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Abstract—Today’s high performance computing (HPC) systems
are limited by the expensive data movement between processing
and memory units. An emerging solution strategy is to per-
form in-memory computing (IMC) using non-volatile memory.
However, state-of-the-art in-memory computing paradigms fail to
simultaneously deliver high precision and high energy-efficiency.
Analog in-memory computing is extremely energy-efficient but
inherently vulnerable to errors. In contrast, digital in-memory
computing based on Boolean logic is robust to errors but less
energy-efficient. In this paper, we propose a new paradigm
called hybrid analog-digital in-memory computing. The paper
also proposes the associated in-memory computing platform and
design automation tool chain needed to perform computation
using the paradigm. The paradigm is capable of performing
matrix-vector multiplication with both high energy-efficiency and
precision. The key idea of the paradigm is to first decompose
the most significant bits (MSBs) of the desired computation
into Boolean functions and the least significant bits (LSBs) into
matrix-vector multiplication operations. Next, the operations are
mapped to digital and analog in-memory computing hardware,
respectively. The proposed paradigm is evaluated using applica-
tions from the domains of structural engineering, mathematics,
and statistics. Compared with analog in-memory computing, the
proposed paradigm is capable of meeting the constraints on
the computational accuracy. Compared with digital in-memory
computing, systems, power, speed, and area are respectively
improved with 2.44X, 2.45X and 2.32X.

I. INTRODUCTION

The simulation of complex physical systems is integral to
predicting and mitigating the impact of catastrophic events.
Complex physical systems within high-energy physics [22],
weather forecasting [21], and biology [25] are modeled using
systems of partial differential equations (PDEs). These models
are commonly required to be simulated for months using
high performance computing (HPC) systems. The increasing
demand for large scale simulation is putting undue pressure
on the underlying computational substrates [8]. Unfortunately,
it is notoriously difficult for HPC systems based on von-
Neumann architecture to handle exascale or even petascale
data. Mainly, due to the separation of memory and computing
units, which translates into power hungry and bandwidth
limited data transfer [30].

An emerging solution strategy is to perform in-memory
computing using emerging non-volatile resistive devices.
Non-volatile resistive devices are two terminal devices with
programmable resistance, which includes resistive random
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access memory (ReRAM), phase change memory (PCM),
spin-transfer torque magnetic random access memory (STT-
MRAM). By integrating the devices in dense crossbar ar-
rays, the amount of data transfer on the system bus can be
greatly reduced by performing in-memory computation. The
acceleration of matrix-vector multiplication (MVM) using in-
memory computing has recently attracted significant attention
because it is the dominating computational kernel within
many important applications. In particular, it is the dominating
computational kernel within the simulation of physical sys-
tems within scientific computing applications. Consequently,
it is not surprising that the acceleration of MVM has been
extensively explored using both analog and digital in-memory
computing paradigms.

Analog in-memory computing is based on performing ana-
log MVM using the natural multiply-and-accumulate feature
of memristor crossbar arrays, which is extremely energy-
efficient [19]. Unfortunately, analog in-memory computing is
inherently vulnerable to errors introduced by random tele-
graph noise, sneak currents, temperature fluctuations, and other
sources of variation [11]. While the relaxed precision may be
acceptable for image processing [17] and artificial intelligence
applications [18], computation within scientific computing
applications must meet strict precision requirements [12].

Digital in-memory computing is focused on executing
Boolean functions in-memory. The acceleration of MVM using
digital in-memory computing has been investigated using logic
families such as Material Implication (IMP) [3], MAGIC [14],
programmable OR plane [7], path-based logic [28]. While the
robustness of digital computing allows arbitrary precision re-
quirements to be satisfied, the energy-efficiency is substantially
lower than for analog in-memory computing. Consequently,
neither of the state-of-the-art in-memory computing paradigms
can deliver both high precision and high energy efficiency.

