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Abstract

Scaling laws dictate that the performance of AI models
is proportional to the amount of available data. Data aug-
mentation is a promising solution to expanding the dataset
size. Traditional approaches focused on augmentation us-
ing rotation, translation, and resizing. Recent approaches
use generative AI models to improve dataset diversity. How-
ever, the generative methods struggle with issues such as
subject corruption and the introduction of irrelevant arti-
facts. In this paper, we propose the Automated Generative
Data Augmentation (AGA). The framework combines the
utility of large language models (LLMs), diffusion mod-
els, and segmentation models to augment data. AGA pre-
serves foreground authenticity while ensuring background
diversity. Specific contributions include: i) segment and su-
perclass based object extraction, ii) prompt diversity with
combinatorial complexity using prompt decomposition, and
iii) affine subject manipulation. We evaluate AGA against
state-of-the-art (SOTA) techniques on three representative
datasets, ImageNet, CUB and iWildCam. The experimen-
tal evaluation demonstrates an accuracy improvement of
15.6% and 23.5% for in and out-of-distribution data com-
pared to baseline models respectively. There is also 64.3%
improvement in SIC score compared to the baselines.

1. Introduction

Deep learning models often struggle with domain adap-
tation when exposed to new conditions, such as changes in
weather, lighting, and geographic locations [1]. This issue
is particularly evident in applications like rare bird or an-
imal species identification, where insufficient training data
can hinder the model’s ability to generalize effectively [2].
Adding more training data from diverse domains can help
alleviate this issue; however, collecting high-quality and rel-
evant data is inherently costly [3].

Significant research efforts have been dedicated to tra-
ditional data augmentation approaches based on geometric
modifications, including cropping, translations, and rota-

tions [2]. The limitations of these techniques is that the sub-
ject features may be altered and the limited image diversity.
On the other hand, the recent advancements within gener-
ative AI is providing new opportunities for data augmenta-
tion [2] using large language models (LLMs) [4], vision-
language models (VLMs) [5, 6], image synthesis mod-
els [7, 8]. In particular, the ability to synthesize photo real-
istic images from natural language [9, 10, 11]. These mod-
els demonstrate exceptional performance on various tasks
such as text-to-image generation [12, 13], image-to-image
modification [14, 15], and image inpainting [16]. Recent
work shows that large-scale diffusion models can be fine-
tuned to generate augmented images for improving recog-
nition tasks [13]. While fine-tuning image generation mod-
els for data augmentation is effective, their complexity and
the need for replication across diverse datasets often make
it impractical [17]. Methods for augmenting visually re-
alistic images using text-guided techniques without model
fine-tuning are proposed in [15, 17, 18]. However, our case
study indicates that diffusion models struggle to augment
fruitful training data from text prompts alone, often deviat-
ing from the intended subjects in the generated images.

In this paper, we propose the Automated Generative Data
Augmentation framework called AGA to augment the train-
ing dataset to enhance fine-grained classification perfor-
mance. Our method aims to alter the subjects minimally
while introducing variability in the backgrounds during the
augmentation process. AGA uses image segmentation to
isolate subjects, a pre-trained LLM for varied background
captions, Stable Diffusion for diverse background creation,
and integrates subjects seamlessly with backgrounds. Au-
tomatic background image generation faces two main chal-
lenges. The first is creating diverse backgrounds without
corrupting the foreground, a problem often overlooked by
existing methods effectively addressed by the subject iso-
lation technique of AGA . The other challenge is creating
the right LLM prompt automatically. AGA solves this by
including a prompt generation engine equipped with hier-
archical instruction, spatial and temporal modality fixers.



Figure 1. Example augmentation using text-to-image, image-to-image, inpainting, and our approach on ImageNet10. Images generated by
text-to-image and image-to-image significantly lose foreground information. Inpainting provides comparatively better results but corrupts
the foreground with unnecessary modifications. AGA is able to produce diverse background images while keeping the foreground infor-
mation grounded with original images.

This engine automatically produces a diverse set of text
prompts for the LLM while using a small library of sam-
ple instructions, which ultimately ensures the diversity in
the generated backgrounds. This paper makes the follow-
ing key contributions:

• We introduce AGA , an innovative framework for
data augmentation that focuses on diversifying back-
grounds while preserving the subject of interest with
various affine transformations, leading to robust and
explainable classifiers.

