
STREAM: Towards READ-based In-Memory
Computing for Streaming Based Processing for

Data-Intensive Applications
Muhammad Rashedul Haq Rashed∗, Sven Thijssen†, Sumit Kumar Jha‡, Fan Yao∗, and Rickard Ewetz∗

∗Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
†Department of Computer Science, University of Central Florida, Orlando, USA

‡Computer Science Department, University of Texas at San Antonio, San Antonio, USA
{rashed09, sven.thijssen}@knights.ucf.edu, sumit.jha@utsa.edu, {fan.yao, rickard.ewetz}@ucf.edu

Abstract—With the rise of data intensive applications, tra-
ditional computing paradigms have hit the memory-wall. In-
memory computing using emerging non-volatile memory (NVM)
technology is a promising solution strategy to overcome the
limitations of the von-Neumann architecture. In-memory com-
puting using NVM devices has been explored in both analog
and digital domains. Analog in-memory computing can perform
matrix-vector multiplication (MVM) in an extremely energy-
efficient manner. However, analog in-memory computing is prone
to errors and resulting precision is therefore low. On the
contrary, digital in-memory computing is a viable option for
accelerating scientific computations that require deterministic
precision. In recent years, several digital in-memory comput-
ing styles have been proposed. Unfortunately, state-of-the-art
digital in-memory computing styles rely on repeated WRITE
operations which involves switching of NVM devices. WRITE
operations in NVM cells are expensive in terms of energy, latency
and device endurance. In this paper, we propose a READ-
based in-memory computing framework called STREAM. The
framework performs streaming-based data processing for data-
intensive applications. The STREAM framework consists of a
synthesis tool that decomposes an arbitrary Boolean function
into in-memory compute kernels. Two synthesis approaches are
proposed to generate READ-based in-memory compute kernels
using data structures from logic synthesis. A hardware/software
co-design technique is developed to minimize the inter-crossbar
data communication. The STREAM framework is evaluated
using circuits from ISCAS85 benchmark suite, and Suite-Sparse
applications to scientific computing. Compared with state-of-the-
art in-memory computing framework, the proposed framework
improves latency and energy performance with up to 200X and
20X , respectively.

I. INTRODUCTION

With the advent of internet-of-things [1], modern comput-
ing paradigms are burdened with an unprecedented amount
of digital data [2–4]. Data intensive applications such as
computer-vision [5] and system simulation [6] are rendering
high performance computing (HPC) systems ill-equipped. This
is due to that the traditional von Neumann based HPC systems
are limited by the “memory wall” due to the separation of the
memory and processing units [7, 8]. With the objective of
enabling scaleable big data processing, emerging computing

This work was in part supported by NSF awards CNS-1908471, CNS-
2008339, CCF-1822976, CCF-2113307, DARPA cooperative agreement
#HR00112020002 and ONR grant #N000142112332.

paradigms such as optical computing [9], quantum comput-
ing [10], and near/in-memory computing [11, 12] are receiving
increasing attention.

In-memory computing using the emerging non-volatile
memory (NVM) devices [13–15] promises to break the mem-
ory wall bottleneck of von Neumann architecture. Analog
computation using the multiply-and-accumulate feature of
in-memory computing platforms has shown superior energy
and latency performance compared to the traditional CMOS
based computing platforms [16–20]. However, the precision
of analog in-memory computing is limited and therefore it is
not suitable for high-precision demanding scientific computa-
tions [21, 22].

To overcome the computational accuracy issue, digital in-
memory computing based on in-memory Boolean logic opera-
tions has been proposed. Several digital in-memory logic styles
such as IMPLY [23], MAGIC [24], FLOW [25], Bit-wise-
in-bulk [26], PATH [27], and OR-plane [28] logic have been
developed over the years. While all of these logic styles offer
deterministic precision, they have their distinctive operating
principles and they perform differently in terms of area, energy
and latency. State-of-the-art digital in-memory computing
paradigms are based on evaluating Boolean functions using
repeated WRITE operations [29–34]. Unfortunately, WRITE
operations in NVM cells are both power-hungry and slow [35].

In this paper, we propose a framework that performs READ-
based in-memory computing for streaming-based processing
for data-intensive applications, which is called STREAM. The
framework adopts the OR-plane logic style to evaluate high
fan-in OR/NOR gates using efficient READ operations. The
main difficulty of utilizing OR-plane logic comes from that
inter-crossbar data transfer is required to evaluate complex
functions. This leads to substantial performance and hardware
overheads especially when processing big data.

To address these issues, the STREAM framework provides a
software/hardware-centered solution to minimize overheads1 .
With the objective of minimizing the data transfer costs,
we first design processing elements (PEs) that have multi-
ple series-connected crossbars using hardwired connections.
Next, a synthesis tool is developed that can map arbitrary

1A preliminary version of the framework has been published in [36].

Boolean functions to the PEs. We propose two synthesis
approaches called STEAM-O and STREAM-M, which are
based on data structures for traditional logic synthesis. The
STEAM-O approach is based on OR-Inverter Graphs (OIG)
that can straightforward be mapped to a single crossbar. The
STREAM-M approach is based on multi-level logic (MLL)
that can directly be mapped to two crossbars connected in
series. Furthermore, we develop an algorithm to decompose
complex Boolean functions into parts that fit into the PEs while
minimizing the costly inter-PE communication.

We evaluate the STREAM framework using circuits from
the ISCAS85 benchmark suite, and Suit-Sparse applications to
scientific computing. We compare the results with the state-
of-the-art WRITE-based in memory computing paradigms.

The main contributions of the STREAM framework are, as
follows:
• A novel staircase architecture for READ-based in-

memory computing using OR-plane logic.
• A synthesis tool for mapping Boolean logic into in-

memory compute kernels using OIGs and MLL data
structures from logic synthesis.

• A (i) spatial partitioning technique and (ii) a bit-wise
partitioning technique for decomposing complex compu-
tations into parts that each fit inside a PE.

• The STREAM framework is evaluated on the ISCAS85
benchmark suite [37], and the Suit-Sparse matrix collec-
tion [38]. A comparison with CMOS ASIC-like systems
is also performed.

• Compared with the state-of-the art WRITE-based in-
memory computing paradigms, the proposed framework
improves average power and latency with up to 20X and
200X , respectively.

The remainder of this paper is organized as follows: Prelim-
inaries in Section II. An overview of the STREAM framework
is given in Section III. The synthesis tool STREAM-O is
detailed in Section IV. Section V describes the synthesis tool
STREAM-M. Partitioning techniques for applications based on
matrix-vector multiplication are proposed in Section VI. The
STREAM architecture is detailed in Section VII. Experimental
results are presented in Section VIII. Other related works are
discussed in Section IX. The paper is concluded in Section X.

II. PRELIMINARIES

In this section, we first review WRITE-based and READ-
based digital in-memory computing. Next, we review two data
structures for logic synthesis. Finally, we discuss the limita-
tions of previous works and motivate the proposed framework.

A. Digital in-memory computing

In this section, we explain the working principle of digital
in-memory computing. Specifically, we illustrate how digital
in-memory computing can be used to evaluate Boolean logic
operations. Digital in-memory computing can be divided into
two major branches: WRITE-based in-memory computing and
READ-based in-memory computing. We review MAGIC [24]
and OR-plane logic [28] as representative logic styles for

Fig. 1: Evaluation of Boolean gates using (a) WRITE-based
MAGIC and (b) READ-based OR-plane logic.

WRITE-based and READ-based in-memory computing, re-
spectively.

WRITE-based in-memory computing: WRITE-based in-
memory computing is based on evaluating Boolean gates by
repeatedly switching non-volatile memory (NVM) devices.
The devices are switched using special WRITE operations.
Memristor devices are programmed either to high resisitve
state (HRS) or low resisitive state (LRS) which correspond
to logic “0” and logic “1” respectively. Figure 1(a) shows
how Boolean NOR operation can be performed using MAGIC
style in-memory computing [24]. In MAGIC, both the input
and the output operands are stored inside the memory. A
MAGIC operation is performed in two steps: an initialization
step and an evaluation step. In the initialization step, the out
memristor is programmed to LRS and the input variables a and
b are programmed along the same bitline (or wordline) [24].
In the evaluation step, the NOR2 operation out = a+b is
realized by applying controlled voltage V0 and ground to the
input and the output memristors respectively as shown in
Figure 1(a). MAGIC enables parallel logic NOR operations
by programming inputs and outputs to multiple bitlines (or
wordlines).