In this paper, we propose a new computing paradigm called
hybrid analog-digital in-memory computing. The paradigm
is capable of performing matrix-vector multiplication with
high energy-efficiency and precision. The paper also proposes
the associated in-memory computing platform and design
automation tool chain needed to perform computation using
the platform. The key idea is to decompose the most significant
bits (MSBs) of the desired computation into Boolean func-
tions and the least significant bits (LSBs) into matrix-vector
multiplication operations. Next, the respective kernels are
mapped to digital and analog in-memory computing hardware.



TABLE I: Properties of previous and proposed computing paradigms.

Computing Paradigm Work in Precision Energy Efficiency In-Memory Computation
Digital CMOS based Computing [9, 29, 30] high low no
Analog In-Memory Computing [8, 17, 26, 32] limited very high yes
Digital In-Memory Computing [3, 7, 14, 28] high moderate yes

Hybrid Analog-Digital In-Memory Computing (Proposed) high high yes

Fig. 1: (a) Analog in-memory computing using analog MVM
and (b) digital in-memory computing using Boolean logic.

The experimental evaluation validates the advantages of the
hybrid analog-digital paradigm over both analog and digital in-
memory computing, respectively. When utilizing the proposed
paradigm to accelerate the simulation of complex physical
systems, power, area, and latency is improved by 2.44X, 2.45X
and 2.32X respectively. The proposed paradigm also gains
620X and 493X speedup and energy-efficiency over GPUs.

The remainder of the paper is organized as follows: pre-
liminaries and limitations of previous work in Section II.
The hybrid analog-digital in-memory computing paradigm is
outlined in Section III. The synthesis methodology is presented
in Section IV. The proposed architecture is discussed in V. The
experimental evaluation is presented in Section VI. The paper
is concluded with summary and future work in Section VII.

II. PRELIMINARIES

In this section, we review the state-of-the-art techniques of
accelerating MVM using analog and digital in-memory com-
puting. Next, we compare with the proposed hybrid paradigm.

A. Analog in-memory computing

The concept of performing analog matrix-vector multipli-
cation using the natural multiply-and-accumulate feature of
memristor crossbar arrays is shown in Figure 1(a) [8, 17, 26,
32]. The elements of a matrix can be represented using the
conductance of the corresponding memristors. By applying a
voltage input vector to the wordlines, analog matrix vector
multiplication is performed using Ohm’s law and Kirchoff’s
current law. The output vector is obtained by measuring the
output currents from the bitlines. Digital-to-analog converters

(DACs) and analog-to-digital converters (ADCs) are used to
convert signals between the analog/digital domain.

While analog in-memory computing is extremely energy-
efficient, the computation is vulnerable to errors introduced
by parasitics, random telegraph noise (RTN) [4], and other
variations [1, 20]. Many prominent architecture level studies
have proposed to overcome this “precision challenge” by
treating crossbars as fixed-point multipliers. Next, arbitrary
high-precision is emulated using paradigm based on bit-
slicing and shift-and-add operations [13, 26]. Unfortunately,
the concept only works for digital computing paradigms where
the precision is deterministic. It is easy to understand that the
shift-and-add paradigm may amplify small errors into large
errors, which compromises the overall precision.

B. Digital in-memory computing

Matrix-vector multiplication using digital in-memory com-
puting is performed by decomposing the computation into
Boolean functions that are decomposed into digital gates.
Next, the gates are executed using the digital in-memory
computing, which is illustrated in Figure 1(b). Various digital
in-memory computing logic styles have recently been inves-
tigated, each provide different trade-offs in terms of latency,
power, area, and endurance [3, 7, 14, 28]. In this paper, we
utilize MAGIC logic family [14] which has gained significant
attention for its structured synthesis flow and easy integration
into standard design automation tools.

While digital-in memory computing can deliver high-
precision, it is easy to understand that the computation is less
energy-efficient than analog in-memory computing.

C. Limitation of previous work and proposed paradigm

In this section, we compare the proposed hybrid analog-
digital in-memory computing paradigm with state-of-the-art
computing paradigms. The overall properties of the different
computing paradigms are shown in Table I.