• AGA leverages large language and vision models to
automatically create diverse training images, eliminat-
ing the need for manual user input or fine-tuning.

• AGA improves the accuracy of fine-grained classifica-
tion from 78.4% to 93.6% on a reduced version of the
ImageNet dataset.

The rest of the paper is organized as follows: Section 2
discusses related work, Section 3 motivates our work with a
case study, Section 4 presents our methodology. The exper-
imental results are discussed in Section 5 and finally, Sec-
tion 6 concludes the paper with potential future work.

2. Related Works

Image augmentation is a pivotal method for improving
the performance and generalization ability of deep learn-
ing models. Early works often resort to geometric trans-
formations such as flipping, cropping, and rotation, color
space transformations, kernel filters [2]. Beyond simple
manipulation, advanced techniques like Mixup [19] and
CutMix [20] introduce advanced techniques such as mix-
ing images to create new training examples and encourage
the model to learn more robust representations. Addition-
ally, automated augmentation methods such as RandAug-
ment [21] randomly select and apply a sequence of transfor-
mations with varying magnitudes, eliminating the need for

manual tuning of augmentation hyperparameters. However,
these techniques often generate images which are not only
visually unnatural [15] but also loses subject information.

With the advent of generative AI models, particularly
diffusion models, image augmentation has witnessed a
paradigm shift and these models are widely adopted in im-
age generation [9, 12, 13, 15, 17, 22, 23]. Large-scale
image-text datasets and models like CLIP [24] have enabled
SOTA diffusion models to perform versatile tasks such as
text-to-image generation, image-to-image transformation,
and inpainting through text-guided prompts. Several stud-
ies have investigated how to enhance the classification ac-
curacy using synthetic images generated by diffusion mod-
els [25, 26]. One study showed that it is possible to train
a classifier for ImageNet solely using synthetic Data, lead-
ing to a performance improvement when applied to real-
world tasks [27]. While another investigation demonstrates
the effectiveness of fine-tuning Imagen [28] for data aug-
mentation on ImageNet [13]. These fine-tuning based ap-
proaches face practical challenges due to complexity, cost,
and dataset-specific requirements. Recent works utilize off-
the-shelf diffusion models to diversify vision datasets with-
out the need for fine-tuning [15, 17].

Recent works create synthetic images using either text-
to-image [12] or image-to-image [14] methods, with text-
guided image generation. Image-guided inpainting [16]
also utilizes image modification to introduce diversity in the
image data. However, these techniques significantly distort
required subject information. To solve this issue and gener-
ate synthetic images without losing subject information, we
propose AGA . This is an automatic segmentation-guided
technique that utilizes recent object detection and segmenta-
tion models [29, 30] to augment data. AGA generates effec-
tive synthetic images while keeping foregrounds grounded
with the original images.



Figure 2. The methodology of the AGA framework. The inputs are an image and originals class name, while the outputs are corresponding
augmented images. Subject isolation from input is performed by masked image generation. The domain captions generation engine
generates diverse background prompts, which are utilized by stable diffusion to generate background images. Finally, these background
images and isolated subjects are combined to generate augmented images.

3. A Motivating Case Study

Text-to-image, image-to-image, and inpainting are three
key image augmentation techniques extensively utilized
in recent image augmentation works. We conducted a
case study of these methods for several datasets like Ima-
geNet [31], CUB [32], and iWildCam [33], to understand
their advantages and shortcomings. We discuss our obser-
vations using a representative image of a bird from the CUB
data set, as illustrated in Figure 1.
Text-to-image: It can be observed that text-to-image, while
capable of generating a high diversity of images, often pro-
duces samples in which the subject is so drastically altered
that even human observers struggle to identify it. We find
in the figure that the identifying mark of the bird, the red
ring around the neck, is missing in the augmented images,
which would translate into failures for downstream tasks.
Image-to-image: This type of augmentation frequently re-
sults in a significant loss of subject detail, akin to the image-
to-text method. We see that the bird is very hard to spot in
the augmented image, which might make the downstream
object detection task tougher. The prairie chicken in the ex-
ample appears to have been transformed into a parrot.
Inpainting: This method modifies the image within a
masked area based on a text prompt but can inadvertently
corrupt the subject’s appearance. We see that the orange/red
identifying ring is misplaced in one of the augmented im-
ages, thus this method can corrupt the subject.

