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a  b  s  t  r  a  c  t  

Automated  fingerprint  identification  systems  are  deployed  by  law  enforcement  agencies  all  over  the  world  
for  authentication.  In  the  US,  the  NIST  biometric  image  software  (NBIS)  is  used  by  the  Department  of  
Homeland  Security  and  the  Federal  Bureau  of  Investigation  for  fingerprint  matching.  NBIS  uses  MINDTCT  
as  the  minutia  extractor  and  BOZORTH3  as  the  fingerprint  matcher.  We  use  nonlinear  optimization  to  
attack  the  BOZORTH3  fingerprint  matching  system.  We  use  FVC2002,  ATVS  and  CASIA  datasets  to  validate  
the  performance  of  our  attack.  We  show  that  the  average  match  score  of  attack  fingerprints  is  111.2  for  
FVC2002,  97.17  for  ATVS  and  111.07  for  the  CASIA  dataset.  We  show  that  for  all  three  datasets,  changing  
only  14  minutia  features  allows  us  to  attack  the  BOZORTH3  fingerprint  matcher  with  more  than  75%  
probability  of  successful  attack.  

© 2019  Elsevier  B.V.  All  rights  reserved.  

1.  Introduction  

Biometrics  are  used  to  establish  the  identity  of  individuals  

based  upon  behavioral  and  intrinsic  physical  traits  [14]  .  Among  dif-  

ferent  types  of  biometrics,  fingerprints  are  extensively  used  by  law  

enforcement  agencies.  Research  shows  that  within  seven  months  of  

fetus  development,  human  fingertips  are  completely  formed  along  

with  their  unique  ridge  configurations.  Fingerprints  are  unique  and  

do  not  change  over  the  lifespan  of  an  individual;  hence,  they  can  

be  used  for  identification  purposes  [4,21,31]  .  However,  their  pop-  

ularity  has  also  attracted  a  wide  variety  of  attacks  on  fingerprint  

recognition  systems  [26]  .  Four  categories  of  vulnerabilities  of  a  

generic  biometric  system  have  been  identified  by  Jain  et  al.  [13]  .  

These  vulnerabilities  include  intrinsic  failure,  administrative  loop-  

holes,  nonsecure  infrastructure,  and  biometric  overtness.  Intrinsic  

failures  are  caused  by  limitations  of  biometric  systems.  An  unau-  

thorized  person  can  get  enrolled  as  an  authenticated  person  by  

exploiting  administrative  loopholes.  An  attacker  can  access  latent  

fingerprints  of  an  authorized  person  leading  to  a  biometric  overt-  

ness  attack  on  the  system.  

We  consider  the  scenario  of  an  attacker  gaining  access  to  the  

fingerprint  matching  module  of  a  biometric  system.  In  this  paper,  

we  describe  an  attack  on  the  BOZORTH3  [24]  fingerprint  match-  
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ing  system.  BOZORTH3  is  a  part  of  the  NIST  biometric  image  soft-  

ware  (NBIS).  NBIS  is  used  by  the  Department  of  Homeland  Security  

and  the  Federal  Bureau  of  Investigation  for  fingerprint  matching.  

We  use  nonlinear  optimization  techniques  to  attack  the  BOZORTH3  

fingerprint  matching  system.  Table  1  indicates  the  average  match  

score  generated  by  the  BOZORTH3  matcher  for  a  synthesized  at-  

tack  fingerprint  template  and  the  minimum  number  of  minutiae  

required  to  be  changed  to  attack  the  matcher  with  75%  probability  

for  FVC2002  [20]  ,  ATVS  [11]  ,  and  CASIA  [9]  datasets.  To  the  best  

of  our  knowledge,  we  are  the  first  to  apply  nonlinear  optimization  

techniques  to  attack  a  fingerprint  matching  system.  

2.  Related  work  

Generating  synthetic  fingerprints  has  to  be  conducted  within  

several  constraints  such  as  cost,  time,  workforce,  and  privacy.  

SFinGe  [5]  is  one  of  the  popular  approaches  that  was  used  to  gen-  

erate  a  synthetic  dataset  of  fingerprints.  SFinGe  is  an  acronym  for  

synthetic  fingerprint  image  generation.  This  method  was  proposed  

to  produce  a  realistic  fingerprint  dataset  that  can  be  used  for  eval-  

uating  recognition  algorithms.  This  method  is  based  on  three  fea-  

tures:  shape  of  the  fingerprint,  density  map,  and  directional  map.  

