting the object(s) using Sta-
ble Diffusion 2 [37]. If the omission of the object(s) from
an image renders the caption describing the image appear
in context to GPT-4, we conclude the object(s) is indeed an
OOC object. Given that the foundational models are trained
on an extensive range of multimodal data, they encapsu-
late the concept of context and enable zero-shot detection of
out-of-context images. These models can be easily adapted
to question-answering for OOC detection without requiring
finetuning. Consequently, our approach does not require
training on any specific dataset for OOC detection. The
overall process is illustrated in Figure 3. We describe the
primary components below.

3.1. Image captioning.

The first step of our approach uses an FM BLIP-2 [26]
to get an informative caption to describe an image and de-
pict the relations between the objects. BLIP-2 consists of
a frozen vision encoder and a frozen language model. A
transformer [47] network is learned to align visual features
and text features to perform downstream task tasks such as
image captioning and visual question answering. Owing to
its training on a large-scale dataset of 234 million images
that are curated from various datasets such as COCO [28],
Visual Genome [24], and LAION [39], BLIP-2 achieves
state-of-the-art performance on zero-shot image captioning.
In the majority of the cases, these captions capture the key
details needed to detect OOC images and we demonstrate
this in our experimental evaluation. Furthermore, we ana-
lyze cases when the captions miss OOC objects or fail to
capture OOC attributes of an object.

3.2. Prompting the foundational model.

Given the generated caption, we prompt an FM to check
whether the caption is uncommon and the image is OOC.
We use GPT-4 in our approach. GPT-4 is a large language
model that is trained with a vast amount of multimodal
data and is good at following instructions. The model has
achieved impressive performance in various tasks including
science and art exams, interactive question answering, and
reasoning [34]. The model is known to have captured ex-
tensive common knowledge in various domains. Thus, we
leverage this model to detect uncommon or abnormal sce-
narios as described in the caption1 to detect OOC images.
Specifically, given the captions, we ask two queries to the
model with the following prompt templates that were se-
lected via manual exploration:
• Prompt1: <caption> - How normal is this

on a scale between 0 to 10?

• Prompt2: <caption> - How common is this

on a scale between 0 to 10?

Interestingly, GPT-4 not only provides a binary (yes or
no) response but often qualifies its response with condi-
tions that could render the scenario normal or common.
The model considers plausibility when asked about normal-
ity and frequency when asked about commonality. For ex-
ample, flood is plausible but it does not occur frequently.
We explored other prompt options including ‘How likely’,
‘How uncommon’, and ‘Is this out-of-context’. We find that
Prompt2 is most effective for OOC detection.

3.3. Localizing OOC object in images.

Once the image is OOC, the next step is to localize the
part of the image that has OOC object(s). We perform coun-

1We only have access to the language input API to GPT-4 but we use
BLIP-2 as a baseline for a direct visual Q&A approach.



terfactual evaluations using the Stable Diffusion 2 [37] as
the in-painting model. This model, which strikes a balance
between reducing image generation time and preserving de-
tails, generates high-fidelity images.

The pipeline for OOC object localization is shown in
the bottom part of Figure 3 when an image is deemed as
OOC. We first determine the OOC object candidates from
the GPT response. Then we use a prompt-based segmen-
tation model [21, 29] to generate the masks corresponding
to the OOC object. Then, we generate the counterfactual
image by infilling the object using Stable Diffusion 2 [37].
Finally, the infilled image is again fed to the multimodal
FM to generate the caption. The caption is examined by
the GPT-4. If the counterfactual image is determined as in-
content, then the object is marked as an OOC instance.

4. Experiments

In this section, we describe the dataset, explain the exper-
imental setup, present results, perform error analysis, and
discuss limitations. We evaluate in terms of detecting OOC
images and localizing the OOC object in the image.

Datasets. We consider two OOC datasets to evaluate
our approach: 1) MIT-OOC [11] and 2) IJCAI22-COCO-
OOC [1]. We choose these two datasets as these come
with object-level annotations allowing the evaluation of lo-
calizing OOC objects: MIT-OOC [11] consists of human-
annotated images where each image has one or more OOC
OOC objects. These images present natural OOC scenar-
ios from indoor and outdoor scenes. The objects are an-
notated with a polygon bounding box and an OOC tag.
IJCAI22-COCO-OOC [1] dataset is created from COCO
2014 validation set [28] by transplanting OOC objects on
images. Authors synthetically generate OOC scenarios by
placing objects in images to violate common contextual re-
lations [6, 49]. The objects are annotated with COCO-like
segmentation masks. This dataset follows a similar strategy
to generate OOC images as the Cut-and-Paste dataset [49].
This contains a larger number of images and considers OOC
objects violating co-occurrence, location, and size relations.

