
On the Design and Fabrication of PATH-based
In-Memory Computing Multipliers

Jinam J. Modasiya
University at Albany, SUNY

Albany, NY, USA
jmodasiya@albany.edu

Venkata Nithin Kamineni
University of Florida

Gainesville, FL, USA
vkamineni@ufl.edu

Muhammad Rashedul Haq Rashed
University of Texas at Arlington

Arlington, TX, USA
muhammad.rashed@uta.edu

Maximilian Liehr
NY CREATES

Albany, NY, USA
mliehr@ny-creates.org

Sumit Kumar Jha
Florida International University

Miami, FL, USA
sjha@fiu.edu

Rickard Ewetz
University of Florida

Gainesville, FL, USA
rewetz@ufl.edu

Nathaniel C. Cady
University at Albany, SUNY

Albany, NY, USA
ncady@albany.edu

Abstract—Processing in-memory is projected to reshape the
computing landscape of accelerators for data-intensive applica-
tions. PATH-based computing is a promising in-memory comput-
ing paradigm for evaluating Boolean logic. Computation within
the paradigm is performed by controlling the electrical flow
of currents within 1 Transistor 1 ReRAM (1T1R) crossbar
arrays using nonvolatile memory devices and access transistors.
However, this paradigm has only been evaluated in simulation
and needs to be verified in fabricated devices. In this paper,
we propose an end-to-end framework for accelerating Boolean
functions using PATH-based computing. The framework consists
of a crossbar fabrication step, a logic synthesis step, and a circuit
analysis step. The crossbar fabrication step involves fabricating
8x8 1T1R crossbar arrays using a 65 nm CMOS process. The
second step maps the Boolean function into a crossbar design.
The last step evaluates performance through crossbar testing
and circuit simulation. The framework was evaluated with the
fabricated crossbars using 2 and 3-bit multiplier designs. The
experimental evaluation using both 8x8 arrays and Spice based
simulation yielded similar results: 3-bit multiplier worked as
designed while the 2-bit multiplier showed unexpected results.
The resulting data will be useful to inform future logic designs
for PATH-based computing.

I. INTRODUCTION

The amount of available digital data is projected to reach
175 zettabytes by 2025 [1]. The access to vast amounts
of digital data has powered the dominance of data-driven
applications such as artificial intelligence algorithms, neural
networks [2], and scientific modeling and simulations [3].
However, today’s high-performance computing systems based
on the traditional von Neumann architecture struggle with
accelerating data-intensive applications [4] due to the sepa-
ration of the computing and memory units, which introduces
bandwidth constraints and expensive data transfers [5]. More-
over, there are diminishing returns from further technology
scaling due to the end of Dennard scaling and the slowdown
of Moore’s law [6–8]. This has spurred investigations into
alternative computing paradigms and technologies such as
quantum computing [9], photonic computing [10], and in-
memory computing [11]. Processing in-memory using emerg-
ing nonvolatile memory technology is a promising solution

strategy to accelerate data intensive applications in future
computing systems. The paradigm performs energy-efficient
computation in-place, circumventing the need to transfer data
back and forth between processor and memory [12].

Processing in-memory can be divided into the analog and
digital domain. Analog in-memory computing is extremely
energy efficient but lacks precision [13]. Digital in-memory
computing offers high precision but is slightly less energy
efficient. [14]. Digital in-memory computing can be performed
using logic styles such as MAGIC [15], Flow [16], Majority
[17], Imply [18], and PATH [19]. The limitation of many
of these logic styles is that they require the state of the art
nonvolatile memory (NVM) devices to be repeatedly switched.
In contrast, each of the nonvolatile memory devices are only
required to be switched once when implementing PATH-based
computing.

