
Co-Synthesis of Code and Formal Models Using Large
Language Models and Functors

Sumit K. Jha
Eminent Scholar Professor of Computer Science

Florida International University, Miami, FL

October 28, 2024

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 1 / 33



Related Publications

Integrated Decision Gradients: Compute Your Attributions Where the Model Makes Its
Decision Chase Walker, Sumit Kumar Jha, Kenny Chen, and Rickard Ewetz Thirty-Eighth
AAAI Conference on Artificial Intelligence (AAAI 2024)

Jailbreaking Large Language Models with Symbolic Mathematics E. Bethany, M.
Bethany, J.A. Nolazco Flores, SK Jha, and P. Najafirad Workshop on Socially Responsible
Language Modelling Research (SoLaR) at NeurIPS 2024

On the Design of Novel Attention Mechanism for Enhanced Efficiency of Transformers
SK Jha, S. Jha, R. Ewetz, and A. Velasquez 61st ACM Design Automation Conference
(DAC 2024)

Shaping Noise for Robust Attributions in Neural Stochastic Differential Equations
Sumit Kumar Jha, Rickard Ewetz, Alvaro Velasquez, and Susmit Jha Thirty-Sixth AAAI
Conference on Artificial Intelligence (AAAI 2022)

On Smoother Attributions using Neural Stochastic Differential Equations Sumit Kumar
Jha, Rickard Ewetz, Alvaro Velasquez, and Susmit Jha International Joint Conference on
Artificial Intelligence (IJCAI 2021)

Attribution-Based Confidence Metric for Deep Neural Networks Susmit Jha, Sunny Raj,
Steven Lawrence Fernandes, Sumit Kumar Jha, Somesh Jha, et al. Advances in Neural
Information Processing Systems (NeurIPS 2019)

Collaborators: Rickard Ewetz (UF), Turgay Korkmaz (UTSA), Alvaro Velasquez (Colorado),
Sunny Raj (Oakland), Sathish Kumar (Cleveland), Arvind Ramanthan (ANL), Olivera Kotesvka
(ORNL), Viktor Reshniak (ORNL), Laura Pullum (formerly ORNL), and others.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 2 / 33



What’s in a Name?

“What is in a name? A rose by any other name would smell . . . ”

But is this true for Large Language Models (LLMs)?
LLMs perform poorly on Mystery Planning Problems!

How do you explain such AI behavior?
Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 3 / 33



Our Math Jailbreaking Work Featured!

Figure: Symbolic math representations of queries beat commercial safety
alignment! How do you explain such behavior?

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 4 / 33



Our Math Jailbreaking Work Featured!

Jailbreaking Large Language Models with Symbolic Mathematics
E. Bethany, M. Bethany, J.A. Nolazco Flores, SK Jha, and P. Najafirad
Workshop on Socially Responsible Language Modelling Research (SoLaR)
at NeurIPS, 2024

Our work on Math Jailbreaking Prompts was recently featured among the
Top 10 ML Papers of the Week by DAIR.AI and covered by media:

MarkTechPost

CSO Online

Generative AI Pub

LevelUp

ContentFlix

DAIR.AI Twitter

How do you leverage this in code analysis?

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 5 / 33



Motivation

Why Code Analysis with AI and Functors?

Advances in Large Language Models (LLMs) have shown potential in
transforming the field of code synthesis. However, challenges remain in:

Ensuring code correctness, especially in synchronization.
Bridging the gap between code and human-auditable formal models.

This study introduces a framework for co-synthesizing code and formal
models, leveraging LLMs and functors to create human-auditable
mappings.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 6 / 33



Problem Statement and Challenges

Problem Statement:
AI-generated code often lacks assurance of correctness, especially in
parallel systems where concurrency errors can lead to catastrophic
outcomes.

Challenges:

Verification Complexity: Ensuring correctness in code generated for
synchronization-heavy applications.

Human-Auditable Models: Bridging the generated code with
formal models that are verifiable and understandable.

Functors!

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 7 / 33



Background: Overview of Existing Work

Advances in AI for Code Analysis

AI-driven Code Generation: Language models, such as GPT and
Codex, have shown the ability to generate code from natural
language.

Formal Verification Approaches: Model checking and theorem
proving have been employed to verify code.