In contrast, our proposed approach does not add any ar-
tifacts to the subject image. It successfully generates aug-
mented images with diverse backgrounds while preserving
the authenticity of the subject as seen in the augmented im-
ages by AGA . This form of data augmentation has the po-

tential to translate into better performance in terms of fine-
grained classification, generalizability, and explainability.
Our proposed approach is presented in the next section.

4. Automated Generative Data Augmentation

In this section, we present the methodology of the AGA
framework. The input to the framework is an image and
the corresponding class name. The output is an augmented
image based on the provided inputs. The framework aug-
ments an image in three main steps: i) subject isolation
through masked image generation, ii) the generation of
domain-specific captions for diverse backgrounds, and iii)
augmented image editing for combining the foreground and
background. An overview of the AGA framework is shown
in Figure 2.

4.1. Masked Image Generation

This step deals with isolating the subject of an input im-
age from its background. In general, such subject masks
are not readily available beside the image and class name.
Therefore, dense mask estimation models can be used to
correctly generate pixel-level masks for subjects using the
image and text (class name) only.

AGA includes Segment Anything Model (SAM) [29],
one of the SOTA image segmentation tool, for this pur-
pose. SAM is capable of segmenting the subject from an
image based on some guiding inputs such as single or mul-
tiple point locations on an object, or the object’s bounding
box, to create precise segmentation masks. As the train-
ing dataset usually does not include the point locations or
bounding box for the subject, object detection models can
be utilized to generate the boxes in this regard. Bounding



boxes provide approximate spatial locations of objects of
our interest in the image.

Figure 3. Masked image generation process diagram

There are several SOTA object detection models avail-
able, like YOLO [34], GoundingDINO [30]. In AGA work-
flow, GroundingDINO model is used to generate bounding
box due to its superior performance. Empirical analysis
shows that for fine-grained text prompts, GroundingDINO
often fails to provide optimal bounding box results. For in-
stance, when attempting to locate the bounding box for a
specific bird class such as water ouzel, the hierarchical
naming of the class text bird proves more effective than
the fine-grained class name. Therefore, AGA utilizes super-
classes as text prompts to provide clearer input instructions
to the GroundingDINO for object bounding box creation.

The details of proposed mask generation process is
shown in Figure 3. GroundingDINO generates the bound-
ing box, indicated in red, for the subject of interest, which
in this case is the spider. This bounding box is then feed to
the SAM to guide itself to produce the segmentation mask.
Once the mask is obtained, the masked image of the subject
is created by combining the original image with the seg-
mentation mask.

4.2. Domain Caption Generation

In the AGA pipeline, the generation of domain captions
is a crucial task, as it directly influences the diversity of the
background images produced. These captions are automat-
ically generated through a two-step process using a prompt
generation engine. Initially, the engine samples from three
predefined sets: the instruction set (Ins), the background
set (Bgr), and the temporal modality set (Temp) as the
prompt fixers. The instruction set ensures the prompt be-
gins with an appropriate command, the background set in-
troduces spatial diversity, and the temporal set enriches the
prompt with times of the day and seasons.

A SOTA LLM, Llama, is employed to transform these
engineered prompts into detailed captions that guide the vi-
sion diffusion model in generating the background images.
Furthermore, a list of words to avoid is incorporated to re-
fine the output, ensuring the prompts remain focused and
relevant. The words to avoid include the class names or
subject of the image dataset to be augmented, as those sub-

ject might corrupt the background prompt. This structured
approach ensures each dataset receives tailored prompts, en-
hancing the resulting image diversity, which is described in
Figure 4. Moreover, each part of the prompt results in a
combinatorial increase in diversity. This reduces the num-
ber of prompt samples that are required to be provided for
each category of instructions.

Figure 4. Prompt generation for background diversity.