PATH-based computing involves evaluating Boolean func-
tions using the electrical flow of current within a 1T1R cross-
bar array. It is performed by first programming the nonvolatile
memory devices in the crossbar. Next, the input operands are
applied to the selector lines of the crossbar. Finally, a voltage
is applied to the top-most wordlines and the output of the
Boolean function is decoded from the bitlines. While PATH-
based computing has been demonstrated to be energy-efficient
using simulation on both the logic and system level, it has not
been demonstrated in fabricated hardware. Although meaning-
ful research can be performed using simulation, it is critical
to verify that the underlying computational concepts can be
realized in hardware. This is especially true for emerging
technologies where the fabricated devices may have non-ideal
properties that are not captured by simulations.

In this paper, an end-to-end framework for accelerating
Boolean functions (such as multiplication) on fabricated 1T-
1R crossbar arrays using PATH-based computing is proposed.
The framework consists of a fabrication step, a logic synthesis
step, and a circuit evaluation and simulation step. The primary
outcomes can be summarized as follows:

• Fabrication: 8X8 crossbar arrays in 1T1R configuration



Fig. 1: Overview of the PATH logic style with synthesis and evaluation of Boolean expressions. (a) Resistive states of memristors
in the 1TIR crossbar obtained from synthesis. (b) Programing of crossbar based on resistive states. (c) Setting the switch state
(ON/OFF) of transistors based on the selector lines charged by literals. (d) The current finding path from Vin to Vout results
in the Boolean function evaluating to true.

were fabricated using HfO2-based ReRAM devices and
a 65 nm CMOS process, on a 300 mm wafer platform

• Logic Level: We created a synthesis tool for mapping
Boolean functions to crossbar designs for PATH-based
computing using binary decision diagrams (BDDs).

• Circuit Level: Spice simulations were performed to evalu-
ate whether the logic-level designs can be realized within
the crossbar arrays.

• Experimental Evaluation: Testing on the 8x8 arrays
showed that our circuit models accurately captured the
behavior of the fabricated crossbars. Hower, we observed
deviations between the circuit and logic level modeling,
which resulted in only one of the two implemented mul-
tipliers demonstrating functional correctness in hardware,
which emphasizes the need for new logic level modeling
and design techniques.

The remainder of the paper is organized as follows: back-
ground is given in Section II, methodology is detailed in
Section III, fabrication process is presented in Section III-A,
experimental evaluation is performed in Section IV, and the
paper is concluded in Section VI.

II. BACKGROUND

A. Memristive Crossbar Memory Arrays

Memristors (implemented in this work as resistive random
access memory devices, or ReRAM) are terminal devices
proposed by Leon O. Chua in 1972 as the fourth fundamental
circuit element after resistors, capacitors, and inductors [20].
They can retain the information of the electric field applied
previously in the form of a change in resistance state. Mem-
ristors, such as ReRAM, can retain their memory state in the
absence of applied voltage, charge, or current, making them
useful as nonvolatile memory (NVM) devices [21]. A crossbar
memory array [22] is constructed using memristive elements,
such as 1T1R cells, to perform the calculations. This comprises
wordlines, bitlines, and selectorlines which are arranged as
shown in Figure 1. Each Wordline is connected to bitlines

via a series of connected memristors and associated access
transistors. Each column of access transistors are vertically
aligned which can be activated using a selectorline. Both series
connected memristors and transistors connecting the bitline to
the wordline act as switches to program the circuit. Having
a high resistance state (HRS) in the memristor makes the
switch OFF and a low resistive state (LRS) makes the switch
ON. Applying voltage to the selectorline controls the access
transistor.

B. PATH-based Computing

In this section, we discuss the flow of PATH-based com-
puting, which comprises a slow and expensive compilation
phase to program the crossbar based on the Boolean expression
[19]. This is followed by a fast and inexpensive execution step
that executes the Boolean operation based on its literals [19].
Figure 1 shows an overview of the framework for PATH-based
computing. A crossbar memory array is programmed with a
synthesized Boolean expression to apply the PATH logic style.