It can be observed in the table that traditional digital CMOS-
based computing achieves high-precision but has poor energy-
efficiency. This is mainly due to that computation is not
performed in-memory, i.e., the energy-efficiency is degraded
by the data movement on the system bus. Compared with
traditional digital computing, digital in-memory computing
improves the energy-efficiency to moderate as the computation
is performed in-memory. Analog in-memory computing fur-
ther improves the energy efficiency at the expense of degrading
the precision. The proposed hybrid analog-digital in-memory
computing paradigm achieves the best of both worlds, i.e.,
both high precision and high energy-efficiency. We consider
the proposed paradigm to be orthogonal to the mixed-precision
computing in [16] and hybrid mode computing in [31].



Fig. 2: Proposed hybrid in-memory computing platform .

III. HYBRID ANALOG-DIGITAL IN-MEMORY COMPUTING

In this section, we propose our hybrid analog-digital in-
memory computing paradigm that is capable of performing
matrix-vector multiplication (Wx = y) with configurable qual-
ity, i.e., the energy-efficiency tailored to the requirements on
the computational accuracy. First, we provide an overview
of the hybrid analog-digital platform. Second, we outline the
detailed properties of the platform.

A platform for the proposed hybrid in-memory computing
is shown in Figure 2(a). The platform operates using a design
initialization phase and an evaluation phase, which is shown
in Figure 2(b). In the initialization phase, a synthesis tool
is used to decompose the desired computation into Boolean
functions and matrix-vector multiplication operations. The
goal is to compute the most significant bits (MSB) using
high-precision digital in-memory computing and the least
significant bits (LSBs) using low-precision analog in-memory
computing, which ensures that the overall computation is of
high-precision. A simplistic decomposition is shown at the
bottom of Figure 2(a). The decomposition heavily depends
on the constraints on the computational accuracy, architecture,
and hardware characterization (see details in Section IV and
Section VI). Next, the hybrid platform is configured to realize
the matrix-vector multiplication operations by programming
the non-volatile resistive devices within the platform. The syn-
thesis tool performs logic and physical co-optimization while
binding the computation to the hardware. In the evaluation
phase, matrix-vector multiplication is performed and output
vectors are recorded. The proposed hybrid platform can be
used as an accelerator in a next generation HPC system, as
there is limited data transfer on the system bus, which is shown

at the right of Figure 2(a). An underlying assumption of the
paradigm is that the matrix is fixed and only the input vectors
change, which holds for the simulation of complex physical
systems within scientific computing applications.

A. Properties of hybrid paradigm

In this section, we explain the details behind the properties
listed for the hybrid paradigm in Table I.

1) High-precision: It is easy to understand that the hybrid
analog-digital paradigm can attain high (or arbitrary
precision) because digital in-memory computing is de-
terministic and can achieve arbitrary precision. More-
over, the use of analog in-memory computing does not
substantially compromise the precision because it is
only used to compute the LSBs. However, computing
the LSBs with analog in-memory computing results in
better precision compared with simply discarding the
LSB computation.

2) High energy-efficiency: The energy-efficiency is high
because all computation is performed in memory. More-
over, we maximize the amount of computation that can
be performed using analog in-memory computing. In ad-
dition, the full potential of analog in-memory computing
is utilized by leveraging multi-bit memristors and the
natural ability of ADCs to measure the most significant
bits within a specified sensing range.

3) In-Memory Computation: The entire computation is per-
formed in memory which reduces the data movement
in the system bus. For example, for a matrix of n×m
dimension, the total data transfer is improved from
(n×m)+m+n to only (m+n), where (m+n) denotes
the input and output vector data.



In the following sections, we describe the details of the
proposed hybrid analog-digital synthesis tool and in-memory
computing platform.

