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What’s in a Name?

“What is in a name? A rose by any other name would smell . . . ”

But is this true for Large Language Models (LLMs)?
LLMs perform poorly on Mystery Planning Problems!

How do you explain such AI behavior?
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Our Math Jailbreaking Work Featured!

Figure: Symbolic math representations of queries beat commercial safety
alignment! How do you explain such behavior?
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Our Math Jailbreaking Work Featured!

Jailbreaking Large Language Models with Symbolic Mathematics
E. Bethany, M. Bethany, J.A. Nolazco Flores, SK Jha, and P. Najafirad
Workshop on Socially Responsible Language Modelling Research (SoLaR)
at NeurIPS, 2024

Our work on Math Jailbreaking Prompts was recently featured among the
Top 10 ML Papers of the Week by DAIR.AI and covered by media:

MarkTechPost

CSO Online

Generative AI Pub

LevelUp

ContentFlix

DAIR.AI Twitter

How do you leverage this in code analysis?
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Motivation

Why Code Analysis with AI and Functors?

Advances in Large Language Models (LLMs) have shown potential in
transforming the field of code synthesis. However, challenges remain in:

Ensuring code correctness, especially in synchronization.
Bridging the gap between code and human-auditable formal models.

This study introduces a framework for co-synthesizing code and formal
models, leveraging LLMs and functors to create human-auditable
mappings.
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Problem Statement and Challenges

Problem Statement:
AI-generated code often lacks assurance of correctness, especially in
parallel systems where concurrency errors can lead to catastrophic
outcomes.

Challenges:

Verification Complexity: Ensuring correctness in code generated for
synchronization-heavy applications.

Human-Auditable Models: Bridging the generated code with
formal models that are verifiable and understandable.

Functors!
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Background: Overview of Existing Work

Advances in AI for Code Analysis

AI-driven Code Generation: Language models, such as GPT and
Codex, have shown the ability to generate code from natural
language.

Formal Verification Approaches: Model checking and theorem
proving have been employed to verify code.

EBMC Model Checker
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Related Work: AI and LLMs in Code Synthesis

Code Synthesis Using Large Language Models

Language Models: Codex, GPT-4, and other LLMs have been
extensively studied for code generation, but challenges in correctness
persist.

Handling Concurrency: LLMs can generate code that manages
concurrent processes, synchronization a key issue.

Model-Driven Approaches: Research into combining LLMs with
formal models to ensure generated code meets specific constraints.

https://arxiv.org/pdf/2407.21579
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Related Work: Model Checking in AI and Code Verification

Formal Verification and Model Checking

Model Checking Foundations: Techniques for verifying properties
of concurrent systems, especially for ensuring safety and liveness.

Temporal Logic in Verification: Use of temporal logic (LTL, CTL)
to express constraints on code execution paths.
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Definition of Categories

What is a Category? A category is a collection of objects and
morphisms that satisfy certain properties. Formally, a category C consists
of:

Objects: Elements within the category, which could represent data
structures, states, or models.
Morphisms: Arrows (also called maps or functions) between objects
that define relationships or transformations. For objects A and B in
C, we denote a morphism from A to B as f : A → B.

Properties of a Category: A category satisfies the following two
properties:

1 Composition: For any morphisms f : A → B and g : B → C , there
exists a morphism g ◦ f : A → C representing the composition of f
and g .

2 Identity Morphism: For each object A, there exists an identity
morphism idA : A → A that satisfies f ◦ idA = f and idB ◦ f = f for
any morphism f : A → B.

Examples of Categories:

Set: Objects are sets, and morphisms are functions between sets.
Composition is function composition, and identity morphisms are
identity functions.
Poset: Objects are elements of a partially ordered set, and there is a
morphism a → b if a ≤ b.
Category of Types: In programming, objects can represent data
types, and morphisms represent functions between types.
Category of Code and Models: For code synthesis, objects could
be code components and model elements, with morphisms
representing transformations or relationships between them.
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Definition of Functors

What is a Functor? A functor is a mapping between two categories that
preserves their structures. Formally, a functor F from a category C to a
category D, denoted F : C → D, consists of:

Object Mapping: For each object A in C, there is an associated
object F (A) in D.
Morphism Mapping: For each morphism f : A → B in C, there is a
corresponding morphism F (f ) : F (A) → F (B) in D.

Properties of Functors:

Functors preserve the structural properties of categories:
1 Identity Preservation: For each object A in C, F (idA) = idF (A) in D.
2 Composition Preservation: For morphisms f : A → B and

g : B → C in C, F (g ◦ f ) = F (g) ◦ F (f ) in D.