Compilation Phase We first consider a Boolean expression
of (A + B) C to be computed using PATH logic style in the
crossbar. The input of PATH is a Boolean function represented
in a hardware descriptive language (Verilog, VHDL) which is
synthesized into the crossbar with several logic synthesis steps
discussed in [19]. The logic synthesis outputs resistive states
of the memristors that need to be programmed in the crossbar
as shown in Figure 1(a) for Boolean expression (A + B C). As
discussed previously, memristors and access transistors can be
connected in series for each wordline (horizontal lines) to all
bitlines (vertical lines) in a crossbar as shown in Figure 1(b).
The memristors in the crossbar are programmed to HRS or
LRS based on the result of logic synthesis. The resistive states
of memristors are programmed to LRS and HRS by applying
precise voltage with controlled current [23], and the resulting
resistance state is verified using a write-read-verify scheme
that has been described previously [24]. The memristors in the
crossbar are marked as 1 for LRS and 0 for HRS as shown
in Figure 1(a). The programming of memristors is performed



in the compilation phase (Figure 1(b)) and the switching of
transistors and application of read-out voltage is performed in
the execution phase, as shown in Figures 1(c) and 1(d).

Execution Phase The transistors in the crossbar are marked
as either on or off switches based on the transistor’s state.
After programming memristors, as shown in Figure 1(b), in
conformity with the Boolean expression (A + B C) the
compilation phase is completed. Next, the input operands (a=1,
b=0, c=1) of the Boolean expression (A + B C) are applied
to the transistor gates via selector lines, to toggle their state
during the execution phase, as shown in Figure 1(c). After
programming, the switch state of the transistors based on the
operand input to the Boolean expression current is passed from
the first bitline, as shown in Figure 1(d). The current now finds
the path of least resistance in the crossbar array and flows in
that direction. If the resulting current reaches the ground of the
last wordline, the Boolean expression is evaluated to true; in
the case where the current does not pass through the ground,
the Boolean expression evaluates to false. In Figure 1(d) the
current finds a path to flow from the start point of Vin to Vout
in the crossbar, validating the Boolean expression to true. The
PATH logic style is comprised of a slow compilation phase
but has a fast execution phase. This makes the PATH logic
style outperform other SOTA logic styles in terms of latency
and energy usage [19].

III. METHODOLOGY

In this paper, we propose an end-to-end framework for
accelerating Boolean function using PATH-based computing
on 1T1R crossbar arrays. Our framework consists of a i)
fabrication process step, ii) a logic synthesis step, and a iii)
circuit analysis step. The fabrication process for the crossbar
and ReRAM devices is explained in the Section III-A. The
mapping of Boolean functions such as multiplication opera-
tions into crossbar designs is detailed in Section III-B. The
functional correctness of the design is analyzed using circuit
simulation in Section III-C. The experimental evaluation in
hardware is performed in Section IV. An overview of the flow
of the methodology is shown in Figure 2.

A. Fabrication Process

Fabrication and processing of hybrid ReRAM/CMOS 1T1R
arrays was performed at the Albany NanoTech complex using
a previously developed 65 nm CMOS/ReRAM process, on
a 300 mm wafer platform [25]. For this work, HfO2-based
ReRAM devices were implemented in the back end of the line
(BEOL) at the interface of metal 1 (M1) and metal 2 (M2),
and directly integrated with control transistors fabricated in the
front end of the line (FEOL). As-fabricated ReRAM arrays
are duplicated multiple times per die across the wafer [26],
and have been extensively evaluated for electrical performance
as a function of fabrication conditions [27]. In this work
8x8 1T1R arrays were implemented, where each of the 64
ReRAM structures are addressable through a combination of 8
source contacts, 8 drain contacts, and 8 transistor (gate) control
contacts. This arrangement allows for either individual, single

Fig. 2: Flowchart showing how PATH-based computing was
implemented and evaluated in 1T1R arrays.

column, or multi-column measurements which are useful for
in-memory computing operations such as vector matrix mul-
tiplication (VMM) or other forms of in-memory computing,
such as flow-based computing [28]. The ReRAM devices used
in this work were fabricated using a 70 nm thick TiN bottom
electrode (BE) deposited using a subtractive etch approach.
This was followed by a 6 nm thick HfO2 switching layer
(SL) a 6 nm thick Ti-based oxygen scavenger/exchange layer
(OEL), and finally a 40 nm thick TiN inert top electrode (TE),
as shown in Figure 3. The ReRAM device active area where
the filamentary switching kinetics take place, is defined by the
patterned bottom electrode area (50 nm x 50 nm).