4.3. Augmented Image Generation

In this step, utilizing the masked image obtained from
Section 4.1 and the background caption prompt from Sec-
tion 4.2, AGA generates a new image with an altered back-
ground. The caption prompt serves as the input for a large
vision model, which is responsible for creating the back-
ground image. Among several text-to-image generation
models available, such as DALL-E [35], Imagen [28], and
Stable Diffusion [12], AGA employs the Stable Diffusion
model for this purpose. Once we have both the masked
image and the background image produced by the vision
model, AGA proceeds to create the new augmented image.
The merging technique used ensures that the background
image fills all areas with the masked image, except where
the subject is located. This method allows the subject to
remain prominent against the newly generated background.

Additionally, to enhance diversity without altering the
semantic content of the image, AGA applies traditional
affine transformations to the masked image prior to merg-
ing. These transformations include flipping (f ), rotating (ω),
and scaling (s) the subject. Figure 5 illustrates these image
editing processes and the respective transformations, show-
casing how they contribute to the diversity of the final aug-
mented image while preserving its original meaning.



Figure 5. Merging image mask with the generated backgrounds
while utilizing affine transformations.

5. Experimental Evaluation

We implement the AGA framework in Python, utilizing
open source APIs for machine learning models. The im-
plementation runs on a machine equipped with an NVIDIA
A100 graphics card. The following sections provide de-
tailed descriptions of the dataset preparation, evaluation
setup, and key findings.

Setup. We created a subset of the ImageNet [31] dataset,
named ImageNet10, by randomly selecting 10 classes. This
subset comprises 13, 046 and 500 training and validation
images across the following classes. We refer to this train-
set as the original dataset and generate synthetic images
from it using the AGA methodology. In subsequent dis-
cussions, models described as trained with augmented data
refer to those trained using both the original and augmented
datasets. Beside this ImageNet10 dataset, we utilize iWild-
Cam [33] dataset, which contains a large collection of
global camera trap images. Similarly, we extend our exper-
iments to the CUB [32] dataset, a fine-grained classification
set of 200 bird species from Flickr. We maintain the same
data distribution ratio as in the previous work‘[15] for train
and test set to ensure a fair comparison. Detailed dataset
descriptions are included in the supplementary materials.

We evaluate the AGA method across two main cate-
gories. First, we evaluate our pipeline on in-distribution
data using the ImageNet validation set. Second, we as-
sess the robustness of the augmentation method on out-of-
distribution ImageNet samples. For this we use the Im-
ageNet variations: ImageNet-Sketch [36] and ImageNet-
V2 [37] where ImageNet-Sketch is the sketch version and
ImageNet-V2 is the reproduced version of ImageNet re-
spectively. The CUB and iWildCam datasets are used to
conduct a comparison study with the previous work [15].
We consider two types of models for our experiments: those
trained with original image data and those trained with aug-
mented image data. For comparison, we maintain base-
line hyperparameters while augmenting the original training
data with augmented data at various scales.

We also compare with other augmentation techniques

Figure 6. The figure shows the top-1 accuracy with respect to
the degree of data augmentation (AGA) for the ResNet-50 and
ResNet-101 models on ImageNet10. It can be observed that the ac-
curacy rapidly improves in the beginning while showing an overall
upward trend until 10 times augmentation.

from recent times: (1) MixUp [19], a data augmentation
technique improves deep learning model generalization by
creating virtual training examples through convex combi-
nations of original data points and labels, to enhance model
robustness. (2) CutMix [20], an approach that creates mixed
samples by randomly slicing and combining patches from
multiple training images. (3) RandAugment [21], simpli-
fies data augmentation by reducing the search space for
augmentation strategies, automating the selection of oper-
ations. (4) ALIA [15] analyzes training images to identify
diverse background captions, then uses this information to
create variations of the images with different backgrounds
and contexts. (5) DA-Fusion [23] use diffusion models to
generate diverse, high-quality samples, improving model
performance by synthesizing realistic variations of training
data. (6) Beyond Generation [22] utilize text-to-image mod-
els for object detection and segmentation, enhancing visual
understanding tasks. In addition to these experiments, we
include the results of explainability enhancements for ma-
chine learning models using AGA augmented data.
Implementation. We employ ResNet variants 18, 50,
101, 152 as the classification models for training. We
train these CNN models from scratch using PyTorch’s stan-
dard training script [38] which includes PyTorch’s default
hyperparameter set [39]. AGA utilize a Llama-2-13B-
GPTQ from Hugging-Face [40] to create background im-
age caption prompts. These prompts are generated for each
image using our prompt engineering method outlined in
Section 4.2. Background images are then generated us-
ing the Stable Diffusion XL [7] text-to-image model from
Hugging-Face, with default hyperparameters. The prompt
generation engine operates with three distinct modality sets:
an instruction, spatial, and temporal modality set size of 3,
18, and 13 respectively. Supplementary materials include
additional training and hyperparameter descriptions.