IV. ANALOG-DIGITAL SYNTHESIS

In this section, we describe the details of the synthesis tool
capable of decomposing matrix-vector multiplication opera-
tions into analog and digital in-memory computing kernels.
The objective is to perform the mapping while minimizing
power consumption and hardware overheads. The synthesis
flow is illustrated in Figure 3. The input to the flow is
the desired computation, the constraint on the computational
accuracy, the hardware characterization, and the architecture
constraints. The first step is Analog-Digital decomposition.
This step is used to decompose the desired computation into
a digital MSB component and an analog LSB component
based on the required precision. The details are provided in
Section IV-A. Next, an analog synthesis step is performed
to map the analog computation into analog MVM operations
while meeting hardware and architecutre constraints. The de-
tails are provided in Section IV-B. Similarly, a digital synthesis
step is performed to map the digital component into digital
in-memory computing kernels while meeting hardware and
architecture constraints. The digital synthesis part is performed
exactly as in SIMPLER [2]. Please refer to that work for the
technical details of the digital in-memory computing.

Fig. 3: Hybrid analog-digital in-memory synthesis flow.

A. Analog-digital decomposition

In this section, we explain how the analog-digital decom-
position is performed. As matrix-vector multiplication mainly
consists of many element-wise multiplications, we perform a
case study on element-wise multiplication. Next, we generalize
the concept to matrix-vector multiplications.

Analog-digital barrier: The multiplication of two six-bit
numbers A and B is shown in Figure 4. A naive MSB and
LSB decomposition is shown in Figure 4(a). The two most
significant bits of both numbers are mapped to deterministic
digital in-memory computing and the four LSBs are mapped
to approximate analog in memory computing. The figure
shows the portion of the output that has deterministic and
approximate precision, respectively. The proposed analog-
digital decomposition is shown in Figure 4(b). The new
decomposition assigns a bit in A and B to analog and digital
based on the bit it is multiplied with. While the amount

of digital in-memory computation is similar (20 bit-wise
multiplications vs 21 bit-wise multiplications), there are 2
additional outputs with deterministic precision. Therefore, we
expect the proposed scheme to be advantageous over the first
scheme. Next, we analyze if it is necessary to perform all the
analog computation.

(a) (b)

Fig. 4: Bit-wise multiplication of two six bit numbers using
(a) naive decomposition and (b) proposed decomposition.

Analog-don’t care barrier: As the analog computation is
approximate, we speculate that it may not be meaningful to
perform all the analog bit-wise multiplications. For example,
the expected error of approximately multiplying b4a0 may
be larger than the result of multiplying b0a0. Therefore, we
propose to also introduce a don’t care barrier, which is shown
in Figure 5. The barrier denotes that we don’t care if the
computation on the right hand side of the barrier is performed
or not. We use don’t care instead of simply dropping the
computation because we observe in the next section that
it is sometimes cheaper to include some additional analog
computation. The multiplication of two q-bit numbers results
in a number with 2q-bits. The analog-digital barrier is placed
to captures the k MSBs of the 2q-bits. The analog-don’t care
barrier is denoted with p and defined with respect to k.

Using the detailed experimental setup that is described in
the experimental results section, we evaluate varying the value
of k and p independently in Figure 6. It can be observed in
Figure 6(a) that the maximum error in the output is reduced
when k is increased. This is expected as more computation
is moved from cheap approximate analog computing into
deterministic and more expensive digital in-memory comput-

Fig. 5: Analog-digital barrier and analog-don’t care barrier.



(a) (b)

Fig. 6: The maximum error with respect to (a) the analog-
digital barrier k and, (b) the analog-don’t care barrier p. The
experiment is performed using two 16 bit numbers.

ing. The value of k is required to be specified based on the
precision requirements on the application. At the same time,
the maximum error is reduced until p is increased to 4, as
demonstrated in Figure 6(b). Next, the maximum error stays
the same when p is increased further. This stems from that
the non-volatile devices have an accuracy of approximately
4-bits in our experimental setup (see Section VI). This is a
conservative estimate of the devices that can be fabricated
today [11, 16, 17]. Therefore, we set p to be equal to the
approximate bit-accuracy of the non-volatile devices in the
remainder of the paper.