B. Logic Synthesis

The input to the synthesis step is a Boolean expression, and
the output is the specification to program the crossbar. First,
the Boolean expression is converted into a binary decision
diagram (BDD) to initiate the PATH logic synthesis [19]. In
path-based in-memory computing, a BDD graph G = (V,E)
is mapped directly to the 1T1R crossbar. Each node vi ∈V is
assigned a wordline, and each edge ei j ∈ E between nodes vi
and v j, is implemented through a pair of bitline-selector lines.
The selector lines control the access transistors, enabling or
disabling paths based on the Boolean variables assigned to
them.

This study aimed to investigate the working of an 8x8 1T1R
memristive crossbar array to execute multiplexer operations by
using PATH-based computing. This involves programming the
crossbar based on the resistance values of the PATH-based
logic determined during the synthesis phase. The resistance
values are obtained from the process of PATH-based synthesis
of the Boolean expression to implementation in the crossbar
array, as shown Figure 2.



Fig. 3: Composite image showing a full 300mm wafer containing hybrid RRAM/CMOS cells, an image of an individual die
within the wafer, and transmission electron microscope (TEM) cross sections of an array of RRAM cells and an individual
close-up image of a RRAM cell.

Fig. 4: Design for programmed device states for a 2-bit
Multiplier, ON is LRS and OFF is HRS.

C. Circuit Analysis

A basic Spice model of the 8x8 array was developed to
simulate the performance of the designed multiplier circuits.
1T1R cells were represented by a single resistor set to the
value of the effective resistance measured during testing. The
devices in the columns with gate 0, Ropen, were set to 1 GΩ
resistance and HRS and LRS states in the ON gates were set
to their programmed values. These simulations were used to
verify the results of the multiplier circuits.

IV. EXPERIMENTAL EVALUATION

To better understand the transition from simulated PATH-
based computing designs to fabricated device measurements,
two small-scale designs were developed and tested. A 2-bit and

Fig. 5: Design for programmed device states for a 3-bit
Multiplier, ON is LRS and OFF is HRS.

Fig. 6: Path logic synthesis.



Fig. 7: Truth table for 2-bit multiplier.

Fig. 8: Truth table for 3-bit multiplier.

3-bit design was developed for an 8x8 1T1R crossbar array
configuration where each column has 8 transistors sharing a
common gate node to help select specific ReRAM devices
and reduce unwanted sneak currents (during programming).
These two designs, Figure 4 and Figure 5 show the ReRAM
devices programmed to LRS or HRS conductance state.
Another representation used for later simulation results was
Ropen, this condition was used for ReRAM devices that had
their transistor open. For a 2-bit multiplier, each column was
assigned either a gate input of 0 or 1 using a combination
of two Boolean variables while the 3-bit multiplier used a
combination of three Boolean variables. By controlling the
gate inputs and having pre-programmed conductance states
for each device, the current was intended to flow to specific
desired output nodes. Each word and bit line of the 8x8 array
was measured using a source measure unit (SMU) to determine
any sneak path current to other nodes.