Example of Functors:

Set to Type: A functor that maps sets in category Set to data
Types in a programming category, mapping functions between sets to
functions between types.
Functor in Code Synthesis: In this study, a functor maps code
elements (e.g., code states) to model elements, preserving the
structure of operations. For instance, a function in code that changes
a state maps to a corresponding state transition in the model.
Graph to Category: A functor that maps nodes and edges in a graph
(objects and morphisms) to objects and morphisms in a category.
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Research Objectives

Main Objectives of the Study

The primary goals of this research are to:

Develop a framework for co-synthesizing code, formal models, and
mappings using Large Language Models (LLMs).

Ensure human-auditable mappings between code and formal
models for reliable verification.

Use formal verification to confirm the correctness of AI-generated
code, especially for parallel systems.
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Specific Contributions

Contributions of this Research

This study makes several key contributions:

1 A new framework for code and model co-synthesis using LLMs.

2 Introduction of functor-based mappings that establish reliable
connections between code and formal models.

3 Preliminary evaluation of co-synthesized models in critical scenarios,
like concurrency and synchronization.
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Methodology Overview

Co-Synthesis Framework Using LLMs

Our approach leverages Large Language Models (LLMs) to co-synthesize
code, formal models, and mappings. This methodology includes:

Generating code from specifications using LLMs.
Creating corresponding formal models for verification.
Establishing a human-auditable mapping through functors.
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Technical Approach: Generating Code with LLMs

Step 1: Code Generation with LLMs

LLMs are employed to generate code for specific problems.
Code focuses on concurrent applications.
Incorporates a test harness with assertions.
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Technical Approach: Formal Model Generation

Step 2: Formal Model Generation

The LLM concurrently generates a formal model in a specification
language (e.g., SMV).

The model represents the same logic and behavior as the code.

Model checking to verify model meets temporal logic properties.
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Technical Approach: Functor Mapping

Step 3: Functor Mapping Between Code and Model

Utilizes functors from category theory to establish a mapping between
code components and formal model elements.

Functors make the mapping human-auditable, enhancing trust.
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Iterative Process and Feedback

Refinement through Iterative Feedback

Verification: Model checking identifies errors.

Counterexamples: Errors are flagged, providing feedback.

Improvement Cycle: Enhances the reliability of the code, model,
and functor mappings.
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Case Study: Dining Philosophers Problem

Illustrating the Approach with a Case Study

Example: Dining Philosophers Problem
This classic problem is used to showcase the co-synthesis approach, with
emphasis on:

Synchronization requirements between concurrent processes.

Generation of C code and SMV model by the LLM.

Functor mapping between code elements and formal model
components.
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Prompt
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Code Snippets: Dining Philosophers Example

pthread_mutex_t forks[N];

pthread_t philosophers[N];

int states[N]; // 0: thinking , 1: hungry , 2: eating

void pickup_forks(int phil) {

int left = phil; int right = (phil + 1) % N;

// Pick up forks (must do in a specific order to prevent deadlock)

if (phil % 2 == 0) {

pthread_mutex_lock (&forks[left]); // Pick up left fork

pthread_mutex_lock (&forks[right]); // Pick up right fork

} else {

pthread_mutex_lock (&forks[right]); // Pick up right fork

pthread_mutex_lock (&forks[left]); // Pick up left fork

}

states[phil] = 2; // Eating

}

void putdown_forks(int phil) {

int left = phil; int right = (phil + 1) % N;

states[phil] = 0; // Thinking

pthread_mutex_unlock (&forks[left]); // Put down left fork

pthread_mutex_unlock (&forks[right ]); // Put down right fork

}

void* philosopher(void* num) {

int phil = *(int*)num;

while (1) {

states[phil] = 0; // Thinking

states[phil] = 1; // Hungry

pickup_forks(phil); // Eating

putdown_forks(phil);

}
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Code Snippets: Dining Philosophers Example

MODULE main

VAR

fork_0 : boolean; fork_1 : boolean; fork_2 : boolean;

philosopher_0 : process Philosopher (0, fork_0 , fork_1);

philosopher_1 : process Philosopher (1, fork_1 , fork_2);

philosopher_2 : process Philosopher (2, fork_2 , fork_0);

ASSIGN

init(fork_0) := TRUE; init(fork_1) := TRUE; init(fork_2) := TRUE;

MODULE Philosopher(id , left_fork , right_fork)

VAR

state : {thinking , hungry , eating };

ASSIGN

init(state) := thinking;

next(state) := case

state = thinking : {thinking , hungry };

state = hungry & left_fork & right_fork : eating;

state = eating : thinking;

TRUE : state;

esac;

next(left_fork) := case

state = hungry & left_fork & right_fork : FALSE; -- Occupy the left fork

state = eating : TRUE; -- Release the left fork

TRUE : left_fork;

esac;

next(right_fork) := case

state = hungry & left_fork & right_fork : FALSE; -- Occupy the right fork

state = eating : TRUE; -- Release the right fork

TRUE : right_fork;

esac;
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Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
no two adjacent philosophers eat simultaneously.