READ-based in-memory computing: READ-based in-
memory computing is based on evaluating Boolean logic
operations using READ operations. Figure 1(b) illustrates how
variable input NOR operations can be performed using the
OR-plane logic [28]. In OR-plane logic, an arbitrary input OR
gate can be realized by setting the memristors in a bitline either
to the HRS or the LRS. Dedicated inverters in the peripheral
enables arbitrary input NOR operations. Input operands a, b,
and c are fed as binary voltages to the wordlines as shown in
the Figure 1(b). A single READ operation is used to decode
the outputs of the INV/NOR2/NOR3 functions parallelly from
the bitlines, respectively. The evaluation involves no WRITE
operations to the non-volatile memory devices.

B. Data structures for logic synthesis

Logic synthesis for traditional CMOS technology has been
explored using data structures such as AIG [39], OIG [40],
MLL [41], BDD and ROBDD [42, 43]. In this section,
we review the OIG and MLL data structures due to their
underlying similarity with in-memory computing kernels.

OR-Inverter Graphs: OR-Inverter Graphs (OIGs) is a class
of directed acyclic graphs (DAG), O = (V,E) where a node,
v ∈ V , represents either an inverter or a variable input OR
gate and an edge, e∈E, represents an interconnection between
two nodes of the graph. OIGs are a complete data structure
that can represent any Boolean function. The minimization of
OIGs has been studied in [40]. The number of nodes and the
depth of the OIGs is minimized by iteritively applying logic
transformations based on merging and splitting nodes [40].

Multi-Level Logic: The multi-level logic (MLL), as the
name suggests, has several levels of Boolean logic. MLL can
be visualized as a graph, M = (V,E) where a node, v ∈ V ,
represents a two-level logic and an edge, e ∈ E, represents an
interconnection between two nodes. Here, the two-level logic
is a representation of a Boolean function, f , as the disjunction
(Boolean OR) of a set of products (Boolean AND) of its
literals. This representation is also known as the sum of prod-
ucts (SOP). Each level of the MLL consists of several nodes,
each node containing a SOP expression. The minimization of
MLL has been studied in [44]. The minimization techniques
include node factorization, collapsing of nodes, and removal
of redundancies.

C. Limitations of previous work

In this section, we present a comparison of the working prin-
ciples of different digital in-memory computing paradigms. All
of the computing paradigms consist of a one-time initialization
phase and an evaluation phase. In the initialization phase,
the computing platforms are programmed to perform arbi-
trary Boolean function. In the evaluation phase, the Boolean
functions are evaluated for different instances of the input
variables. The initialization and the evaluation is performed
either by the WRITE or the READ operations. Table I sum-
marizes the use of WRITE and READ operations for different
computing paradigms.
TABLE I: Comparison of WRITE/READ operations in the
initialization and evaluation phase for different logic styles.

Logic style Work in Initialization Evaluation
phase phase

IMPLY [23] WRITE/READ WRITE/READ
MAGIC [24] WRITE/READ WRITE/READ
Flow-based computing [25] WRITE/READ WRITE/READ
Bitwise-In-Bulk [26] WRITE/READ WRITE/READ
OR-plane logic (this work) WRITE/READ READ

It is evident from the table that the state-of-the-art digital
in-memory computing paradigms depend on repeated WRITE
operations in the evaluation phase. Unfortunately, WRITE op-
erations to NVM devices are expensive in terms of speed and
energy-cost. In contrast, the proposed STREAM framework
is based on OR-plane logic [28] which only uses READ
operations in the evaluation phase. Contrary to the WRITE
operation, the READ operations are fast and very energy-
efficient. For example, the latency of a WRITE and a READ
operations are 50.88ns and 29.31ns respectively [35]. Also, the
energy-cost for a WRITE and a READ operations are 3.91nJ
and 1.08pJ respectively [35]. Therefore, the READ operations
in NVM cells are roughly 2X faster and 4000X more energy

effcient than the WRITE operations. One additional benefit of
READ-based evaluation phase is that the endurance of NVM
cells are improved. The lifespan of NVM devices are estimated
in terms of the number of WRITE operations before device
breakdown. Current technology can fabricate NVM devices
with expected lifespan in the range of only 103 to 109 WRITE
operations [45]. Therefore, compared to the WRITE-based in-
memory computing paradigms, the READ-based in-memory
computing paradigm is expected to have a longer device life-
time.

While OR-plane logic has advantageous properties, it re-
quires multiple crossbars to be connected together in series to
evaluate arbitrary Boolean functions. We call a set of series
connected crossbars a staircase structure. In such structure,
the primary inputs are fed to the first crossbar and the
evaluation results are obtained from the last crossbar. The
intermediate crossbars each receives inputs from its previous
crossbar and feeds outputs to the following crossbar. The
outlined approach becomes increasingly challenging for data-
intensive applications since the data transfer between crossbars
introduce substantial performance overheads when performed
using reconfigurable interconnects (or busses).

On the other hand, performance can be improved if intercon-
nects are hardwired together. However, it becomes more chal-
lenging to maximize utilization and handle hardware imposed
constraints. Table II shows the trade-off between performance
and ease-of-utilization for hardwired and reconfigurable con-
nections. The objective of the STREAM framework is to com-
bine software/hardware co-design to enable streaming-based
processing. The goal is to establish a balance of overheads
introduced by the utilization ease of reconfigurability and the
efficiency of hardwiring.

TABLE II: Hardwired vs. reconfigurable connections.
Performance Ease of utilization

Hardwired high difficult
Reconfigurable low smooth

III. THE STREAM FRAMEWORK

In this section, we introduce the STREAM framework.
The framework consists of an in-memory computing platform
and a synthesis tool capable of mapping computation to the
platform, which is shown in Figure 2. The platform consists
of processing elements (PEs) connected together using high-
speed interconnects. The PEs mainly consist of a staircase
structure of connected crossbars. The details of the PEs are
provided in Section VII. The input to the synthesis tool is
a specification of a Boolean function. The synthesis tool
maps the computation into in-memory compute kernels and
binds the kernels to the in-memory computing platform. Next,
streaming-based processing is performed by providing input
data to the reconfigured platform.

In the STREAM framework, we break the synthesis problem
into two parts, as follows:
• Problem I: The first subproblem consists of mapping an

arbitrary Boolean function to a PE with relaxed hardware
constraints. Here, it is assumed that the crossbars are of

Fig. 2: Overview of the STREAM framework.
arbitrary dimension and there are an arbitrary number of
crossbars connected in series.

• Problem II: The second subproblem consists of decom-
posing the Boolean function into multiple parts. The
objective is to map each part to a PE using the solution
to Problem I while satisfying the hardware constraints on
the PEs, e.g., there is a fixed number of crossbars with
fixed dimensions within each individual PE.

A synthesis solution on OIGs and MLL is proposed in
Section IV and Section V, respectively. Both OIGs and MLL
capture a Boolean function using a DAG of nodes. In an
OIG, each node can be mapped to a single crossbar. On the
other hand, each node within MLL can be mapped to two
series-connected crossbars. We explore both approaches to
empirically analyse the trade-off in terms of performance and
hardware cost in Section VIII.

After solving the first subproblem, it is crucial to tailor the
in-memory computation to the architectural resources. This
leads to the second subproblem as discussed above. Section VI
presents a synthesis solution to the second subproblem. For the
choice of data-intensive applications, high precision matrix-
vector multiplication within scientific simulation is considered.

IV. SYNTHESIS APPROACH 1: STREAM-O

In this section, we provide an OIG-based synthesis solution
for the first subproblem of the previous section. The objective
is to map arbitrary Boolean functions to a staircase structure
of crossbars. We call this synthesis approach STREAM-O.
Figure 3 shows an overview of the flow of STREAM-O.

The synthesis tool takes a Boolean function f as the primary
input. The final output of the synthesis tool consists of i) an
allocation of the input variables of f to the first crossbar, ii)
the resistance state of all memristor cells within the staircase
structure, and iii) an assignment of the output variables of f
to the last crossbars.

The overall synthesis process can be decomposed into three
steps: a technology independent optimization step, a tech-
nology dependent optimization step, and a crossbar mapping
step. In the technology independent optimization step, the
input specification is synthesized into a netlist with low fan-
in gates. In the technology dependent optimization step, the
initial netlist is mapped into a netlist of high fan-in OR-INV
in-memory compute kernels. In the crossbar mapping step,

Fig. 3: Overview of the STREAM-O synthesis.
the in-memory compute kernels are sorted depth-wise and are
bound to the crossbar staircase structure.