The first design tested was the 3-bit multiplier case seen in
Figure 5. All 8 possible cases represented in the truth table
were tested. For example, in this design, case 8 (shown in the
truth table in Fig 8 ) indicates a2 = a1 = a0 = 1. This means the
common gates in columns 3 to 5 should be turned on. Based
on the truth table, outputs f4, f3, and f2 should display outputs
of 1 for this case. Hardware testing on the 8x8 arrays verified
the designs and generated the correct expected output results,
showing no significant sneak path current as was expected.
From this experimental verification, a clear threshold of 1E-5
amps was observed and used to differentiate between a 0 and
a 1 at the output nodes of the crossbar array. In the case of a2
= a1 = a0 = 1, the output current values for f4, f3, and f2 were
above a threshold of 1E-5 amps, as shown in Figure 9. Using
this threshold to determine a cutoff for determining 0 vs. 1
outputs, hardware testing for all 8 cases for the 3-bit multiplier
agreed with expected results (from the truth table). Once the

Fig. 9: Results of testing the 3-bit multiplier design vs.
simulated results for different input cases. Grey bars represent
Spice simulation results and red bars represent arrays test
results.

device and array functionality were verified using this simple
design, a 2-bit multiplier design was tested on the 8x8 arrays.
In this design, the current is expected to follow trajectories
outlined by certain devices set to the LRS and generate outputs
of 1 via so-called sneak path currents that percolate through
the 1T1R array; however, the output results as shown in Fig 10
did not match the expected outcomes in the 2-bit multiplier
truth table shown in Figure 7. For example, in case 2 for the
2-bit multiplier, f1 received an output of 0 while a 1 was
expected in the truth table. Another interesting phenomenon
was that currents up to a few hundred nA were measured at
the inputs of row 2 through 8. This suggests that there may be
sneak path current that is diverted from the desired outputs and
percolating to the inputs of the rows; however, the magnitude
of these currents does not affect the total output of the node
(0 or 1).



Fig. 10: Results of testing the 2-bit multiplier design vs.
simulated results for different input cases. Grey bars represent
Spice simulation results and red bars represent arrays test
results.

Fig. 11: Results of 10,000 sec duration retention testing for
all 64 devices in 8X8 crossbar array.

To rule out the effect of resistance changes during experi-
mental testing, ReRAM resistance drift was investigated. For
this, the resistance values of each device in the 8x8 array were
measured at an interval of 100 seconds for 10,000 seconds.
As seen in the retention data in Figure 11, all devices in
the LRS maintained stable resistance values for the duration
of the test, while some devices in the HRS exhibited subtle
resistance shifts. This is likely due to charge trap/detrap events
that are occasionally observed in HfO2 ReRAM devices [29].
While this variation might cause minor current variations, the
magnitude of the shifts are low and should not significantly
affect the performance of the multiplier circuits.

Spice-based simulations were performed for the multiplier
circuits. All devices in a column with gate OFF were set to
Ropen with a resistance of 1 GΩ while devices in columns
with gate ON were set to their measured resistance values.
As shown in Figure 10 and Figure 9, Spice simulations

Fig. 12: Resistance values of devices in LRS and HRS during
2-bit multiplier testing, Ro f f is tested at (left to right on graph)
12k, 24k, 54k, 108k, 1 MΩ, and 10Ω.

agreed well with experimental results for both 2-bit and 3-
bit multiplier designs. As shown in Figure 10, 2-bit multiplier
simulations verified the deviation from expected circuit perfor-
mance that was observed during hardware testing, namely that
sneak path currents at certain output nodes were significantly
lower than expected for an output value of “1”. Simulations
also verified that, in the case of 8x8 arrays, the first row of
devices primarily determines the output currents. This suggests
that by implementing an input at only one location, the 8x8
arrays effectively act as a current divider, and that future
designs will need to be optimized to better suit the crossbar
array architecture.

V. ANALYSIS OF HARDWARE REQUIREMENTS USING
CIRCUIT-LEVEL SIMULATION

1) Memory Window Variability: To investigate the impact
of ReRAM memory window on the performance of the mul-
tiplier circuit, the 2-bit multiplier was simulated with varying
Ro f f (HRS) device resistance values. All ReRAM cells in
OFF gate columns, Ropen, were set to 1 GΩ. In columns with
gate ON, resistance values for individual devices in the HRS
were varied from 12 kΩ to 10 MΩ while devices representing
the LRS were set to 6 kΩ. The resulting data are shown in
Figure 12 where each of the 6 colors correspond to a different
HRS value, the y-axis corresponds to the output currents in
log-scale, and the dotted line shows the threshold at which
the measured current was considered a ”1” output in the truth
table, for prior experiments.