No two adjacent philosophers can eat simultaneously
SPEC AG !(philosopher0.state = eating & philosopher1.state = eating);
SPEC AG !(philosopher1.state = eating & philosopher2.state = eating);
SPEC AG !(philosopher2.state = eating & philosopher0.state = eating);
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Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
each philosopher gets to eat.

Each philosopher eventually gets to eat
This specification guarantees that each philosopher who is in the ‘hungry’
state will eventually transition to the ‘eating’ state.
SPEC AG (philosopher0.state = hungry =⇒ AF philosopher0.state =
eating);
SPEC AG (philosopher1.state = hungry =⇒ AF philosopher1.state =
eating);
SPEC AG (philosopher2.state = hungry =⇒ AF philosopher2.state =
eating);
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Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
a philosopher eats with 2 forks.

A philosopher must pick up both forks before eating
This specification ensures that a philosopher can only be in the ‘eating’
state if both the forks to their left and right are not available, i.e., both
forks are occupied by the philosopher.
SPEC AG (philosopher0.state = eating =⇒ !fork0 & !fork1);
SPEC AG (philosopher1.state = eating =⇒ !fork1 & !fork2);
SPEC AG (philosopher2.state = eating =⇒ !fork2 & !fork0);
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Experimental Setup and Parameters

Experimental Configuration

Objective: Evaluate the accuracy, memory usage, and efficiency of
co-synthesized code and models.

Parameters:
Number of processes: varied from 3 to 30 philosophers.
Evaluation metrics: memory consumption, time to verify, and
correctness.
LLM models tested: GPT-4o, Claude-3.5, Llama-3.1.

Verification Tools: Temporal logic model checking (SMV) to
validate properties.
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Evaluation Metrics

Metrics Used for Model Checking

The verification experiments were evaluated based on the following
metrics:

Accuracy: Correctness of generated formal models.

Memory Usage: Resources consumed during model checking.

Verification Time: Time required to validate each configuration
using SMV.
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Experimental Results: Performance of Different LLMs

Performance of Co-Synthesis by Model

The following table shows the performance metrics of different AI models
for the Dining Philosophers example:

LLM Model Iterations (Code) Iterations (Model) Accuracy
GPT-4o 2 4 High
Claude-3.5 1 1 High
Llama-3.1 15 14 Medium
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Discussion of Results

Analysis and Interpretation of Results

Effectiveness of Co-Synthesis: GPT-4o and Claude-3.5 effectively
generated reliable code and models with minimal iterations.

Limitations of Llama-3.1: Needed lots of assistance.

LLM Model Iterations (Code) Iterations (Model) Accuracy
GPT-4o 2 4 High
Claude-3.5 1 1 High
Llama-3.1 15 14 Medium
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Conclusion: Summary of Contributions

Key Contributions of the Study

This study has introduced a new framework for co-synthesis of code and
formal models using LLMs, with key contributions including:

Co-Synthesis Framework: Demonstrated a method to co-synthesize
code and models for concurrent systems.

Functor-Based Mapping: Established a human-auditable link
between generated code and formal models, enhancing verification.

Model Checking with Iterative Refinement: Leveraged temporal
logic and model checking to improve model accuracy.

Evaluation Across Models: Showed the effectiveness of GPT-4o
and Claude-3.5 compared to Llama-3.1, highlighting resource
efficiency and verification success.
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Future Work and Research Directions

Potential Extensions and Improvements

Future research can focus on:

Scalability Improvements: Developing more efficient verification
methods for larger and more complex systems.

Automation of Functor Mapping Verification: Implementing tools
to automate the auditing process for functor mappings.

Enhanced Refinement Algorithms: Introducing automated
refinement algorithms that reduce human intervention.

Exploration of New Models: Testing other advanced LLMs to
further optimize accuracy and resource efficiency.
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Final Remarks and Implications

Concluding Thoughts on AI in Code Synthesis

The successful application of LLMs in co-synthesizing code and formal
models highlights the potential of AI-driven approaches in code
verification. Key implications include:

Broad Application Potential: This framework can be applied to
safety-critical fields where verification is essential.

Trustworthiness of AI-Generated Code: Functor mappings provide
a path toward more trustworthy AI-generated code.

Future of Automated Verification: The integration of AI and
formal methods is likely to drive innovations in automated code
verification.
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