A. Technology Independent Optimization

The input to the technology independent optimization is a
Boolean function specification in hardware description lan-
guage (HDL), such as Verilog or VHDL. The input is passed
into a standard logic synthesis tool, e.g., ABC [46]. ABC
performs logic optimization based on And-Inverter Graphs
(AIGs) [39].

We aim to take advantage of the efficient technology
independent optimization within ABC when converting the
Boolean function into in-memory compute kernels supported
by OR-plane logic. Unfortunately, ABC was developed for
CMOS technology with gates with low fan-in. However, OR-
plane logic supports efficient evaluation of OR-gates with high
fan-in. Note that every OR-gate is realized using a single
bitline, regardless of the number of inputs. Therefore, we
utilize ABC to synthesize a netlist consisting of INV and low
fan-in OR-gates that is amenable for technology dependent
optimization. The technology dependent optimization will
merge many low fan-in gates into fewer high fan-in gate. We
utilize a custom cell library consisting of INV and variable
input OR gates to generate the OIG netlist. An important detail
is that we set the cost of all the gates of the custom cell library
within ABC to 1, which encourages the use of larger OR-gates.

B. Technology Dependent Optimization

The input to the technology dependent optimization step is
the ABC generated netlist with low fan-in gates. This initial
netlist consists of gates with at most 5 inputs since the target
technology for the ABC tool is CMOS-based [46]. In contrast,
in-memory computing platform based on OR-plane logic is
capable of executing arbitrary-input OR/NOR gates using a
single bitline. The technology dependent optimization step
takes advantage of this by converting the initial netlist with
low fan-in gates into a netlist with high fan-in gates that can
be executed using OR-plane logic.

First, the input netlist is converted into a directed acyclic
graph (DAG) G = (V,E), where nodes V and edges E corre-
spond to gates and wire connections, respectively. The graph
is called a subject graph. Next, the subject graph is covered
with in-memory compute kernels by performing technology
dependent optimization. Lastly, a DAG representation of the
netlist with high fan-in gates is extracted from the cover.

Fig. 4: Technology dependent optimization within STREAM-
O. (a) Initial netlist with gate encoding, (b) library of in-
memory compute kernels, (c) cover of subject graph, (d)
optimized netlist.

The workflow of technology dependent optimization is
illustrated with an example in Figure 4. Figure 4(a) shows
a subject graph with 10 nodes. The encoding of gates within
the graph is shown on the right of Figure 4(a). Figure 4(b)
shows a subset of library of in-memory compute kernels that
can be executed using OR-plane logic. In entirety, the cover
library consists of both the rudimentary gates and high fan-
in OR/NOR gates. A cover of the subject graph using the
gates from the library in Figure 4(b) is shown in Figure 4(c).
The cover is obtained using a tree-covering algorithm. The
algorithm first decomposes the subject graph into multiple
trees by breaking edges that have multiple fan-outs (e.g., gate
2 and 4 in Figure 4(a)). Next, each tree is covered with gates
from the in-memory compute kernel library using the dynamic
programming formulation in DAGON [47]. Figure 4(d) shows
the resulting netlist after covering the complete subject graph.
It can be observed that the initial netlist with 10 gates has been
reduced to an in-memory compute kernel netlist with only 6
gates.

C. Crossbar Mapping

The input to the crossbar mapping step is the updated netlist
obtained from the technology dependent optimization step.
In this step, the netlist is bound to the staircase structured
crossbars within a PE. Each crossbar within the PE can
execute arbitrary in-memory compute kernel. However, it must
be ensured that kernels that are adjacent in the netlist must
be placed in adjacent crossbars. We solve this connection
challenge by inserting dummy nodes to communicate signals
to desired crossbars within the staircase.

We illustrate the proposed crossbar mapping algorithm
with an example in Figure 5. Figure 5(a) shows the DAG
representation of a netlist with 3 primary inputs and 4 nodes.

Fig. 5: Flow for binding in-memory kernels to crossbars. (a)
Input netlist in DAG format, (b) longest distance to each node,
(c) dummy node insertion and, (d) crossbar mapping.

Each node within the DAG represents an in-memory compute
kernel that can be evaluated in a crossbar.

First step of the algorithm is to determine the longest path to
each node in the graph, which is shown in Figure 5(b). This
is achieve by performing a topological sort of DAG nodes
which is followed by an in-order traversal. We assign a value
of 1 to each edge in the DAG. The distance to a node is then
defined as the sum of the edges along the longest path from
the input layer to the respective node. Let each crossbar in the
staircase structure be labeled layer 1 to layer N. The longest
path to a node corresponds to the crossbar that the node will be
assigned. The outlined method ensures that all connections go
from crossbars with lower layers to higher layers. To eliminate
connections that skip layers, dummy nodes realized by buffers
are inserted into the netlist. The insertion of a dummy node
between ‘e’ and ‘g’ is shown in Figure 5(c). The height and
width of the crossbar layer l is equal to the number of nodes in
layer (l) and (l+1), respectively. Finally, it is straightforward
to assign the kernels to the crossbars in the staircase structure,
which is shown in Figure 5(d).

V. SYNTHESIS APPROACH 2: STREAM-M

In this section, we provide a MLL-based synthesis solution
for mapping a Boolean function to a staircase structure of
crossbars. We call this synthesis approach STREAM-M and
an overview of the synthesis flow is shown in Figure 6.

Fig. 6: Overview of the STREAM-M synthesis.

The input to the STREAM-M is the specification of a
Boolean function. The output is a set of configured PEs to
execute the specified Boolean function. STREAM-M consists
of a technology independent optimization step, a technology
dependent optimization step, and a crossbar mapping step.
In the technology independent optimization step, the input
specification is mapped into an initial MLL netlist. This initial
netlist consists of low fan-in nodes. In general, MLL nodes
with low fan-in result in OR gates with low fan-in. In the
technology dependent optimization phase, low fan-in nodes
are merged into high fan-in nodes, which reduces the hardware
requirements. In the crossbar mapping phase, the in-memory
compute kernels are bound to the crossbar staircase structure.

A. Technology Independent Optimization

In the technology independent optimization step, an initial
multi-level netlist is created based on the input specifications
of the Boolean function. The size of the netlist is next reduced

Fig. 7: An example of MLL synthesis step of STREAM-M. (a) Initial netlist, (b) netlist clean-up using sweep command, (c)
selective node collapse using eliminate command and (c) SOP minimization using simplify command. Updated nodes in each
step are marked in gray.

by iteratively applying transformations using the SIS tool [48].
Three key transformations are, as follows:

1) sweep: the sweep command is a clean-up operation that
removes all the constant nodes (0 or 1) and the nodes
with single fan-in. For instance, a subset of a MLL
netlist is presented in Figure 7(a). The netlist consists of
four primary inputs (a− d) and seven nodes (f1− f7).
Each of the node consists of a two-level logic. The
node f1 has a single fan-in. Therefore, when the sweep
command is invoked on the netlist, the f1 node is cleaned
and its input a is collapsed into its fan-outs f4 and f5
as shown in Figure 7(b).

2) eliminate: the eliminate i commands removes all nodes
with a fan-out lower or equal to i. The elimination is
performed by collapsing the selected nodes into their
fan-outs. For example, when eliminate 2 command is
invoked on the netlist of Figure 7(b), node f3 which
has a value of 2 is collapsed into its fan-outs: f6 and
f7. The resultant netlist is shown in Figure 7(c). Using
higher order or eliminations, it is possible to merge low
fan-in nodes to create high fan-in nodes.

3) simplify: the simpli f y command minimizes the SOP
expression for each node in the netlist using a subset
of the implicit don’t cares. The command essentially
invokes the two-level logic minimizer ESPRESSO [49]
to minimize the SOP expressions. The SOP minimiza-
tion aims to find a set of product terms that covers the
function f and also minimizes ∑(p∈P)Cost(p) where P
is the SOP and any pi is a product term of the SOP [50].
For example, node f5 in Figure 7(c) can be minimized
as follows: f5 = a+ f2 = a+ ab = a(1+ b) = a. The
simplified f5 node is shown in Figure 7(d).

The resulting MLL netlist is next forwarded to the technol-
ogy dependent optimization step.

B. Technology Dependent Optimization

The objective of the technology dependent optimization
step is to modify the netlist to ease the utilization of high
fan-in OR-gates, which can cost-effectively be realized using
OR-plane logic. The netlist from the technology independent
optimization step has many nodes with low fan-in because the
synthesis scripts were developed for CMOS technology.