Figure 12 shows that the outputs at node f0 were unaffected
by changes in HRS values. This is likely because the device
in row 1 column 1 is set to LRS, which allows it to pull
significant amounts of current when the gate is set to 1 for
column 1, regardless of the HRS values of other devices in
row 1. For case 1, where the output of f1 should be 0, a 12
kΩ HRS value yields an f1 output of 1. As HRS is increased,



however, the current at f1 decreases, and the output trends
towards 0. The opposite is observed in case 2, where based
on the truth table in Figure 7, f1 should have the output of 1.
At 12 kΩ HRS, f1 yields an output of 1, but f1 trends towards
an output of 0 as HRS increases. Case 3 and case 4 are even
more interesting because both of these trends can be observed.
In case 3, f3 yields the expected output of 1 for HRS of 12
kΩ, but trends towards 0 as HRS increases; however, f2 and
f1 should yield the expected output of 0 but yield a 1 for HRS
of 12 kΩ, and trend towards 0 as HRS increases. In case 4, we
observed the same pattern but with different expected outputs.
In case 4, f3, f2, and f1 yield the output of 1 for an HRS of
12 kΩ, but f2 and f1 are expected to be 0 while f3 is expected
to be 1. All 3 outputs trend towards 0 as HRS becomes larger.
In general, columns where row 1 devices were set to LRS
did not exhibit any meaningful differences with varying HRS
values. As expected, in the columns where row 1 devices were
set to HRS, the current outputs in the column decrease as the
magnitude of the HRS increases.

2) Resistance Variability: Lastly, the resistance variability
of ReRAM cells within the crossbar array was assessed.
Figure 13a shows the Ron and Ro f f spread for the 2-bit
measurements performed using the 8x8 crossbar array. Overall,
a median value of 5.72 kΩ and 57.45 kΩ was found for Ron
and Ro f f respectively showcasing a MW of ≈10 which is
similar to other ReRAM devices found in literature [30, 31].
While this MW is sufficiently large for most applications,
the variability observed, particularly in Ro f f , indicate possi-
ble variable current fluctuation compared to ideal simulation
operations. A heat map of the device resistance values in the
8x8 array is shown in Figure 13b, further highlighting the
variability in Ro f f values. The effect of this variability should
be investigated in the future with a focus on simulations,
highlighting the impact of cell-to-cell resistance variability on
digital in-memory computing performance.

VI. SUMMARY AND CONCLUSIONS

PATH-based in-memory computing using 1T1R arrays has
the potential to achieve high levels of efficiency and speed
in digital in-memory computing. This work demonstrated the
design and implementation of 2-bit and 3-bit multipliers using
PATH-based in-memory computing within 8X8 1T1R crossbar
arrays. The digital in-memory computing for these multipliers
relies on current flow percolating through the crossbar array
via the least resistive path (sneak paths) based on the pre-
programmed resistance values of the 1T1R cells. The 3-bit
multiplier testing within the arrays produced results in agree-
ment with the PATH-based design, while the 2-bit multiplier
testing showed discrepancies between the PATH-based design
and the test results. These discrepancies were later confirmed
via Spice simulations which produced similar results as the
arrays testing did for 2-bit multiplier, implying that the design
for 2-bit multiplier will need to be modified in the future. To
further investigate the causes for the 2-bit multiplier testing
results, the impact of 1T1R cell resistance drift on multiplier
performance was evaluated, revealing no significant drift or

Fig. 13: a) Box plot of resistance values of devices in LRS and
HRS during 2-bit multiplier testing. b) Heat map of resistance
values of devices in LRS and HRS during 2-bit multiplier
testing.