B. Analog synthesis

In this section, we will explain how the analog computation
is mapped into analog MVM operations. This is performed
by formulating and solving a covering problem. Next, the
covering solution is mapped into analog MVM operations.

The analog-don’t care covering problem: The mapping of
the analog computation into analog MVM operations is shown
in Figure 7. The overall idea is to cover the computation in
Figure 7(a) using the analog MVM operations in Figure 7(b).
The figure shows an example for an element-wise multiplica-
tion but we will later show in this section that it can directly be
generalized into matrix-vector multiplication operations. The
computation in Figure 7(a) consists of three distinct regions:

1) Digital IMC: The computation in the digital region is not
allowed to be mapped to analog in-memory computing,
which is indicated using 0’s.

2) Analog IMC: The computation in the analog region
is required to be covered with analog kernels and is
therefore marked with 1’s.

3) Don’t Care: The computation in the don’t care region
can be covered optionally, which is indicated using *’s.

The shape of the analog MVM operations is shown in Fig-
ure 7(b). It can be observed that all the kernels inherently have
the shape of tilted rectangles. The shape depends on the bit-
accuracy of the non-volatile memristors and DACs. The higher
the bit-accuracy, the larger the shape. Each of the kernels
also has an associated area cost and power consumption. In
particular, the power consumption is correlated with the bit-

Fig. 7: (a) Analog-Digital-Don’t Care covering problem and,
(b) analog multi-bit multiplication cover library.

accuracy of the DACs. There is also a fixed cost per kernel for
the ADC used to measure the output of the MVM operation.

Next, a mathematical covering problem can be formulated
to cover all the ones, not cover any zeros, and optionally
cover the don’t cares. In general, this can straightforward
be solved using an mixed integer programming formulation
(MIP) using techniques in [5]. However, in this paper, we
leverage an optimal substructure to avoid formulating the MIP
formulation. The optimal solution is shown in Figure 8(a).
Intuitively, the solution is optimal because there is no power
penalty of using memristors with high bit-accuracy. It is also
advantageous to use 4-bit DACs because this reduces the total
number of kernels, which reduces the number of ADCs that are
required to measure the output of the analog MVM operations.

Mapping of analog kernels to crossbars: Given the
decomposition of an element wise multiplication, we now
generalize it to a solution for matrix-vector multiplication. We
also explain the intuitive mapping into crossbars using the
example in Figure 8.

Fig. 8: (a) Covering solution. (b) Generalization to mxn
matrix-vector multiplication. (c) Mapping of MVM operations
to crossbars.

An optimal solution to the covering problem in Figure 7
is shown in Figure 8(a). The solution is generalized to a
n×m matrix. The number of rows n expands the cover in
Figure 8(a) depth wise into a volume. The number of columns
m replicates the computation m times. The generalization is
shown in Figure 8(b). Next, the mapping into a crossbar with
dimensions of (km+m)× (n) is shown in Figure 8(c). The
crossbar is trivially split into multiple smaller crossbars if the
maximum crossbar dimension is exceeded.



Fig. 9: Architecture overview of analog-digital hybrid accelerator.

V. ARCHITECTURE

In this section we discuss the architecture of the analog-
digital hybrid in-memory computing. First, we discuss the
overview of the micro-architecture. Next, we discuss the
parallelism and cross-architecture data transfer costs.

Overview: The overall architecture of the analog-digital
hybrid accelerator is presented in Figure 9. The architecture
has several accelerator tiles, each divided into two kernels:
digital and analog, which is shown in Figure 9(a). The
kernels are controlled by a global controller. The controller
receives CPU instructions to generate control signals for in-
memory computing. The computational results of each kernel
is collected by a global accumulator.