Figure 7. The figure displays the original image samples from
ImageNet10 and the generated images using AGA . The generated
images effectively preserve the authenticity of the subjects while
exhibiting diverse backgrounds. Additional synthetic images are
shown in supplementary element.

The remainder of this section is organized, as follows:
We first evaluate the effectiveness of AGA on fine-grained
image classification in Section 5.1. Next, the generalizabil-
ity is evaluated in Section 5.2. Lastly, the impact on the
explainability is evaluated in Section 5.3. Supplementary
materials contain additional evaluation results.

5.1. Fine-grained Image Classification

Accuracy vs. Degree of Data Augmentation: We first
evaluate the improvement in classification accuracy with re-
spect to the amount of data augmentation in Figure 6. The
figure shows the classification accuracy of a ResNet-50 and
a ResNet-101 model on the ImageNet10 dataset. It can be
observed that the classification accuracy rapidly improves
for data augmentation in the range of 1X to 3X. After that,
there are still average improvements but not as significant.
In contrast to prior work by Azizi et al. [13], which re-
ported performance degradation in ResNet-50 classification
accuracy when the size of augmented data exceeded four
times the original dataset. The results indicate that with
AGA, the performance of both ResNet-50 and ResNet-101
models increases with the scale of synthetic data augmenta-
tion. Specifically, we scale up to ten times the original size

of the ImageNet10 dataset, which contains approximately
13, 000 images. As illustrated in Figure 6, validation accu-
racy trends upwards as the dataset size increases, without
the performance degradation observed in the prior study.
This suggests that AGA does not compromise baseline per-
formance, even at high augmentation scales.

Comparison with SOTA: We now turn our attention
to comparing the performance of AGA with previous ap-
proaches to data augmentation on the ImageNet10, iWild,
and CUB data sets, which is shown in Figure 8. The fig-
ure shows the performance of AGA with data augmentation
up to 2X, MixUP [19], CutMix [20], RandAug [21], DA-
Fusion [23], Beyond Generation [22], and ALIA [15]. Re-
call that former three methods are traditional data augmen-
tation methods while the latter three are based on generative
AI. We only show results of RandAug and ALIA on iWild
and CUB because the source code cannot easily be executed
on ImageNet10 dataset.

Figure 7 displays samples of images generated by AGA
for ImageNet10. The figure shows that AGA successfully
augments the input image with diverse backgrounds while
preserving the properties of the foreground subject. We
compare four ResNet models validation accuracy when the
models are trained with (1) real images and (2) augmented
dataset at various scales. Figure 8 reports validation results
of the respective models for AGA, along with CutMix and
MixUp on the ImageNet10 chart. While CutMix, MixUp,
and the baseline rely solely on original ImageNet10 images,
our study extends to include augmented data up to two times
the original dataset size (denoted as 1X to 2X). All models
are evaluated using the same original ImageNet validation
dataset. Our findings indicate that AGA consistently outper-
forms both the baseline and other augmentation techniques
across all tested scales.

Following this, we compare the performance of AGA
with other augmentation techniques such as CutMix,
MixUp, Beyond Generation, DA-Fusion, and ALIA on the
CUB and iWild datasets. Using AGA , we generate syn-

Figure 8. This figure presents bar charts comparing validation performance across the ImageNet10, iWildCam, and CUB datasets. For
ImageNet10, the ResNet-50 model is trained from scratch with both original data and augmented data in various scales, shows AGA
significantly outperforming other methods. In contrast, for iWildCam and CUB datasets, we employ a pretrained ResNet-50 model as
used in ALIA. AGA consistently exceeds the performance of the baseline, CutMix, RandAug, DA-Fusion, and Beyond Generation at both
one-time (1X) and two-time (2X) augmentation levels, and surpasses ALIA in the 2X augmentation scenario for iWildCam. For the CUB
dataset, AGA again outperforms all competitors for both 1X and 2X augmentations.