impact on multiplier performance. In addition, the effects
of varying memory window (Ro f f /Ron) for 1T1R cells was
evaluated through simulation by varying Ro f f values. Memory
window variation via simulations showed significant perfor-
mance differences, and these data will be evaluated to inform
future PATH-based in-memory compute designs. Simulation
results confirm array testing results, showing that the resistance
level of devices in the first row of the crossbar array heavily
impacts percolation of the current flow through the array, and
hence the performance of the multiplier computation results.
Thus, future designs need to better compensate for the impact
of current shunting through the array, especially with respect
to the first row of memory cells. Further, repeated measures of
1T1R cell resistance show higher variability in HRS than LRS,
as has been observed previously, and could directly impact in-
memory compute operations. In response to this cell-to-cell
variability, simulations and design efforts for PATH-based in-
memory computation architectures must be adjusted to better
compliment these 1T1R crossbar arrays.



REFERENCES
[1] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from edge to

core,” tech. rep., International Data Corporation, Framingham, 2018.
[2] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural

networks (pinns) for fluid mechanics: A review,” Acta Mechanica Sinica, vol. 37,
no. 12, pp. 1727–1738, 2021.

[3] J. S. Sims, W. L. George, S. G. Satterfield, H. K. Hung, J. G. Hagedorn,
P. M. Ketcham, T. J. Griffin, S. A. Hagstrom, J. C. Franiatte, G. W. Bryant,
et al., “Accelerating scientific discovery through computation and visualization
ii,” Journal of Research of the National Institute of Standards and Technology,
vol. 107, no. 3, p. 223, 2002.

[4] G. Pedretti et al., “A spiking recurrent neural network with phase-change mem-
ory neurons and synapses for the accelerated solution of constraint satisfaction
problems,” JXCDC, vol. 6, no. 1, pp. 89–97, 2020.

[5] J. Backus, “Can programming be liberated from the von neumann style?: A
functional style and its algebra of programs,” CACM, vol. 21, no. 8, pp. 613–641,
1978.

[6] W. Haensch, “Scaling is over—what now?,” in 2017 75th Annual Device Research
Conference (DRC), IEEE, 2017.

[7] L. Eeckhout, “Is moore’s law slowing down? what’s next?,” IEEE Micro, vol. 37,
no. 04, pp. 4–5, 2017.

[8] S. Petrenko, Big Data Technologies for Monitoring of Computer Security: A Case
Study of the Russian Federation, ch. Limitations of Von Neumann Architecture,
pp. 115–173. Springer, 2018.

[9] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2,
p. 117, 1998.

[10] B. J. Shastri et al., “Photonics for artificial intelligence and neuromorphic comput-
ing,” Nature Photonics, vol. 15, no. 2, pp. 102–114, 2021.

[11] B. Li, B. Yan, and H. Li, “An overview of in-memory processing with emerging
non-volatile memory for data-intensive applications,” in Proceedings of the 2019
on Great Lakes Symposium on VLSI, pp. 381–386, 2019.

[12] D. Bhattacharjee and A. Chattopadhyay, “Synthesis and technology mapping for in-
memory computing,” in Emerging Computing: From Devices to Systems: Looking
Beyond Moore and Von Neumann, pp. 317–353, Springer, 2022.

[13] S. Channamadhavuni, S. Thijssen, S. K. Jha, and R. Ewetz, “Accelerating ai
applications using analog in-memory computing: Challenges and opportunities,”
in Proceedings of the 2021 on Great Lakes Symposium on VLSI, pp. 379–384,
2021.

[14] M. R. H. Rashed et al., “Logic synthesis for digital in-memory computing,” in
Proceedings of the 41st IEEE/ACM ICCAD, pp. 1–9, 2022.

[15] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS-II: Express Briefs,
vol. 61, no. 11, pp. 895–899, 2014.

[16] S. Thijssen, S. K. Jha, and R. Ewetz, “Compact: Flow-based computing on
nanoscale crossbars with minimal semiperimeter,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 232–237, IEEE, 2021.