The digital kernel is divided into many computational blocks
as shown in Figure 9(b). An island-style FPGA inspired
routing architecture is adopted to communicate among the
blocks [24]. The connector blocks enable the computational
blocks to communicate with the neighbouring blocks and the
switch-blocks enable cross-architecture communication. Each
computational block consists of several 1-bit memristor cross-
bars connected in row-parallel fashion [12], which is shown in
Figure 9(c). The sense amplifiers (SA) and row drivers enable
row-parallel copying of data which is particularly beneficial
for implementing MAGIC.

The analog kernel is divided into analog hardware blocks
consisting of multi-bit DACs, multi-bit ADCs and multi-
bit memristor crossbars. A shared bus collects the results
of different analog blocks and carries them to the global
accumulator as shown in Figure 9(d).

Parallelism: Matrix-vector multiplication operation is in-
herently parallelizable. For a n×m matrix multiplied with
a m× 1 vector, the resultant vector is of size n× 1. The
computations of these n output elements are independent of
each other. The multiplication of the i-th row of matrix with
the input vector is independent of the multiplication of the
i+ 1-th row of the matrix with the input vector. This high
order of parallelism is particularly beneficial to the compar-

atively costly digital in-memory computing. The proposed
architecture adopts the state-of-the art MAGIC-based synthesis
and mapping tool SIMPLER [2]. SIMPLER maps boolean
functions to a single row. This enables us to fully exploit the
parallelism offered by MAGIC by performing different row-
wise multiplication operations of MVM into different rows
simultaneously. If the target computation exceeds the crossbar
size, the computation can easily be carried into the adjacent
crossbars using the row-parallel operations in Figure 9(c).

Micro-architectural data transfer: It is understandable
that MVM is a computationally expensive task. Therefore,
it is expected that the computation will need a significant
portion of the available architectural resource. Therefore, it
is very crucial to consider micro-architectural data transfer
between different units which will limit the benefit of in-
memory computing to some extent. We consider the case
study on data transfer in memristive Memory Processing Unit
(mMPU) presented in [27]. We appropriately modify the data
transfer cost for the proposed architecture. The row-based
MAGIC operation relies on reuse of memristors in the row.
Therefore, several copy (achieved by performing two MAGIC
NOT operations) operations are performed. This operation
introduces the following intra-crossbar cost for each data
movement:

Costintra−crossbar = 2.TMAGIC (1)

where, TMAGIC is the time taken by a MAGIC operation. Next,
we consider the intra-block data transfer for communication
between two crossbars inside the same block. Intra-block data
transfer consists of a series of read and write operations.
We also need to consider the read/write mode switching
latency of the peripherals. For simplicity, we consider that
the sense amplifiers have sufficient bandwidth to perform the
row-parallel read operation in one cycle. Each intra-block
communication cost can be computed as follows:

Costintra−block = Tread +TRTW +Twrite +TWT R (2)



TABLE II: Architecture Components Area-Power Cost
Component Parameter Specs Area Power

Crossbar Size 128×128 0.0002 mm2 2.4 mW
DAC Resolution 4 bits 1.328 µm2 0.0312 mW
ADC Resolution 8 bits 0.0012 mm2 2 mW

Sample+Hold # Unit 1 0.039 µm2 10 nW
Total (analog block) # Unit 1 0.001570023 mm2 9.6736 mW

Controller # Unit 1 0.000401 mm2 0.65 mW
Total (digital crossbar) # Unit 1 0.000601 mm2 3.05 mW

Shifter # Unit 1 0.00006 mm2 0.05 mW
Bus Bandwidth 128-bits 15.7 mm2 13 mW

Connector Block Bandwidth 128-bits 0.5108 µm2 0.00656 mW
Switch Block Bandwidth 128-bits 2.0432 µm2 0.02625 mW

where, TRTW and TWT R are read-to-write and write-to-read
switching latencies respectively. Finally, we consider the inter-
block communication cost. One useful aspect of inter-block
communication is that multiple blocks can be pipelined to
perform simultaneous read/write operations. The inter-block
data transfer cost can be computed as follows:

Costinter−block = Tread +max{Twait ,Trouting}+Twrite+Twait (3)

where, Twait is the wait time between two consecutive
read/write commands and Trouting is the data routing time from
source to target block.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the hybrid
analog-digital in-memory computing paradigm.