An overview of the proposed technology dependent op-
timization is shown in Algorithm 1. In principle, it is ad-

Algorithm 1: Technology Dependent Optimization
Inputs: Initial netlist n;
Output: Optimized netlist nopt ;
main {
i ← 0; ni−1← φ ;
Ci−1← ∞;
ni ← Perform eliminate i n
Ci ← HardwareCost(ni);
while Ci≤ Ci−1 do

i ← i+1; Ci−1 ← Ci; ni−1 ← ni;
ni ← Perform eliminate i on n;
Ci ← HardwareCost(ni);

end
nopt ← ni−1; return nopt ;
}

vantageous to collapse MLL nodes with low fan-out into
larger nodes. Larger MLL nodes are more likely to utilize
high fan-in OR-gates when realized using OR-plane logic.
However, the collapsing of MLL nodes reduces the degree of
logic sharing, which naturally introduces hardware overheads.
The proposed algorithm explores the trade-off between logic
sharing and effective utilization of high fan-in OR-gates. The
trade-off is explored by replacing the “eliminate 0” command
with “eliminate i” in the default MLL synthesis script [48].
First, an initial synthesis is performed with i equal to 0
and the hardware cost Ci is estimated. The details of the
hardware cost estimation using the function HardwareCost()
is provided below. Next, i is incremented to (i+ 1) and the
synthesis process and hardware cost estimation is repeated.
The process is continued if the estimated hardware cost is
reduced compared with in the previous iteration. Otherwise,
the algorithm is terminated and the netlist with the minimum
estimated hardware cost is returned.

The estimated hardware cost Ci of a netlist ni is computed
using a function HardwareCost(). The hardware cost
estimation is performed by estimating the total crossbar area
needed realize the netlist. The area is estimated by organizing
the MLL netlist into levels and mapping each level into two
series connected crossbars. The level of a node i is equal
to the maximum number of nodes that are required to be
traversed to reach node i from a primary input. Level l

consists of all nodes assigned to level l. For each level l, the
dimensions of the two series connected crossbars are Xl ×Yl
and Yl × Zl , respectively. The dimensions Xl , Yl , and Zl are
computed, as follows:

Xl = 2×∑
Nl−1
j=1 # f an-out(node(l−1) j) (1)

Yl = ∑
Nl
j=1 #product terms(nodel j) (2)

Zl = ∑
Nl
j=1 #sum terms(nodel j) (3)

Here, Nl−1 and Nl are the total number of nodes in level l−1
and l of the MLL respectively. nodel j represents the jth node
in level l. Next, the hardware cost Ci is now calculated as
follows:

Ci = ∑
L
l=1 ceil(Xl×Yl

r×c)+ ceil(Yl×Zl
r×c) (4)

where r× c is the architecture constrained dimension of a
crossbar and L is the maximum number of levels in the MLL
netlist.

At the end of the technology dependent optimization, the
technology optimized netlist is forwarded to the crossbar
mapping step.

C. Crossbar mapping

In this section, we bind the MLL netlist from the previous
step to the crossbar hardware. We first propose a method to
map a MLL node to two series-connected crossbars. Next, we
explain how to map the DAG of a MLL netlist to staircase
structure.

We first note that each node in a MLL netlist represents
a two-level logic or a SOP expression. Any SOP expression
can be mapped to OR-plane logic using two series-connected
crossbars. For instance, consider the following two Boolean
functions,

f1 = x0 + x1x2

f2 = x0 + x0x1x2

where, x0, x1, x2 and their complemented forms are the literals
of f1 and f2. Using De Morgan’s laws [51], f1 and f2 can be
re-written as,

f1 = x0 +(x1 + x2)

f2 = x0 +(x0 + x1 + x2)

Fig. 8: (a) Two-level logic mapping and (b) MLL mapping to
OR-plane logic.

The current expressions of f1 and f2 can be mapped to a
OR-plane logic based framework using two series-connected
crossbars as shown in Figure 8(a). In the figure, the first
crossbar evaluates the product terms of the SOP of each
function. The second crossbar evaluates the sum of the product
terms of each function. The function literals are received as
inputs in the first crossbar. The functions are then realized as
the output of the second crossbar.

Now, we introduce a method for mapping a MLL netlist
to a staircase structure. First, the DAG of a MLL netlist
is organized into levels. This is achieved by assigning each
node of the DAG a level number based on the maximum
number of nodes that have to be traversed to reach that
node. Next, similarly to the STREAM-O synthesis, dummy
nodes are inserted to align all the inputs of a level to its
immediate previous level. Note that while a dummy node in
STREAM-O synthesis represents a single buffer, a dummy
node in STREAM-M represents two series-connected buffers.
After the dummy node insertion, the DAG is now ready for
hardware mapping. A simplistic representation of the DAG
of a MLL netlist is presented on the top of Figure 8(b).
The hardware mapping of a level i of MLL into staircase
structure is illustrated at the bottom of Figure 8(b). Each level
of the MLL consists of several nodes. Each of the nodes
can be mapped into two series-connected hardware as shown
in Figure 8(a). Therefore, all of the nodes of level l can
be mapped into OR-plane logic using two series-connected
crossbars. The first crossbar for level l receives input signals
from all the nodes of level l− 1 and evaluates the product
terms of all the nodes in level l. The second crossbar sums
the products of all the nodes of level l and propagates signals
to the logic level l +1.

VI. STREAM FRAMEWORK FOR MVM APPLICATIONS

In this section, we leverage the STREAM framework to ac-
celerate data-intensive applications that are dominated by high
precision matrix-vector multiplication (MVM). This requires
the computation to be broken into parts such that each part
is mapped to a PE with specified hardware resources. This is
Problem II outlined in Section III.

The motivation for breaking the computation into parts is
that the hardware requirements would otherwise be unaccept-
ably high. While it is desired to synthesize a complete MVM
operation into a single netlist, our experiments show that for
traditional synthesis tools the netlist tends to explode in size
for high-precision MVM operations. For example, mapping a
128x128 matrix with 32 bit precision to a PE requires a stair-
case structure with 74.5 million crossbars. The crossbar with
the largest required dimension would have 40,500 wordlines
and 40,000 bitlines. In STREAM, we propose to reduce the
hardware requirements using spatial and bit-wise partitioning.

A. Spatial Partitioning

In this section we propose to partition the matrix vector mul-
tiplication using blocks with dynamic size, which is illustrated
in Figure 9.

Many matrices within scientific computing applications are
sparse, one of which is shown in Figure 9(a). The workload
of a matrix block is largely dependent on the number of
non-zero matrix elements. Therefore, it is easy to understand
that partitioning using a fixed block size, which is shown
in Figure 9(b), results in that some PEs are heavily under-
utilized. Instead, we propose to utilize a dynamic partitioning
scheme that uses blocks of dynamic size, which is shown in
Figure 9(c).

Fig. 9: (a) Sparse matrix of Trefethen-20 benchmark, (b)
partitioning with fixed block size, and (c) partitioning with
dynamic block size.

The blocking problem has been explored in previous
works [17, 52]. However, there is no efficient performance-
optimal blocking algorithm available. We present a dynamic
blocking algorithm in Algorithm 2. In our implementation, we
dynamically expand the block size column-wise and row-wise
until a threshold of non-zero elements have been covered.

The inputs to the blocking algorithm is the system matrix
M and a block density threshold d. The density threshold
parameter d is dictated by the PE architecture, i.e., how many
non-zero computations the PE resources can accommodate.
To find a potential block, the algorithm traverses through the
system. This traversal is very efficient for a sparse matrix.
Traditional data structures store a sparse matrix as a set
of three vectors: a row vector for row indices of non-zero
elements, a column vector for the column indices of non-zero
elements and a values vector for the corresponding non-zero

Algorithm 2: Spatial Partitioning of Sparse Matrix
Inputs: Matrix, M; block density threshold, d
Output: Spatially partitioned matrix blocks
[R,C,Z] ← find(M); \\R, C and Z are vectors of row

index, column index and value of non-zero elements
nz ← length(V); \\number of non-zeros
while i ̸= nz do
\\Start block extraction
select a matrix block starting from ith nonzero;
calculate the density of the selected block;
if (block density≥ threshold) then

extract current block from M;
point i to the next non-extracted non-zero;

else
increment block size;

end
end

values. We define this vectors as R, C and Z respectively.
We use these vectors to navigate the original matrix only in
its non-zero operand locations. When the algorithm selects
a non-zero element of index i, it explores an initial block
space starting from the location of i. For simplicity, we select
a square block with dimension k× k. If the selected block
space meets the density threshold requirement d, the algorithm
extracts the block from the original matrix and moves onto the
next remaining non-zero operand. If the density threshold is
not met, the algorithm expands the block dimension column-
wise and row-wise to (k + 1)× (k + 1) and continues the
process. At the end of the block extraction, the extracted
blocks are forwarded to the logic synthesis step to generate
in-memory computing kernel.