EBMC Model Checker

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 8 / 33



Related Work: AI and LLMs in Code Synthesis

Code Synthesis Using Large Language Models

Language Models: Codex, GPT-4, and other LLMs have been
extensively studied for code generation, but challenges in correctness
persist.

Handling Concurrency: LLMs can generate code that manages
concurrent processes, synchronization a key issue.

Model-Driven Approaches: Research into combining LLMs with
formal models to ensure generated code meets specific constraints.

https://arxiv.org/pdf/2407.21579

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 9 / 33



Related Work: Model Checking in AI and Code Verification

Formal Verification and Model Checking

Model Checking Foundations: Techniques for verifying properties
of concurrent systems, especially for ensuring safety and liveness.

Temporal Logic in Verification: Use of temporal logic (LTL, CTL)
to express constraints on code execution paths.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 10 / 33



Definition of Categories

What is a Category? A category is a collection of objects and
morphisms that satisfy certain properties. Formally, a category C consists
of:

Objects: Elements within the category, which could represent data
structures, states, or models.
Morphisms: Arrows (also called maps or functions) between objects
that define relationships or transformations. For objects A and B in
C, we denote a morphism from A to B as f : A → B.

Properties of a Category: A category satisfies the following two
properties:

1 Composition: For any morphisms f : A → B and g : B → C , there
exists a morphism g ◦ f : A → C representing the composition of f
and g .

2 Identity Morphism: For each object A, there exists an identity
morphism idA : A → A that satisfies f ◦ idA = f and idB ◦ f = f for
any morphism f : A → B.

Examples of Categories:

Set: Objects are sets, and morphisms are functions between sets.
Composition is function composition, and identity morphisms are
identity functions.
Poset: Objects are elements of a partially ordered set, and there is a
morphism a → b if a ≤ b.
Category of Types: In programming, objects can represent data
types, and morphisms represent functions between types.
Category of Code and Models: For code synthesis, objects could
be code components and model elements, with morphisms
representing transformations or relationships between them.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 11 / 33



Definition of Functors

What is a Functor? A functor is a mapping between two categories that
preserves their structures. Formally, a functor F from a category C to a
category D, denoted F : C → D, consists of:

Object Mapping: For each object A in C, there is an associated
object F (A) in D.
Morphism Mapping: For each morphism f : A → B in C, there is a
corresponding morphism F (f ) : F (A) → F (B) in D.

Properties of Functors:

Functors preserve the structural properties of categories:
1 Identity Preservation: For each object A in C, F (idA) = idF (A) in D.
2 Composition Preservation: For morphisms f : A → B and

g : B → C in C, F (g ◦ f ) = F (g) ◦ F (f ) in D.

Example of Functors:

Set to Type: A functor that maps sets in category Set to data
Types in a programming category, mapping functions between sets to
functions between types.
Functor in Code Synthesis: In this study, a functor maps code
elements (e.g., code states) to model elements, preserving the
structure of operations. For instance, a function in code that changes
a state maps to a corresponding state transition in the model.
Graph to Category: A functor that maps nodes and edges in a graph
(objects and morphisms) to objects and morphisms in a category.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 12 / 33



Research Objectives

Main Objectives of the Study

The primary goals of this research are to:

Develop a framework for co-synthesizing code, formal models, and
mappings using Large Language Models (LLMs).

Ensure human-auditable mappings between code and formal
models for reliable verification.

Use formal verification to confirm the correctness of AI-generated
code, especially for parallel systems.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 13 / 33



Specific Contributions

Contributions of this Research

This study makes several key contributions:

1 A new framework for code and model co-synthesis using LLMs.

2 Introduction of functor-based mappings that establish reliable
connections between code and formal models.

3 Preliminary evaluation of co-synthesized models in critical scenarios,
like concurrency and synchronization.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 14 / 33



Methodology Overview

Co-Synthesis Framework Using LLMs

Our approach leverages Large Language Models (LLMs) to co-synthesize
code, formal models, and mappings. This methodology includes:

Generating code from specifications using LLMs.
Creating corresponding formal models for verification.
Establishing a human-auditable mapping through functors.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 15 / 33



Technical Approach: Generating Code with LLMs

Step 1: Code Generation with LLMs

LLMs are employed to generate code for specific problems.
Code focuses on concurrent applications.
Incorporates a test harness with assertions.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 16 / 33



Technical Approach: Formal Model Generation

Step 2: Formal Model Generation

The LLM concurrently generates a formal model in a specification
language (e.g., SMV).