These  are  integrated  to  get  a  fingerprint  pattern.  An  initial  copy  

of  the  fingerprint  is  used  to  derive  many  randomly-generated  fin-  

gerprints.  The  first  fingerprint  is  generated  using  four  phases.  In  

the  first  phase,  the  shape  of  the  fingerprint  is  obtained.  In  the  sec-  

ond  phase,  a  directional  map  is  generated.  Finally,  in  the  third  and  
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Table  1  
Average  match  score  generated  by  BOZORTH3  matcher  for  synthesized  attack  fin-  
gerprint  template  and  the  minimum  number  of  minutiae  required  to  be  changed  
to  attack  the  matcher  with  75%  probability.  

Average  match  score  Minimum  number  of  minutiae  required  

FVC2002  111.2  10  
ATVS  97.17  10  
CASIA  111.07  14  

fourth  phase,  a  density  map  and  ridge  patterns  are  generated.  The  

drawback  of  SFinGe  is  that  the  number  of  minutiae  and  their  lo-  

cations  cannot  be  controlled.  Cappelli  et  al.  [7]  have  proposed  a  

method  to  generate  several  fingerprints  of  the  same  finger  using  

a  single  master  copy.  Four  steps  are  prescribed  to  achieve  this.  In  

the  first  phase,  the  average  thicknesses  of  the  ridges  are  diversified.  

The  second  phase  creates  the  distortion.  The  third  phase  involves  

adding  noise  and  rendering.  The  fourth  phase  looks  at  the  global  

translation  process.  This  method  was  further  enhanced  using  noise  

models  [8]  .  However,  noise  models  are  unable  to  synthesize  fin-  

gerprints  that  retain  specific  features  such  as  orientation  field,  sin-  

gular  points,  and  minutiae.  Specific  features  are  retained  by  using  

statistical  models  [32]  .  

Zhao  et  al.  [32]  proposed  a  statistical  model-based  synthetic  

fingerprint  generation  method  where  some  pre-specified  features  

are  sampled.  Four  distinct  stages  are  involved  in  generating  the  

synthetic  fingerprint.  The  first  stage  uses  a  statistical  model  to  

sample  different  features  from  a  real  dataset  of  fingerprints.  Three  

features,  namely  singular  points,  orientation  field  and  minutiae,  

are  sampled.  The  second  stage  uses  the  AF-FM  [10]  method  to  

generate  a  principal  image  of  the  fingerprint.  The  third  stage  ap-  

plies  a  nonlinear  plastic  distortion  method  [6]  to  generate  differ-  

ent  fingerprints  from  the  master  copy.  The  fourth  stage  concen-  

trates  on  the  rendering  where  some  noise,  as  well  as  finger  dry-  

ness,  is  simulated.  The  statistical  model-based  synthetic  finger-  

print  generation  methods  discussed  so  far  do  not  address  prob-  

lems  such  as  skin  deformation,  sensor  malfunction,  and  spoofing.  

These  problems  are  overcome  using  a  synthetic  three-dimensional  

fingerprint-based  model  [18]  .  Labati  et  al.  [18]  proposed  a  synthetic  

three-dimensional  fingerprint-based  model  which  address  the  is-  

sues  of  skin  deformation,  sensor  malfunction,  and  spoofing.  Sta-  

tistical  shape  modeling  is  incorporated  [19]  in  such  a  technique  

to  generate  random  3D  synthetic  fingerprints.  Studies  have  fo-  

cused  on  the  problem  of  adversary  attacks  to  biometric  authenti-  

cation  systems  using  synthetically-generated  fingerprints.  Roy  et  al.  

[28]  proposed  a  master  print  based  method  where  the  master  

prints  are  highly  similar  to  a  large  number  of  fingerprints.  Bon-  

trager  et  al.  [2]  used  latent  variable  evolution  (LVE)  for  generating  

DeepMasterPrints.  

They  trained  the  GAN  network  using  the  fingerprint  images.  The  

latent  variable  of  the  generator  network  is  searched  by  LVE  for  an  

image  that  could  the  number  of  successfully  matched  fingerprints.  