B. Bit-wise Partitioning

In this section, we propose to utilize bit-slicing to partition
the computation across multiple time steps.

The concept of bit-slicing for a 32-bit fixed point multipli-
cation is shown in Figure 10. We aim to decompose the 32-bit
element-wise multiplication into a series of multiplications
with smaller bit-widths, as shown in Figure 10-(i). The key
idea is to bit-slice the input vector with unknown operands, as
shown in Figure 10-(ii). The figure shows the bit-slicing of the
unknown operand at bit-width of 16 bits. In practice, the bit-
slicing-width will be driven by architectural constraints. After
bit-slicing, the overall multiplication is performed in a series
of multiplications and shift&add operations, as demonstrated
in Figure 10-(iii). All in all, the bit-slicing introduces a trade-
off between time steps (latency) and hardware utilization.

Fig. 10: Bit-slicing element-wise multiplication

VII. PE ARCHITECTURE

In this section, we discuss the overall architecture of the
STREAM PEs. First, we discuss the components of the
architecture and later we discuss the parallelism and pipelining
for performing MVM operations using the PEs.

Overview: The overview of the STREAM PE architecture is
demonstrated in Figure 11(a). The PE consists of a collection
of staircase-structured crossbar units. The detailed architecture
of a staircase unit is demonstrated in Figure 11(b). The
crossbars in the staircase are of dimension 128× 128. These
crossbars are reconfigurable, meaning they can be programmed
to perform arbitrary Boolean functions. The crossbar periph-
erals are equipped with input register (IR) units and an output

Fig. 11: STREAM PE architecture.

register (IR) units to communicate inputs and output operands
respectively. Shifters (Sh) are used in case of bit-slicing of
computation as discussed in Section VI-B.

Each PE is equipped with a general purpose ADDER to ac-
cumulate the outputs of element-wise multiplication of MVMs.
The ADDER is also realized using a staircase structure with
the exception that some outputs are accumulated from every
second crossbar of the staircase. The detailed architecture of
the ADDER is shown in Figure 11(c). For the addition of
two N−bit numbers, the first pair of crossbars in the staircase
perform addition of the X LSBs of the two numbers and
the carry-in bit where X << N. The next pair of crossbars
performs the addition of the X + 1 to 2X bits of the two
numbers and the carry-out bit of the previous adder. Similarly,
the ith pair of crossbars compute the sum of the (i−1)X +1
to iX bits of the two numbers and the carry-out of the (i−1)th

pair of crossbars.
The PE also contains a central eDRAM buffer and output

register (OR) unit to store the input, the output and the inter-
mediate operands of the PE unit. During the one-time initial-
ization stage, the staircase units are programmed in a pipelined
fashion. This helps to keep the eDRAM buffer overhead low.
The overall STREAM architecture consists of several tiles of
PEs. If the resource requirement of a target problem exceeds a
PE resource, the problem space is partitioned and assigned into
multiple PE tiles. The PE components utilize both parallelism
and pipelining to maximize performance.

Parallelism: The matrix-vector multiplication is highly par-
allelizable. Each matrix-row × input-vector operation is inde-
pendent of each other. As discussed in Section VI, we adopt
a partitioned MVM approach in the STREAM framework.
All the partitioned segments of the matrix can be evaluated
in separate staircase crossbars in parallel. This high order
of parallelism speeds up the computation in manifold. The
time complexity of the complete MVM is reduced to the time
complexity of the segmented MVM.

Pipelining: It is noteworthy that the ADDER in the PE is
general purpose. This means that all the element-wise mul-
tiplication results can share the adder. This sharing of adder
significantly reduces the hardware requirement. The outputs of
each element-wise multiplication is therefore pipelined to the
shared adder for accumulation of results to generate a row-

TABLE III: Area-Power Cost of STREAM Components

Component Parameter Specs Area Power
Crossbar dimension 128×128 25 µm2 0.3 mW

Controller # unit 1 6.27 µm2 0.01 mW
Shifter # unit 1 60 µm2 0.05 mW

IR size 1 B 1.05 µm2 0.0006 mW
OR size 1 B 2.93 µm2 0.001 mW

local bus #wires 128 0.03 mm2 2.33 mW
crossbars 10

Staircase Unit #IR/#OR 1/5 0.0003 mm2 3.06 mW
Shifter 1
size 9 B

ADDER # crossbars 48 0.0012 mm2 14.42 mW
#IR/#OR 18/9

eDRAM Buffer size 20 KB 0.026 mm2 6.47 mW
ADDER 1

PE # Staircase Unit 128 0.0657 mm2 412.63 mW
#OR/ Shifter 9/1

Bus bandwidth 128-bits 15.7 mm2 13 mW

vector×column-vector multiplication of MVM.

VIII. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the perfor-
mance of the STREAM framework based on STREAM-O
and STREAM-M synthesis approaches. The experiments are
executed on a machine with an Intel Core i9 processor and
NVIDIA GeForce RTX 2070S GPU. A SPICE-level simula-
tion is performed with the fitting characteristics of the VTEAM
model [53]. The crossbar dimensions are selected to be
128×128, and the resistance RLRS and RHRS of the memristors
are selected as 10kΩ and 10MΩ respectively. We use a read
and write latency of 29.31ns and 50.88ns respectively, as
reported in [35]. In Table III, the remaining parameters for the
different architectural components of the STREAM PEs are
provided. For each component, we provide the specifications,
area, and power consumption. The parameters have been
obtained from [53–55]. To perform a comparison with the
CMOS ASIC-like systems, we utilize the Synopsys Design
Compiler (DC) tool with gscl-45nm technology library [56].
We use the CACTI 7 tool [57] to simulate the data transfer
cost for 1GB DDR3 memory on 45nm technology node.

For the experimental evaluation, we utilize the benchmarks
from the ISCAS85 benchmark suite [37], and matrices from
the Suit-Sparse matrix collection of [38]. The overview of the
function type and properties (number of inputs and outputs)
of the ISCAS85 benchmark suit are listed in Table IV.
The ISCAS85 benchmark suit consists of ten combinational
network circuits. An overview of the matrices selected from
the Suit-Sparse matrix collection is provided in Table V. We
select eleven sparse matrices with different sparsity patterns.

TABLE IV: Overview of ten ISCAS85 benchmarks.
Benchmark Function Inputs Outputs
c432 Priority Decoder 36 7
c499 ECAT 41 32
c880 ALU and control 60 126
c1355 ECAT 41 32
c1908 ECAT 33 25
c2670 ALU and control 233 140
c3540 ALU and control 50 22
c5315 ALU and selector 178 123
c6288 16-bit multiplier 32 32
c7552 ALU and control 207 108

TABLE V: Overview of eleven matrices of the SuitSparse Ma-
trix Collection in terms of application type, matrix dimensions,
and number of non-zero elements.

Applications Systems Matrix Dimensions #Non-zeros
Trefethen-20 Combinatorial 20×20 158
mesh3em5 Structural 289×289 1377

Trefethen-150 Combinatorial 150×150 2040
Trefethen-200b Combinatorial 199×199 2873
Trefethen-200 Combinatorial 200×200 2890

bcsstk02 Structural 66×66 4356
Trefethen-300 Combinatorial 300×300 4678
Chem97ZtZ Statistical/Mathematical 2541×2541 7361

Trefethen-500 Combinatorial 500×500 8478
Journals Undirected Weighted Graph 124×124 12068

Trefethen-700 Combinatorial 700×700 12654

The matrices are from various domains of physical systems
such as statistics, mathematics and structural engineering.

In Section VIII-A, we evaluate the effectiveness of the
proposed synthesis flows. We evaluate the architectural de-
sign in Section VIII-B. In Section VIII-C, we compare the
performance of the two synthesis approaches with the state-
of-the-art computing paradigms.

A. Evaluation of Synthesis Approaches

In this section, we evaluate the effectiveness of the
STREAM-O and STREAM-M synthesis flows. For the eval-
uation, we use benchmarks from the ISCAS85 benchmarks
suite [37].

1) STREAM-O: In this section, we evaluate the effective-
ness of the SREAM-O synthesis flow. In Figure 12, we show
the distribution of OR-INV gates before and after technology
dependent optimization on the c880 circuit. We observe that
the maximum fan-in within the initial netlist is five. On the
other hand, the maximum fan-in is seven after technology
dependent optimization. It can also be observed that the
percentage of OR-gates with higher fan-in has been increased
by the optimization. The OR-gates with high fan-in are created
by merging OR-gates with smaller fan-in.