The properties of the proposed hybrid in-memory comput-
ing platform are provided in Table II. The parameters are
adapted from earlier studies in [8, 15, 23, 26]. In particular,
we use memristors with 4 bits, which is conservative with
respect to the fabrication results reported in [11, 16, 17]. We
adopt the fitting characteristics of the VTEAM [15] model
to emulate experimental memristor devices. We set the RLRS
and RHRS to be 10kΩ and 10MΩ respectively. To account for
the write-error of multi-bit cells and other external noises, we
introduce normally distributed random noises, R∼N (µ, σ2),
where, µ is the expected value, and σ is the standard devi-
ation. We perform a Monte-Carlo simulation assuming 5%
standard deviation. The DACs are set to 4 bits due to the
dependency with the memristor bit-accuracy. The per-unit
costs for different architectural components are summarized
in Table II [8, 23, 26]. We use 8-bit ADCs in the evaluation
to balance accuracy and overheads. The cross-architecture data
transfer cost is calculated using equations (1)− (3). The read,
write and MAGIC NOR latency is adopted from [27] as 10ns,
25ns and 32.5ns respectively. For the choice of von Neumann
machine, we use an Intel Core i9 processor with NVIDIA
GeForce RTX 2070S GPU.

We compare the proposed hybrid paradigm with analog
in-memory computing, digital-in-memory computing, and a
von-Neumann machine with a GPU. Results on the MVM
level and for scientific computing applications are presented
in Section VI-A and Section VI-B.

A. Evaluation of MVM

In this section, we first compare and contrast the precision
and performance of the different computing paradigms. The

comparison is performed using 128x128 bit matrices, where
each element is represented with 32-bit precision. We compare
the precision with the other in-memory computing paradigms
in Figure 10. It can be observed that analog in-memory com-
puting is not able to achieve high precision due to that errors
are scaled-up using the shift-and-add paradigm. Both digital
and hybrid in-memory computing are capable of achieving
arbitrary precision. Consequently, there is no need to compare
the other metrics with analog in-memory computing.

(a) (b)

Fig. 10: Precision comparison of different in-memory com-
puting paradigms. (a) target bit precision vs. achieved bit
precision for digital and analog in-memory computing and,
(b) target bit-precision vs. k for the hybrid paradigm.

Now we turn our attention to comparing the area, power, and
latency with digital in-memory computing in Figure 11. The
results are obtained by setting k such that an equivalent preci-
sion is obtained. Note that k is required to be experimentally
determined for each evaluated matrix. Next, the results are
normalized with respect to the digital in-memory computing.
The figure shows that the hybrid paradigm reduces the area,
power, latency with between 50% to 70% for reasonable values
of the target bit-precision. Compared with a von-Neumann
based machine, the hybrid paradigm achieves 620X speed and
493X energy efficiency gain.

(a) (b) (c)

Fig. 11: Overhead comparison of digital in-memory computing
and hybrid in-memory computing paradigms with respect to
(a) area, (b) power, and (c) latency. All results are normalized
with respect to digital in-memory computing.



TABLE III: Summary of Applications for Evaluation

Applications System Type Matrix Size Non-zeros
Trefethen-20 Combinatorial 20x20 158

bcsstk02 Structural 66x66 4356
Journals Undirected Weighted Graph 124x124 12068

Trefethen-150 Combinatorial 150x150 2040
Trefethen-200b Combinatorial 199x199 2873
Trefethen-200 Combinatorial 200x200 2890

mesh3em5 Structural 289x289 1377
Trefethen-300 Combinatorial 300x300 4678
Trefethen-500 Combinatorial 500x500 8478
Trefethen-700 Combinatorial 700x700 12654
Chem97ZtZ Statistical/Mathematical 2541x2541 7361