Table 1. Top-1 Accuracy on ImageNet10 and its out-of-distribution variations. Our approach involves training models with both
real ImageNet10 training images and synthetic images generated through our pipeline. We perform an in-distribution evaluation on
ImageNet10-val and out-of-distribution evaluation on ImageNet-V2 and ImageNet-Sketch datasets. We directly applied the trained models
to these out-of-distribution evaluation datasets without further fine-tuning. The margin of improvement (!) over baseline models trained
with only real images.

Model

In-Distribution Out-of-Distribution

ImageNet10-Val ImageNet-V2 ImageNet-S

Baseline AGA ! Baseline AGA ! Baseline AGA !

ResNet-18 88.80% 93.40% 4.60 78.43% 89.21% 10.78 33.46% 47.75% 14.29
ResNet-50 86.80% 94.60% 7.80 81.37% 85.29% 3.92 27.78% 50.09% 22.31

ResNet-101 78.40% 93.60% 15.60 65.69% 89.22% 23.53 28.77% 46.77% 18.00
ResNet-152 81.60% 93.80% 12.20 72.55% 88.24% 15.69 27.98% 46.57% 18.59

thetic images at multiple scales and follow the training
methodology outlined in ALIA’s scripts to enable direct
comparison. Figure 8 displays the validation performances
on iWildCam, with our method surpassing all others at
twice the augmentation scale. In addition to that, Figure 8
also depicts AGA outperforming competing approaches in
CUB for both +1X and +2X augmentation scales.

5.2. Evaluation of Impact on Generalizability

Machine learning models typically struggle with out-of-
distribution data, but models trained with AGA-augmented
data show commendable performance in such cases. We as-
sess our image augmentation method on ImageNet-Sketch
and ImageNet-V2 datasets, training the CNN models with
both original images and a combination of original and aug-
mented images. For evaluation, we adhere to the same
validation dataset across all models. The ImageNet-Val
dataset is used for in-distribution testing, while validation
data from ImageNet-Sketch and ImageNet-V2 are used for
out-of-distribution testing.

Our results are summarized in Table 1, which includes
performance metrics for four ResNet models on both in-
distribution and out-of-distribution data, with the specific
gains over baseline models quantified as ! in the table. The

table highlights up to 15.6% improvements in accuracy for
the ResNet-101 model for ImageNet10-Val when trained
with AGA augmented data. We also see significant perfor-
mance improvements for out-of-distributions, proving the
fact that AGA augmented data increase generalizability of
fine-grained classification models.

5.3. Evaluation of Impact on Explainability

Explainability is an increasingly critical aspect of AI,
particularly in understanding how machine learning models
make decisions. Our study explores the impact of subject-
oriented data augmentation provided by AGA on model ex-
plainability. By enhancing image diversity through aug-
mentation, we aim to develop more robust and interpretable
classifiers. We train models on both the baseline Ima-
geNet10 dataset and augmented data to compare perfor-
mance. For visualizing how models focus on relevant areas
within images, we employ GradCam [41], a tool that high-
lights significant regions influencing model decisions. In
our findings, as shown in Figure 9, we compare models at
the 85th epoch, trained solely on real ImageNet10 data and
those trained on ImageNet10 augmented data. The model
trained only on real data incorrectly classifies three specific
images (Figure 9a), whereas the model trained with AGA-

(a) Baseline Model fails to identify samples correctly (b) Both baseline and augmented models correctly identified the sample

Figure 9. This figure shows the impact of the data augmentation on explainability using feature attributions computed using GradCam [41].
(a) images only correctly classified by the classifier trained using data augmentation. (b) images correctly classified by both the original
model and the model trained with data augmentation. The model trained with only the original real data fails to identify the bird correctly
and focuses on the scatter pixel region. However, it can be observed that even when both models provide the correct classification, the
augmented model provides better attributions of the object. More visualization results are presented in supplementary material.