The total number of gates after technology independent
optimization, after technology dependent optimization and,
after crossbar mapping on the ISCAS85 circuits is shown in
Figure 13. The figure shows that the technology dependent
optimization reduces the total number of gates with 30% on
average. However, in the crossbar mapping step, the total

(a) (b)

Fig. 12: Gate distribution of the netlist of c880 benchmark (a)
before and, (b) after technology dependent optimization step
of STREAM-O.

Fig. 13: Comparison of total number of gates in ISCAS85
benchmark circuits after technology independent optimiza-
tion, technology dependent optimization and crossbar mapping
steps of STREAM-O.

number of gates are increased by 2.5X . This is due to that
dummy-nodes are inserted to connect OR-gates that are not
placed in adjacent crossbars. Nevertheless, the dummy nodes
allows the crossbar inter-connections to be hardwired avoiding
the use of expensive reconfigurable interconnects.

2) STREAM-M: In this section, we evaluate the technol-
ogy dependent optimization within the STREAM-M synthesis
flow. The total number of nodes on the c1355 circuit with re-
spect to the “elimination i” operation is shown in Figure 14(a).
As expected, the figure shows that the total number of nodes
is reduced when more nodes are collapsed. For example, it
can be observed that the eliminate 30 operation reduces the
number of nodes from 448 to 95. In Figure 14(b), we show
the area, latency, and energy with respect to the eliminate
operation. When i is increased, it can be observed that the
area is decreased until a turning-point from where it starts to
increase again. This stems from the trade-off between logic
share and used of OR-gates with high fan-in. We select to
minimize the area in Algorithm 1 because it results in both
small energy and area. The delay is improved with respect
to if no optimization was performed. However, it could be
improved further if it was set as the primary objective.

The total number of gates after technology independent
optimization, after technology dependent optimization, and
after crossbar mapping on the ISCAS85 circuits is shown in
Figure 15. The figure shows that the technology dependent
optimization reduces the total number of gates with 57% on
average. The crossbar mapping increases the total number of

(a) (b)

Fig. 14: Analysis of elimination on c1355 circuit. (a) Number
of multi-level nodes vs. value of i in eliminate i. (b) Area-
Latency-Energy overhead vs. value of i in eliminate i.

Fig. 15: Comparison of total number of gates in ISCAS85
benchmark circuits after technology independent optimiza-
tion, technology dependent optimization and crossbar mapping
steps of STREAM-M.

gates with 80% by inserting dummy nodes. In similar to within
STREAM-O, the dummy nodes allow the crossbars within the
staircase structure to be hardwired, i.e., avoiding the use of
costly reconfigurable interconnects.

B. Evaluation of Architectural Design

In this section we evaluate the proposed architectural design.
In particular, we calculate the maximum resolution of an adder
that can be fit into a pair of series connected crossbars of
architecture specified dimension.

Figure 16(a) shows the normalized area overhead for per
bit addition using adders with different bit resolutions. The
figure shows that a 3-bit adder yields minimum area per
bit addition. This is due to that the proposed architecture
specifies a crossbar dimension constraint of 128× 128. And
a 3-bit adder is the largest full adder that can be realized
using a pair of 128× 128 crossbars. The required maximum
crossbar dimension for adders of different bit resolutions is
shown in Figure 16(b). The figure shows that the maximum
crossbar dimension scale up rapidly for adders with higher bit
resolutions.

C. Comparison with State-of-the-art

In this section, we first compare STREAM with state-of-
the-art in-memory computing paradigms. In Section VIII-C1,
we compare the performance on the ISCAS benchmarks. In
Section VIII-C2, we evaluate the STREAM framework with
data-intensive MVM operations on the applications from the
Suit-Sparse matrix collection. In Section VIII-C3, we present
a comparison with CMOS ASIC-like systems.

Fig. 16: Evaluation of architecture constraint adder resolution.
(a) Normalized area overhead for per bit computation using
adders of different bit resolution and, (b) maximum crossbar
dimensions for adders of different bit resolution

1) Evaluation on ISCAS85 Benchmarks: In this section,
we compare the state-of-the-art WRITE-based in-memory
computing scheme CONTRA [29] with STREAM-O and
STREAM-M. We evaluate the area, latency, and energy con-
sumption on the ISCAS85 benchmarks listed in Table IV.

The comparative result of the evaluation on the ISCAS85
benchmarks are listed in Table VI. The results show that
CONTRA uses 5.3X and 5.0X less area than STREAM-O
and STREAM-M, respectively. This is because CONTRA is
a WRITE-based in-memory computing paradigm that allows
non-volatile memory cells to be reused to minimize area. On
the other hand, the STREAM frameworks are based on READ-
based in-memory computing and are expected to improve
delay and energy. Compared with CONTRA, STREAM-O im-
proves the average latency and energy with 143.3X and 1.6X ,
respectively. This is a result of that no WRITE operations
are performed within READ-based in-memory computing.
The READ-based computing scheme also eliminates many
expensive copy operations that are used within CONTRA [29].
Compared with STREAM-O, STREAM-M improves latency
and energy with 1.4X and 1.6X , respectively. The improve-
ments stem from that the MLL data structure empirically
results more compact hardware representations than using
OIGs. This is not surprising considering the total gate count
in Figure 13 and Figure 15. Given these results, we conclude
that it is better to use MLL than OIGs when mapping Boolean
logic to in-memory compute kernels for OR-plane logic.

2) Evaluation with SuitSparse Matrix Collection: In this
section, we evaluate the performance of the STREAM
framework for matrix-vector-multiplication (MVM) operation.
MVM is the most expensive computational kernel in many
scientific applications. In particular, MVM is the dominat-
ing computation in platform for solving systems of linear
equations. The state-of-the-art solution for solving systems of
sparse matrices is based on iterative Kyrlov subspace methods
such as conjugate gradient (CG) [58] and GMRES [59].
These methods are based on iteratively refining an initial
solution through error corrections. In each iteration of the
iterative refinement algorithm, an expensive MVM operation is
performed. An overview of 11 positive-definite [60] matrices
are shown in Table V. We use a 32-bit representation for both
the matrix operands and input vector operands to generate
the HDL description. For bit-wise partitioning of unknown
multiplication operands, we select a bit-slicing width of 4-
bits. For a given system, we consider the matrix operands
as constants and the input/output vectors are considered as
variables. For new systems, the PEs are reconfigured for new
matrix values.

We compare the performance of the STREAM framework
with SIMPLER [30], which the state-of-the-art in-memory
computing paradigm for MVM. We chose SIMPLER for
this evaluation because SIMPLER outperforms CONTRA for
arithmetic operations. SIMPLER is based on MAGIC and it is
ideal for applications with high order of parallel computation.
SIMPLER can perform each matrix-row×input-vector opera-
tion in parallel using a row-mapping fashion, which greatly

TABLE VI: Comparison of area, latency, and energy consumption for CMOS technology, CONTRA, STREAM-O and
STREAM-M on ten benchmarks of the ISCAS85 benchmarks suite.

CONTRA [29] STREAM-O STREAM-M
Benchmark Area Latency Energy Area Latency Energy Area Latency Energy

(µm2) (µs) (nJ) (µm2) (µs) (nJ) (µm2) (µs) (nJ)
c432 447.25 39.18 56.81 1418.50 0.64 41.82 1141.00 0.47 21.60
c499 447.25 68.33 99.08 1742.20 0.73 63.57 1649.80 0.41 33.03
c880 447.25 64.26 93.18 1742.20 0.85 73.75 1048.50 0.41 16.34
c1355 447.25 68.38 99.15 1511.00 0.59 41.68 1649.80 0.53 42.47
c1908 447.25 74.74 108.37 1649.80 0.79 63.71 1326.00 0.53 30.91
c2670 447.25 104.81 151.97 1696.00 0.62 51.48 1834.80 0.35 32.72
c3540 447.25 181.89 263.74 2574.80 1.35 192.94 2066.00 0.70 76.44
c5315 447.25 245.80 356.41 3314.80 0.97 186.85 2713.50 0.47 71.51
c6288 447.25 401.00 581.45 8494.80 3.31 1800.88 6968.50 3.52 1549.15
c7552 447.25 356.00 516.20 4979.80 1.49 457.20 5904.80 1.00 367.19
Norm. Avg. 0.190 1.000 1.000 1.000 0.007 0.640 0.950 0.005 0.400
Avg. Improvement 1.0X 1.0X 1.0X 0.2X 143.3X 1.6X 0.2X 200.0X 2.5X
over CONTRA [29]

Fig. 17: Comparison of area, latency, and energy for SIMPLER, STREAM-O and STREAM-M synthesis based STREAM
frameworks on eleven benchmarks of the SuitSparse Matrix Collection.

improves the performance of the accelerator.
In Figure 17, we compare the performance of STREAM

framework with SIMPLER in terms of area, latency and
energy consumption. The experimental result shows that the
STREAM-O and STREAM-M based frameworks require on
average 3.7X and 3.3X more area usage respectively than SIM-
PLER. However, STREAM-O achieves 6.2X energy efficiency,
and improves the latency by 2X compared with the latency
of SIMPLER. Compared with STREAM-O, STREAM-M im-
proves energy and latency with 3.2X and 2.1X , respectively.