Baseline: Direct visual question answering queries.

In this baseline, we consider a visual question-answering
(VQA) approach for determining whether an image is OOC.
VQA is shown to be successful in answering questions
about visual content in the image such as object attributes,
spatial layout of objects, actions, and actor-object interac-
tions. We consider BLIP-2 [26] for VQA as it achieves
SOTA performance among the open-source models. We ask
the following question to the VQA model: ”Is this image
out of context?”. The results for this baseline are shown
in table 1 where we compare the average accuracy (%) of
detecting OOC images.

Ablation study. We investigate other visual FMs and
LLMs to recognize the OOC objects. Apart from BLIP-

Dataset VQA Ours
MIT-OOC dataset 23.45 90.82

IJCAI22-COCO-OOC 26.78 87.26

Table 1. Comparison with the baseline.

2, we consider the InstructBLIP [13] model for captioning,
and apart from GPT-4, we query Llama3 [16] to determine
OOC scenarios. We consider MIT-OOC for this study as it
contains diverse OOC scenarios. The results are shown in
table 2. We use Prompt2 for querying. We notice that the
performance of BLIP-2 and InstructBLIP are comparable
and GPT-4 significantly outperforms Llama3 performance.

FM combination Accuracy
InstructBLIP + Llama3 73.85

BLIP-2 + Llama3 74.77
InstructBLIP + GPT-4 88.13

BLIP-2 + GPT-4 90.82

Table 2. Comparison with the combination of visual FM and
LLMs on MIT-OOC.

4.1. Comparison with the state of the art.

We compare with the state-of-the-art (SOTA) approaches
on MIT-OOC [11] and IJCAI22-COCO-OOC [1] in terms
of detecting OOC images. SOTA approaches aim to capture
context by defining features on objects attributes and rela-
tions between objects. Then dataset-specific statistics are
learned as common context. For example, [11], defines the
common context in terms of co-occurrences of objects, the
geometry of objects, support relations among the objects,
and global scene details. These context cues are learned
from a set of in-context images from SUN dataset [48]
and combined to model common context [10]. The re-
sults on MIT-OOC are shown in table 3. Our approach
achieves a better performance without manually defining
out-of-context and without any specific learning of a com-
mon context from a dataset as done in [11]. The results
on IJCAI22-COCO-OOC are shown in table 4. [1], use a
graph neural network to learn the context in terms of co-
occurrence and spatial relations between objects. The com-
mon context relations are learned in a data-driven manner
from in-context COCO images and the context cues are
suitable for the OOC images in IJCAI22-COCO-OOC. We
choose the setup where ground-truth bounding boxes are
used in [1] to avoid errors due to object detection. Our ap-
proach achieves superior performance, again, without learn-
ing any dataset-specific context relations. Recall that we
consider two prompts to query the GPT-4 model and find
Prompt2 to be more effective. Since we prompt GPT-4 to
provide a quantitative score for OOC ranging from 0 to 10,



we use a threshold of 5 when detecting an OOC image.

Approach Accuracy (%)
Combination of contexts

[11]
(manual definition + learning of context)

73.29

Our approach using pre-trained FMs
and no finetuning

Prompt1 80.73
Prompt2 90.82

Table 3. Comparison with the SOTA on MIT-OOC [11].

Approach Accuracy (%)
Graph network [1]

(learning of context) 84.85

Our approach using pre-trained
FMs and no finetuning

Prompt1 68.78
Prompt2 87.26

Table 4. Comparison with the SOTA on IJCAI22-COCO-
OOC [1].

Localizing OOC objects in images. Besides detecting
an image as OOC, we also aim to localize the object that
appears OOC in the image. Recall that we generate coun-
terfactual images that are in context by removing the candi-
date OOC object(s) from the scene. If removing an object
turns the image to be in context then we consider the object
as the OOC object. The results are shown in table 5.

Qualitative Results. We present the qualitative results
to show the OOC images, corresponding captions, and the
response from the GPT-4. Qualitative results for the MIT-
OOC and IJCAI22-COCO-OOC datasets are shown in fig-
ure 7 and figure 8, respectively. GPT-4 not only rates the
commonness of a context but also provides a justification
for the rating and considers alternative ratings in other situ-
ations. This justifies the non-binary notion of OOC-ness.

4.2. Analysis of the approach.

We analyze results in terms of discovering failure modes
and characterizing various OOC scenarios. We consider the
MIT-OOC for the analysis as it contains natural images with
diverse OOC scenarios.