The model represents the same logic and behavior as the code.

Model checking to verify model meets temporal logic properties.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 17 / 33



Technical Approach: Functor Mapping

Step 3: Functor Mapping Between Code and Model

Utilizes functors from category theory to establish a mapping between
code components and formal model elements.

Functors make the mapping human-auditable, enhancing trust.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 18 / 33



Iterative Process and Feedback

Refinement through Iterative Feedback

Verification: Model checking identifies errors.

Counterexamples: Errors are flagged, providing feedback.

Improvement Cycle: Enhances the reliability of the code, model,
and functor mappings.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 19 / 33



Case Study: Dining Philosophers Problem

Illustrating the Approach with a Case Study

Example: Dining Philosophers Problem
This classic problem is used to showcase the co-synthesis approach, with
emphasis on:

Synchronization requirements between concurrent processes.

Generation of C code and SMV model by the LLM.

Functor mapping between code elements and formal model
components.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 20 / 33



Prompt

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 21 / 33



Code Snippets: Dining Philosophers Example

pthread_mutex_t forks[N];

pthread_t philosophers[N];

int states[N]; // 0: thinking , 1: hungry , 2: eating

void pickup_forks(int phil) {

int left = phil; int right = (phil + 1) % N;

// Pick up forks (must do in a specific order to prevent deadlock)

if (phil % 2 == 0) {

pthread_mutex_lock (&forks[left]); // Pick up left fork

pthread_mutex_lock (&forks[right]); // Pick up right fork

} else {

pthread_mutex_lock (&forks[right]); // Pick up right fork

pthread_mutex_lock (&forks[left]); // Pick up left fork

}

states[phil] = 2; // Eating

}

void putdown_forks(int phil) {

int left = phil; int right = (phil + 1) % N;

states[phil] = 0; // Thinking

pthread_mutex_unlock (&forks[left]); // Put down left fork

pthread_mutex_unlock (&forks[right ]); // Put down right fork

}

void* philosopher(void* num) {

int phil = *(int*)num;

while (1) {

states[phil] = 0; // Thinking

states[phil] = 1; // Hungry

pickup_forks(phil); // Eating

putdown_forks(phil);

}

}Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 22 / 33



Code Snippets: Dining Philosophers Example

MODULE main

VAR

fork_0 : boolean; fork_1 : boolean; fork_2 : boolean;

philosopher_0 : process Philosopher (0, fork_0 , fork_1);

philosopher_1 : process Philosopher (1, fork_1 , fork_2);

philosopher_2 : process Philosopher (2, fork_2 , fork_0);

ASSIGN

init(fork_0) := TRUE; init(fork_1) := TRUE; init(fork_2) := TRUE;

MODULE Philosopher(id , left_fork , right_fork)

VAR

state : {thinking , hungry , eating };

ASSIGN

init(state) := thinking;

next(state) := case

state = thinking : {thinking , hungry };

state = hungry & left_fork & right_fork : eating;

state = eating : thinking;

TRUE : state;

esac;

next(left_fork) := case

state = hungry & left_fork & right_fork : FALSE; -- Occupy the left fork

state = eating : TRUE; -- Release the left fork

TRUE : left_fork;

esac;

next(right_fork) := case

state = hungry & left_fork & right_fork : FALSE; -- Occupy the right fork

state = eating : TRUE; -- Release the right fork

TRUE : right_fork;

esac;

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 23 / 33



Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
no two adjacent philosophers eat simultaneously.

No two adjacent philosophers can eat simultaneously
SPEC AG !(philosopher0.state = eating & philosopher1.state = eating);
SPEC AG !(philosopher1.state = eating & philosopher2.state = eating);
SPEC AG !(philosopher2.state = eating & philosopher0.state = eating);

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 24 / 33



Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
each philosopher gets to eat.