Note that the improvements achieved for MVM applications
are relatively less than that for the ISCAS85 benchmarks. This
is due to that, MVM is a computationally expensive task.
Therefore, it requires multiple PEs to cover the whole compu-
tation. This computational partitioning in multiple PEs incurs
latency and energy overhead due to the inter-PE data transfer.
Nevertheless, the experimental results clearly demonstrate that
the proposed STREAM framework is advantageous overall
to the state-of-the-art WRITE-based in-memory computing
paradigms.

3) Comparison with CMOS ASIC: In this section, we
compare the performance of the STREAM framework with
CMOS ASIC-like systems.

Our experiments show that the STREAM framework has
distinct advantages while evaluating arbitrary Boolean logic

and MVM operations. For Boolean logic operations, the major
improvement of the proposed system comes from the area
reduction that comes with the reconfigurability of the archi-
tecture. For instance, Table VII lists the combinational area
requirements to develop the first 8 circuits from the ISCAS-
85 benchmark suit. For CMOS ASIC chips, the total area
requirement is 16318 µm2. On the other hand, these circuits
can be sequentially reconfigured in the STREAM architecture
with a worst-case area of 1250 µm2 which reduces the area
requirement by 13X.

For MVM applications, the improvement of the STREAM
framework comes from the reduction in cross-architecture data
transfer cost. To perform MVM within CMOS ASIC, both
the matrix operands and input/output operands need to be

TABLE VII: Combinational area requirements for 8 circuits
from the ISCAS-85 benchmark suit.

Benchmark CMOS ASIC STREAM Worst Case
Area (µm2) Area (µm2)

c432 575.4
c499 726.01
c880 1059.7
c1355 1729.84 1250
c1908 1419.2
c2670 2212.28
c3540 3348.9
c5315 5246.3
Total 16318 1250
Normalized 13X 1X

Fig. 18: Comparison of average area, latency, and energy for
CMOS ASIC and STREAM frameworks on benchmarks of
the SuitSparse Matrix Collection in Table V.

repeatedly accessed using expensive data transfer. Conversely,
in the STREAM framework the matrix values are programmed
into the memory. Therefore, the data transfer complexity
is reduced from O(N2) to O(N). We evaluate the dynamic
memory access latency/energy cost using the CACTI 7 tool
and the processor area/latency/energy cost using the Synopsis
Design Compiler tool. Our experimental evaluation show that
for the sparse matrices in Table V, the STREAM framework
reduces the average total area by 8.21X, latency by 1449X, and
energy consumption by 4.14X compared to the CMOS ASICs
which is shown in Figure 18. Note that such significant speed-
up is typical for in-memory computing paradigms [30, 55].

IX. OTHER RELATED WORKS

In this section we discuss prominent in-memory computing
paradigms for accelerating data-intensive applications. We
perform the review by dividing the different paradigms and
systems based on if they target (i) approximate computing
applications, (ii) structured high precision workloads, and (iii)
irregular high precision workloads. Different paradigms are ad-
vantageous for different types of applications and workloads.

Approximate Computing Applications: High density and
energy-efficient analog matrix-vector multiplication is advan-
tageous for approximate computing applications such as neural
networks, image processing, and search. Prominent studies in-
clude Pipelayer [35], ISAAC [54], IMP [61] , Prometheus [62],
and AccuRED [63]. The limitation of these paradigms is that
they cannot perform Boolean logic or deliver the high preci-
sion required by scientific computing applications considered
in this paper.

Structured High Precision Workloads: Vector-based dig-
ital in-memory computing such as MAGIC [24], IMPLY [23],
bit-wise-in-bulk [26] and DRAM-based in-memory computing
paradigms can be used to accelerate applications based on high
precision dense matrix vector multiplication. These paradigms
execute parallel vector-based instructions very efficiently.
Prominent studies include SIMPLY [31], FloatPIM [55], Am-
bit [33], and Compute Cache [64]. However, these paradigms
cannot handle Boolean logic or irregular computational pat-
terns such as sparse matrix-vector multiplication.

Irregular High Precsision Workloads: Irregular in-
memory approaches such as OR-plane logic and some MAGIC
and IMPLY logic are advantageous for unstructured ap-
plications such as combinational logic and sparse MVM.
Important contributions and studies include CONTRA [29],
SIMPLER [30], and STREAM [36]. For combinational logic

circuits, STREAM outperforms CONTRA due to the use of
READ-based in-memory computing instead of WRITE-based
in-memory computing. For sparse matrix-vector multiplica-
tion, the STREAM framework outperforms SIMPLER due to
the ability of considering the sparsity of the matrix.

X. SUMMARY AND FUTURE WORK

In this paper, we proposed the STREAM framework for
executing Boolean logic using nanoscale crossbars. The frame-
work consists of a synthesis tool that decomposes high-level
application into READ-based in-memory compute kernels. We
develop two synthesis approaches based on contemporary data
structures from logic synthesis. We also design an in-memory
computing architecture and techniques to decompose the de-
sired computation with respect to the architectural constraints.
The experimental evaluation illustrates the effectiveness of
READ-based computing compared with WRITE-based in-
memory computing paradigms. In the future, we plan to
use STREAM to accelerate genome sequencing applications.
We also plan to augment STREAM with analog in-memory
accelerators.

REFERENCES
[1] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,” The

internet society (ISOC), vol. 80, pp. 1–50, 2015.
[2] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025-predictions for the next

ten years,” in IMPACT, pp. 192–195, IEEE, 2015.
[3] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east,” IDC iView: IDC Analyze the future,
vol. 2007, no. 2012, pp. 1–16, 2012.

[4] D. Quick and K.-K. R. Choo, “Impacts of increasing volume of digital forensic
data: A survey and future research challenges,” Digital Investigation, vol. 11, no. 4,
pp. 273–294, 2014.

[5] S. Chai, “Mobile challenges for embedded computer vision,” in Embedded Com-
puter Vision, pp. 219–235, Springer, 2009.

[6] F. Pop, “High performance numerical computing for high energy physics: A new
challenge for big data science,” Advances in High Energy Physics, vol. 2014, pp. 1–
13, 02 2014.

[7] J. Backus, “Can programming be liberated from the von neumann style?: A
functional style and its algebra of programs,” CACM, vol. 21, no. 8, pp. 613–641,
1978.

[8] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the
obvious,” SIGARCH, vol. 23, no. 1, pp. 20–24, 1995.

[9] A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the
IEEE, vol. 72, no. 7, pp. 758–779, 1984.

[10] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2,
p. 117, 1998.

[11] G. Singh et al., “A review of near-memory computing architectures: Opportunities
and challenges,” in 2018 21st DSD, pp. 608–617, IEEE, 2018.

[12] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching
devices,” Nature electronics, vol. 1, no. 6, pp. 333–343, 2018.

[13] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit
theory, vol. 18, no. 5, pp. 507–519, 1971.

[14] G. W. Burr et al., “Phase change memory technology,” JVSTB, vol. 28, no. 2,
pp. 223–262, 2010.

[15] Y. Huai et al., “Spin-transfer torque mram (stt-mram): Challenges and prospects,”
AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[16] C. Li et al., “Analogue signal and image processing with large memristor crossbars,”
Nature Electronics, vol. 1, no. 1, p. 52, 2018.

[17] B. Feinberg et al., “Enabling scientific computing on memristive accelerators,” in
2018 ACM/IEEE 45th ISCA, pp. 367–382, IEEE, 2018.

[18] B. Zhang et al., “Computational restructuring: Rethinking image compression using
resistive crossbar arrays,” IEEE TCAD, vol. 40, no. 5, pp. 836–849, 2020.

[19] B. Zhang et al., “Towards resilient deployment of in-memory neural networks with
high throughput,” in 2021 58th ACM/IEEE DAC, pp. 1081–1086, IEEE, 2021.