B. Evaluation with scientific computation

In this section, we evaluate and compare the performance of
the different state-of-the-art in-memory computing paradigms
for the simulation of physical systems within scientific com-
puting applications which demand high-precision. As a choice
of the state-of-the art in-memory computing paradigms, we use
SIMPLER [2] for digital in-memory computing and ISAAC
[26] for analog in-memory computing. Note that we tailor the
size of the in-memory computing platforms with respect to
each application. We evaluate the paradigms with a number
of applications from the sparse matrix collection of [6], which
are shown in Table III. We aim to solve these systems of linear
equations using the conjugate gradient (CG) method [10]. The
CG method uses an iterative refinement algorithm to solve a
system of linear equations. The algorithm terminates when a
certain error tolerance is satisfied. In each iterative refinement,
an expensive MVM is performed. We aim to improve the
efficiency of the MVM operation using hybrid in-memory
computing. To ensure high precision, we set the error tolerance
of the CG method to 10−15. However, any arbitrary precision
requirement could have been selected.

TABLE IV: Results of Conjugate Gradient Solver
Order of Concluding Error

Applications ISAAC [26] SIMPLER [2] Hybrid Analog-Digital IMC
Trefethen-20 7.33×10−5 4.7×10−16 7.2×10−16

bcsstk02 0.79×10−3 0.37×10−16 0.52×10−16

Journals 9.54×10−2 5.11×10−16 7.45×10−16

Trefethen-150 7.43×10−4 5.79×10−16 9.75×10−16

Trefethen-200b 7.92×10−4 1.49×10−16 1.73×10−16

Trefethen-200 4.82×10−4 1.92×10−16 2.30×10−16

mesh3em5 3.98×10−5 8.25×10−16 9.34×10−16

Trefethen-300 8.63×10−4 4.36×10−16 4.98×10−16

Trefethen-500 0.47×10−3 3.19×10−16 3.39×10−16

Trefethen-700 9.25×10−2 3.21×10−16 5.68×10−16

Chem97ZtZ 6.04×10−3 1.51×10−16 2.74×10−16

ISAAC 0/11 application converged
Summary SIMPLER 11/11 applications converged

Hybrid 11/11 applications converged

We show the performance of different paradigms as CG
solver in Table IV. In the table, we show the final error for
different paradigms. The results indicates that the SIMPLER
and the hybrid in-memory computing successfully solves all
the systems. But the ISAAC does not meet the error tolerance
and therefore does not converge for any of these systems.
As ISAAC model does not converge for any of the systems,
we only present the overhead analysis of the hybrid in-
memory computing and SIMPLER in Figure 12. Figure 12
presents the normalized performance in terms of area, energy

Fig. 12: Evaluation of scientific computing applications.

and latency. The experimental results show that hybrid in-
memory computing system improves power, area, and latency
over SIMPLER by 2.44X, 2.45X and 2.32X, respectively.
The experimental findings indicate that the hybrid model is
capable of performing high-precision scientific computation
with superior overhead over the digital in-memory computing.
Based on the comparisons with a GPU on the MVM level,
similar performance benefits on the application level are also
expected.

In summary, the proposed hybrid paradigm is capable
of achieving the same high precision as digital-in memory
computing by appropriately decomposing the computation into
analog and digital in-memory computing kernels. However,
the computation is more efficient in terms of power, latency,
and area because the paradigm enables efficient analog in-
memory computing to be used without compromising the
computational accuracy.

VII. SUMMARY AND FUTURE WORK

In this paper we propose a novel hybrid analog-digital
in-memory computation scheme. The proposed model can
perform matrix-vector multiplication operation with both high
precision and high energy-efficiency. The hybrid in-memory
computing is ideal for accelerating scientific computing appli-
cations with high-precision requirements. Hybrid in-memory
computing paradigm opens up a new dimension in the field
of in-memory computing research. There are several opportu-
nities to explore the use of hybrid analog-digital in-memory
computing to accelerate other kernels and applications. While
the proposed synthesis tool chain is sophisticated, there may
exist opportunities to further improve the synthesis flow.
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