[17] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
novel data-structure and algorithms for efficient logic optimization,” in 2014 51st
ACM/EDAC/IEEE DAC, pp. 1–6, IEEE, 2014.

[18] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design principles
and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 10, pp. 2054–2066, 2013.

[19] S. Thijssen, S. K. Jha, and R. Ewetz, “Path: Evaluation of boolean logic using
path-based in-memory computing,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, pp. 1129–1134, 2022.

[20] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit
Theory, vol. 18, pp. 507–519, Sep 1971.

[21] A. Ascoli, R. Tetzlaff, L. O. Chua, J. P. Strachan, and R. S. Williams, “History erase
effect in a non-volatile memristor,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 63, no. 3, pp. 389–400, 2016.

[22] M. Wang et al., “A selector device based on graphene–oxide heterostructures for
memristor crossbar applications,” Applied Physics A: Solids and Surfaces, vol. 120,
no. 2, pp. 403–407, 2015.

[23] J. Solanki, K. Beckmann, J. Pelton, N. Cady, and M. Liehr, “Effect of resistance
variability in vector matrix multiplication operations of 1t1r reram crossbar arrays
using an embedded test platform,” in Proceedings of the IEEE 32nd Microelec-
tronics Design Test Symposium (MDTS), pp. 1–5, 2023.

[24] M. Liehr, J. Hazra, K. Beckmann, S. Rafiq, and N. Cady, “Impact of switching
variability of 65nm cmos integrated hafnium dioxide-based reram devices on
distinct level operations,” in Proceedings of the IEEE International Integrated
Reliability Workshop (IIRW), pp. 1–4, 2020.

[25] K. Beckmann, H. Manem, and N. Cady, “Performance enhancement of a time-delay
puf design by utilizing integrated nanoscale reram devices,” IEEE Transactions on
Emerging Topics in Computing, vol. 5, no. 3, pp. 304–316, 2016.

[26] N. Cady, K. Beckmann, W. Olin-Ammentorp, G. Chakma, S. Amer, R. Weiss,
S. Sayyaparaju, M. Adnan, J. Murray, M. Dean, et al., “Full cmos-memristor imple-
mentation of a dynamic neuromorphic architecture,” in GOMACTech Conference,
2018.

[27] M. Liehr, J. Hazra, K. Beckmann, W. Olin-Ammentorp, N. Cady, R. Weiss,
S. Sayyaparaju, G. Rose, and J. Van Nostrand, “Fabrication and performance of
hybrid reram-cmos circuit elements for dynamic neural networks,” in Proceedings
of the International Conference on Neuromorphic Systems, pp. 1–4, 2019.

[28] C. Li et al., “Analogue signal and image processing with large memristor crossbars,”
Nature Electronics, vol. 1, pp. 52–59, Jan 2018.

[29] N. Raghavan, R. Degraeve, A. Fantini, L. Goux, D. J. Wouters, G. Groeseneken,
and M. Jurczak, “Modeling the impact of reset depth on vacancy-induced filament
perturbations in hfo2 rram,” IEEE electron device letters, vol. 34, no. 5, pp. 614–
616, 2013.

[30] Y. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. S. Kar, D. J.
Wouters, G. Groeseneken, J. A. Kittl, M. Jurczak, et al., “Balancing set/reset pulse
for 1010 endurance in hfo2/hf 1t1r bipolar rram,” IEEE Transactions on Electron
devices, vol. 59, no. 12, pp. 3243–3249, 2012.

[31] Y.-T. Su, H.-W. Liu, P.-H. Chen, T.-C. Chang, T.-M. Tsai, T.-J. Chu, C.-H.
Pan, C.-H. Wu, C.-C. Yang, M.-C. Wang, et al., “A method to reduce forming
voltage without degrading device performance in hafnium oxide-based 1t1r resistive
random access memory,” IEEE Journal of the Electron Devices Society, vol. 6,
pp. 341–345, 2018.