[20] N. Uysal, B. Zhang, S. K. Jha, and R. Ewetz, “Xmap: Programming memristor
crossbars for analog matrix–vector multiplication: Toward high precision using
representable matrices,” IEEE TCAD, vol. 41, no. 6, pp. 1827–1841, 2021.

[21] C. Xu et al., “Overcoming the challenges of crossbar resistive memory architec-
tures,” in 2015 IEEE 21st HPCA, pp. 476–488, IEEE, 2015.

[22] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature Electronics,
vol. 1, no. 4, pp. 246–253, 2018.

[23] J. Borghetti et al., “‘memristive’ switches enable ‘stateful’ logic operations via
material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[24] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS-II: Express Briefs,
vol. 61, no. 11, pp. 895–899, 2014.

[25] S. K. Jha et al., “Computation of boolean formulas using sneak paths in crossbar
computing,” 2016. US Patent 9,319,047.

[26] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories,” in DAC, pp. 1–6, IEEE, 2016.

[27] S. Thijssen, S. K. Jha, and R. Ewetz, “Path: Evaluation of boolean logic using
path-based in-memory computing,” in 59th DAC, 2022.

[28] A. Dehon, “Nanowire-based programmable architectures,” JETC, vol. 1, no. 2,
pp. 109–162, 2005.

[29] D. Bhattacharjee et al., “Contra: area-constrained technology mapping framework
for memristive memory processing unit,” in ICCAD, pp. 1–9, 2020.

[30] R. Ben-Hur et al., “Simpler magic: Synthesis and mapping of in-memory logic
executed in a single row to improve throughput,” TCAD, vol. 39, no. 10, pp. 2434–
2447, 2019.

[31] T. Zanotti, F. M. Puglisi, and P. Pavan, “Smart logic-in-memory architecture for
low-power non-von neumann computing,” IEEE Journal of the Electron Devices
Society, vol. 8, pp. 757–764, 2020.

[32] S. Thijssen et al., “Compact: Flow-based computing on nanoscale crossbars with
minimal semiperimeter,” in 2021 DATE, pp. 232–237, IEEE, 2021.

[33] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise operations using
commodity dram technology,” in 2017 50th Annual IEEE/ACM MICRO, pp. 273–
287, IEEE, 2017.

[34] M. H. I. Chowdhuryy et al., “Ladder: Architecting content and location-aware
writes for crossbar resistive memories,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 117–130, 2021.

[35] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in HPCA, pp. 541–552, IEEE, 2017.

[36] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz, “Stream: Towards
read-based in-memory computing for streaming based data processing,” in 2022
27th ASP-DAC, pp. 690–695, IEEE, 2022.

[37] M. C. Hansen et al., “Unveiling the iscas-85 benchmarks: A case study in reverse
engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[38] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” TOMS,
vol. 38, no. 1, pp. 1–25, 2011.

[39] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean reasoning
for equivalence checking and functional property verification,” IEEE TCAD, vol. 21,
no. 12, pp. 1377–1394, 2002.

[40] A. Deb, R. Wille, and R. Drechsler, “Or-inverter graphs for the synthesis of optical
circuits,” in 2017 IEEE 47th ISMVL, pp. 278–283, IEEE, 2017.

[41] R. K. Brayton et al., “Mis: A multiple-level logic optimization system,” IEEE
TCAD, vol. 6, no. 6, pp. 1062–1081, 1987.

[42] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Com-
puters, IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[43] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a bdd
package,” in 27th ACM/IEEE DAC, pp. 40–45, IEEE, 1990.

[44] K. A. Bartlett et al., “Multi-level logic minimization using implicit don’t cares,”
IEEE TCAD, vol. 7, no. 6, pp. 723–740, 1988.

[45] H. Wu et al., “Resistive random access memory for future information processing
system,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1770–1789, 2017.

[46] A. Mishchenko et al., “Abc: A system for sequential synthesis and verification.”
”http://www.eecs.berkeley.edu/alanmi/abc”.

[47] K. Keutzer, “Dagon: Technology binding and local optimization by dag matching,”
in DAC, pp. 341–347, 1987.

[48] E. M. Sentovich et al., “Sis: A system for sequential circuit synthesis,” 1992.
[49] R. K. Brayton et al., Logic minimization algorithms for VLSI synthesis, vol. 2.

Springer Science & Business Media, 1984.
[50] O. Coudert, “Doing two-level logic minimization 100 times faster.,” in SODA,

pp. 112–121, 1995.
[51] P. J. Hurley, A concise introduction to logic. Cengage Learning, 2014.
[52] R. W. Vuduc, Automatic performance tuning of sparse matrix kernels. University

of California, Berkeley, 2003.
[53] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled memristors,”

TCAS-II: Express Briefss, vol. 62, no. 8, pp. 786–790, 2015.
[54] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” SIGARCH, vol. 44, no. 3, pp. 14–26, 2016.
[55] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network training

with high precision,” in ISCA, pp. 802–815, IEEE, 2019.
[56] J. E. Stine et al., “Freepdk: An open-source variation-aware design kit,” in 2007

IEEE MSE, pp. 173–174, IEEE, 2007.
[57] R. Balasubramonian et al., “Cacti 7: New tools for interconnect exploration in

innovative off-chip memories,” ACM TACO, vol. 14, no. 2, pp. 1–25, 2017.
[58] M. R. Hestenes, E. Stiefel, et al., Methods of conjugate gradients for solving linear

systems, vol. 49. NBS Washington, DC, 1952.
[59] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical
computing, vol. 7, no. 3, pp. 856–869, 1986.

[60] R. Bhatia, Positive definite matrices. Princeton university press, 2009.
[61] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,” ACM

SIGPLAN Notices, vol. 53, no. 2, pp. 1–14, 2018.
[62] Y. Xiao, S. Nazarian, and P. Bogdan, “Prometheus: Processing-in-memory hetero-

geneous architecture design from a multi-layer network theoretic strategy,” in 2018
DATE, pp. 1387–1392, IEEE, 2018.

[63] B. K. Joardar et al., “Accured: High accuracy training of cnns on reram/gpu
heterogeneous 3-d architecture,” IEEE TCAD, vol. 40, no. 5, pp. 971–984, 2020.

[64] S. Aga et al., “Compute caches,” in 2017 IEEE HPCA, pp. 481–492, IEEE, 2017.

Muhammad Rashedul Haq Rashed is a Ph.D.
candidate in Computer Engineering at the University
of Central Florida (UCF). Rashed received his bach-
elor’s degree in Electrical and Electronics Engineer-
ing from Bangladesh University of Engineering and
Technology (BUET) in 2015. His research interests
include EDA for emerging computing paradigms,
computer-aided design, and artificial intelligence. He
has received a best paper nomination at ICCAD
2022.

Sven Thijssen is a Ph.D. student in Computer
Science at the University of Central Florida (UCF).
Sven received his bachelor’s degree in Informatics
from KU Leuven, Belgium, in 2018, and his master’s
degree in Computer Science from UCF in 2021.
His research interests are in-memory computing and
beyond von Neumann computing. In 2020 he has
received the ORCGS Doctoral Fellowship from UCF
and in 2021 he has received a best paper nomination
at DATE.

Sumit K. Jha is Professor of Computer Science at
the University of Texas San Antonio. Dr. Jha re-
ceived his Ph.D. in Computer Science from Carnegie
Mellon University. He completed B.Tech (Honors)
in Computer Science and Engineering from the
Indian Institute of Technology Kharagpur. Dr. Jha
has worked on R&D problems at Microsoft Research
India, GM, INRIA and the Air Force Research Lab
Information Directorate. Dr. Jha was awarded the
prestigious Air Force Young Investigator Award and
his research has led to four Best Paper awards.

Fan Yao (Member, IEEE) received the PhD degree
in computer engineering from George Washington
University, Washington, DC, in 2018. He is cur-
rently an assistant professor with the Department
of Electrical and Computer Engineering, University
of Central Florida, Orlando, Florida. His research
interests include computer architecture, hardware
security, security of emerging applications and com-
puting infrastructure, energy efficient computing.

Rickard Ewetz received the M.S. degree, in Applied
Physics and Electrical Engineering, from Linkopings
Universitet in 2011. He received the Ph.D. degree in
Electrical and Computer Engineering from Purdue
University in 2016. Currently, he is an associate
professor in the ECE Department at the University
of Central Florida. His research interests include
physical design and computer-aided design for in-
memory computing using emerging technologies. He
has best paper nominations from ASP-DAC 2019,
DATE 2021, and ICCAD 2022.