Each philosopher eventually gets to eat
This specification guarantees that each philosopher who is in the ‘hungry’
state will eventually transition to the ‘eating’ state.
SPEC AG (philosopher0.state = hungry =⇒ AF philosopher0.state =
eating);
SPEC AG (philosopher1.state = hungry =⇒ AF philosopher1.state =
eating);
SPEC AG (philosopher2.state = hungry =⇒ AF philosopher2.state =
eating);

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 25 / 33



Results from Case Study: Dining Philosophers

Outcomes and Insights from Dining Philosophers

Key insights from the case study:

Verification of Temporal Properties: Model checking confirms that
a philosopher eats with 2 forks.

A philosopher must pick up both forks before eating
This specification ensures that a philosopher can only be in the ‘eating’
state if both the forks to their left and right are not available, i.e., both
forks are occupied by the philosopher.
SPEC AG (philosopher0.state = eating =⇒ !fork0 & !fork1);
SPEC AG (philosopher1.state = eating =⇒ !fork1 & !fork2);
SPEC AG (philosopher2.state = eating =⇒ !fork2 & !fork0);

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 26 / 33



Experimental Setup and Parameters

Experimental Configuration

Objective: Evaluate the accuracy, memory usage, and efficiency of
co-synthesized code and models.

Parameters:
Number of processes: varied from 3 to 30 philosophers.
Evaluation metrics: memory consumption, time to verify, and
correctness.
LLM models tested: GPT-4o, Claude-3.5, Llama-3.1.

Verification Tools: Temporal logic model checking (SMV) to
validate properties.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 27 / 33



Evaluation Metrics

Metrics Used for Model Checking

The verification experiments were evaluated based on the following
metrics:

Accuracy: Correctness of generated formal models.

Memory Usage: Resources consumed during model checking.

Verification Time: Time required to validate each configuration
using SMV.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 28 / 33



Experimental Results: Performance of Different LLMs

Performance of Co-Synthesis by Model

The following table shows the performance metrics of different AI models
for the Dining Philosophers example:

LLM Model Iterations (Code) Iterations (Model) Accuracy
GPT-4o 2 4 High
Claude-3.5 1 1 High
Llama-3.1 15 14 Medium

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 29 / 33



Discussion of Results

Analysis and Interpretation of Results

Effectiveness of Co-Synthesis: GPT-4o and Claude-3.5 effectively
generated reliable code and models with minimal iterations.

Limitations of Llama-3.1: Needed lots of assistance.

LLM Model Iterations (Code) Iterations (Model) Accuracy
GPT-4o 2 4 High
Claude-3.5 1 1 High
Llama-3.1 15 14 Medium

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 30 / 33



Conclusion: Summary of Contributions

Key Contributions of the Study

This study has introduced a new framework for co-synthesis of code and
formal models using LLMs, with key contributions including:

Co-Synthesis Framework: Demonstrated a method to co-synthesize
code and models for concurrent systems.

Functor-Based Mapping: Established a human-auditable link
between generated code and formal models, enhancing verification.

Model Checking with Iterative Refinement: Leveraged temporal
logic and model checking to improve model accuracy.

Evaluation Across Models: Showed the effectiveness of GPT-4o
and Claude-3.5 compared to Llama-3.1, highlighting resource
efficiency and verification success.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 31 / 33



Future Work and Research Directions

Potential Extensions and Improvements

Future research can focus on:

Scalability Improvements: Developing more efficient verification
methods for larger and more complex systems.

Automation of Functor Mapping Verification: Implementing tools
to automate the auditing process for functor mappings.

Enhanced Refinement Algorithms: Introducing automated
refinement algorithms that reduce human intervention.

Exploration of New Models: Testing other advanced LLMs to
further optimize accuracy and resource efficiency.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 32 / 33



Final Remarks and Implications

Concluding Thoughts on AI in Code Synthesis

The successful application of LLMs in co-synthesizing code and formal
models highlights the potential of AI-driven approaches in code
verification. Key implications include:

Broad Application Potential: This framework can be applied to
safety-critical fields where verification is essential.

Trustworthiness of AI-Generated Code: Functor mappings provide
a path toward more trustworthy AI-generated code.

Future of Automated Verification: The integration of AI and
formal methods is likely to drive innovations in automated code
verification.

Sumit K. Jha Eminent Scholar Professor of Computer Science (Florida International University, Miami, FL)AI in Code Analysis October 28, 2024 33 / 33