False positives analysis. A reliable OOC detector is ex-
pected not to confuse in-context images as OOC. To eval-
uate this property, we estimate the false positive rate, i.e.,
how likely an in-context image is confused as OOC, of our
approach while presented with in-context images. We con-
sider the COCO 2014 validation set [28] as the set of in-
context images. We achieve a false positive rate of 17.04%.
Though these images are in context, some scenarios can be

less common and thus deemed as OOC by the FM. Note
that we achieve a low false positive rate without learning
COCO-specific context relations. Complementary to false
negatives, we achieve 9.18% and 12.74% false negative
rates on MIT-OOC and COCO-OOC datasets, respectively.

Dataset Accuracy (%)
MIT-OOC 63.32

IJCAI22-COCO-OOC 83.72

Table 5. Performance for localizing OOC objects in OOC images
using our pipeline.

Error analysis. Our approach for detecting OOC im-
ages has two main steps - image captioning using BLIP-
2, and querying the GPT-4 to evaluate whether the caption
describes a usual context. Both of these steps can fail in-
dependently. We present a detailed error analysis for the
MIT-OOC dataset which has natural images. The failures
can be partitioned into three categories based on the source
of the error. In the first category (Figure 4), the generated
caption ignores the OOC objects and focuses on some other
aspect of the scene. A more complete caption generation
model could be used to deal with these kinds of failures.
The second category of failures (Figure 5) arises due to the
caption missing the surprising attribute such as the size be-
ing too large or too small, or the count of some objects being
too high. The third category of failures (Figure 6) are those
where the captions were generated correctly and informa-
tively, but the GPT-4 foundation model did not find the de-
scription to be very surprising due to the nuanced nature of
OOC. Manual inspection of these images revealed that the
contexts in these images can be argued to be only somewhat
surprising despite their inclusion in the MIT-OOC dataset.

Limitations and future directions. As we rely on FMs
for image captioning to capture the object attributes and re-
lations between objects, and on large language models for
determining whether the caption describes a common con-
text, our approach is limited by the accuracy of these mod-
els. Our failure analysis also illustrates these cases. Our
pipeline will be able to leverage further advances in these
FMs directly for improved zero-shot OOC detection.

5. Conclusion

We present a novel zero-shot approach for OOC detec-
tion using foundation models. Our method does not rely on
learning dataset-specific context relations or manual defini-
tions of context, but instead leverages the vast world knowl-
edge encoded in large language models, such as GPT-4. Our
experiments on the MIT-OOC and IJCAI22-COCO-OOC
datasets show the efficacy of our approach. Notably, on the
MIT-OOC, the results show significant improvements in de-
tecting OOC images compared to the baseline VQA model



No Error OOC object OOC object attribute Caption is correct
missed in caption missed in caption but nuanced OOC

Percentage 90.82 3.28 1.97 3.93

Table 6. Distribution of errors across different categories for the MIT-OOC dataset samples.

Figure 4. Samples from the MIT-OOC dataset along with the BLIP-2 generation caption. We fail to detect OOCs in these cases because
the caption ignores the OOC aspect of the image (crashing of the car into brick wall in 087, snake on top shelf in 063, the large cup-shaped
porches on the side of the building in 134, and the sofa in bus stand in 219.)

Figure 5. Samples from the MIT-OOC dataset along with the BLIP-2 captions for cases that failed due to the quantitative nature of out-of-
context. The caption for 104 identifies the large sign on the chair but does not identify that the chair is quite large (comparable to a nearby
tree and much larger than the cannon to the right of it). The caption for 068 identifies many toilet rolls but not a surprisingly large number
of those. The caption for 189 identifies that the motorcycle is small but it does not register that it is surprisingly small.

Figure 6. Samples from the MIT-OOC dataset along with the BLIP-2 generated caption for cases that failed due to the nuanced nature of
OOC despite the caption including the OOC object. Planes flying near the beach or sofa being on the side of the street is not very unusual
in some places. The bench in 135 has chairs facing on different sides and this detail is not captured by the caption. The chair in 050 is
more like a sofa and hence, unusual on a beach, and the caption describes it as a chair.



Figure 7. Qualitative results on MIT-OOC [11] showing the BLIP-2 captions and GPT-4 responses.

Figure 8. Qualitative results on IJCAI22-COCO-OOC [1] showing the BLIP-2 captions and GPT-4 responses.

and state-of-the-art methods that rely on learning contex-
tual relations. Additionally, our method often successfully
localizes OOC objects in images. We perform extensive er-
ror analysis to determine the limitations of our approach and
gain insights into areas where improvements can be made.
Failures are categorized into three types: 1) the OOC object
is missed in the image caption, 2) surprising attributes of
OOC objects are missed in the caption, and 3) the GPT-4
model failed to find the scene surprising due to the nuanced
nature of OOC. Future work may include more accurate
captioning models and more nuanced prompts to GPT-4.
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