Table 2. Comparison of baseline and AGA-augmented training for four ResNet model variants (18, 50, 101, and 152) using the AIC, SIC,
and insertion tests. We perform an in-distribution evaluation on ImageNet10-val and an out-of-distribution evaluation on ImageNet-V2 and
ImageNet-Sketch datasets. We directly apply the trained models to these out-of-distribution evaluation datasets without further fine-tuning.

Metric Model

In-Distribution Out-of-Distribution

ImageNet10-Val ImageNet-V2 ImageNet-S

Baseline AGA Baseline AGA Baseline AGA

AIC(→)

ResNet-18 0.717 0.764 0.694 0.824 0.576 0.532
ResNet-50 0.792 0.815 0.779 0.799 0.670 0.539
ResNet-101 0.619 0.843 0.682 0.798 0.524 0.598
ResNet-152 0.599 0.878 0.560 0.865 0.521 0.614

SIC(→)

ResNet-18 0.745 0.816 0.811 0.880 0.681 0.640
ResNet-50 0.816 0.882 0.792 0.877 0.679 0.639
ResNet-101 0.527 0.866 0.579 0.795 0.437 0.654
ResNet-152 0.557 0.872 0.541 0.860 0.488 0.644

Insertion(→)

ResNet-18 0.220 0.299 0.202 0.271 0.173 0.211
ResNet-50 0.235 0.320 0.215 0.290 0.190 0.248
ResNet-101 0.115 0.443 0.115 0.386 0.120 0.291
ResNet-152 0.128 0.446 0.120 0.406 0.131 0.294

augmented data correctly identifies these images. GradCam
visualizations reveal that the baseline model often focuses
on irrelevant pixels, whereas the AGA-trained model more
accurately targets pixels within the subject area. This ex-
plains that the augmented data helps the model to learn cor-
rectly. Further comparisons using images correctly clas-
sified by both models (Figure 9b) show that the AGA-
augmented model more consistently identifies correct sub-
ject areas, underscoring the benefits of diverse training data
for improved model accuracy and explainability.

Additionally, we conduct quantitative explainabil-
ity analysis utilizing performance information curves
(PICs) [42], which include two components: the softmax
information curve (SIC) and the accuracy information curve
(AIC). The PICs serve as a metric to assess model per-
formance relative to the informational content (entropy)
present in the input data. The SIC reflects the softmax value
for the input’s original class, contributes to the model ex-
plainability assessment. Moreover, an insertion test [43]
was also conducted to gauge model training performance
across different methods. Table 2 presents the AIC, SIC,
and insertion test outcomes for various ResNet model vari-
ants (18, 50, 101, and 152). The AGA-augmented mod-
els generally exhibited improved performance across most
cases, barring two instances in both AIC and SIC eval-
uations. This discrepancy can be attributed to the out-
of-distribution nature of the ImageNet-V2 and ImageNet-
Sketch datasets relative to the models trained on the Im-
ageNet10 dataset and its augmented variant. Augmenting
with additional data caused smaller models to struggle with
class confusion, reducing performance in certain scenarios.

6. Conclusion and Future Work

We introduce AGA, a novel data augmentation method
designed to address data scarcity in fine-grained image

recognition. Our approach integrates image segmentation,
automated background caption generation, and diffusion-
based image synthesis to diversify backgrounds while
maintaining the subject’s integrity, thus enhancing train-
ing datasets for improved fine-grained classification perfor-
mance, especially in low-data situations. AGA reveals that
additional generated data assists the deep learning model
in concentrating on the expected subject regions, as evi-
denced by the Grad-CAM attribution method. The frame-
work also demonstrates strong generalization on out-of-
distribution data. AGA experiences compatibility issues
concerning proper subjects and backgrounds. It occasion-
ally generates visually inconsistent synthetic images by
combining subjects with contextually inappropriate back-
grounds. This limitation underscores the potential for fu-
ture research to explore new methods for generating images
that maintain subject integrity while ensuring compatibil-
ity with backgrounds. Our code is publicly available via
https://github.com/Fazle045/AGA.git.
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