A  synthetic  attack  has  been  simulated  where  the  synthetic  finger-  

prints  are  generated  by  incorporating  evolutionary  methods,  such  

as  differential  evolution,  covariance  matrix  adaptation  evolution  

strategy,  and  swarm  intelligence-based  particle  swarm  optimiza-  

tion.  Recently,  generative  adversarial  networks  have  been  found  

to  be  better  in  generating  realistic  fingerprints  when  compared  to  

all  the  techniques  discussed  above  [1]  .  Among  various  generative  

adversarial  networks,  the  Wasserstein  generative  adversarial  net-  

works  (WGAN)  based  method  [1]  is  very  popular.  WGAN  uses  a  

gradient  penalty  for  stabilizing  the  learning  process  [12]  .  Recently,  

Cao  and  Jain  [3]  further  enhanced  the  WGAN  based  method.  They  

used  a  convolutional  autoencoder  for  the  initialization  and  an  im-  

proved  version  of  the  WGAN  (also  known  as  I-WGAN)  for  synthetic  

fingerprint  generation.  Several  recent  studies  have  proposed  that  

the  set  of  synthetically  generated  fingerprint  images  using  GANs  

can  be  utilized  to  study  the  behavior  and  performance  of  existing  

fingerprint  authentication  systems.  

Although  the  literature  presents  several  methods  for  attacking  

fingerprints  [30]  ,  we  are  the  first  to  use  a  nonlinear  optimizer  

to  attack  NBIS.  Our  approach  improves  upon  the  type  of  attack  

classified  as  hill  climbing  by  Jain  et  al.  [13]  .  We  use  the  NLopt  

[16]  nonlinear  optimizer  to  search  the  space  of  fingerprint  features,  

also  known  as  minutiae  features,  around  an  unauthenticated  fin-  

gerprint  template.  Fingerprint  templates  are  stored  files  obtained  

from  the  fingerprint  scanning  systems.  They  are  used  to  gener-  

ate  synthetic  fingerprint  templates  that  are  classified  as  authenti-  

cated  by  the  BOZORTH3  fingerprint  matching  system  by  generating  

a  match  score.  MINDTCT  is  the  minutiae  extractor  used.  It  takes  

an  input  fingerprint  image  and  automatically  extracts  furrows  and  

ridges.  It  is  optimally  designed  to  scan  at  19.69  ppmm  and  quan-  

tizes  using  wavelet  scalar  quantization  technique  at  256  levels  of  

gray.  MINDTCT  detects  the  points  where  the  ridges  split  or  end,  

their  location,  orientation,  type,  and  quality.  

We  test  our  attack  using  three  datasets:  FVC2002,  ATVS,  CA-  

SIA.  As  per  NBIS,  a  match  score  of  greater  than  40  indicates  a  

true  match.  However,  to  make  our  attack  more  robust,  we  have  set  

the  threshold  value  of  35  which  was  proposed  by  Martinez-Diaz  

et  al.  [22]  .  A  match  score  above  35  is  considered  to  be  a  success-  

ful  match.  We  compare  our  method  with  the  hill  climbing  tech-  

nique  and  show  that  our  method  produces  synthetic  fingerprint  

templates  with  significantly  higher  match  scores.  In  this  paper,  we  

make  the  following  contributions:  

• We  are  able  to  attack  the  BOZORTH3  fingerprint  matching  sys-  

tem  with  100%  probability  of  successful  attack  for  all  three  

datasets.  
• Changing  only  15  minutia  features  allows  us  to  attack  the  fin-  

gerprint  matching  system  with  high  probability  of  success.  

3.  MINDTCT  

MINDTCT  is  the  minutia  extraction  used  by  NBIS.  The  orienta-  

tion  and  location  of  minutiae  obtained  by  MINDTCT  are  shown  in  

Fig.  1  .  

The  fundamental  step  in  minutiae  detection  is  deriving  a  direc-  

tion  map.  A  direction  map  is  used  to  represent  fingerprint  areas  

which  contain  sufficient  ridge  structure.  The  fingerprint  is  divided  

into  blocks  such  that  all  pixels  within  a  block  have  the  same  di-  

rection  map.  The  quality  of  the  fingerprints  can  vary  significantly.  

Hence  it  is  critical  to  determine  highly  degraded  areas.  

Three  conditions  are  used  to  detect  highly  degraded  fingerprint  

areas.  They  are  regions  of  high  curvature,  low  contrast,  and  low  

ridge  flow.  A  high  curvature  map  occurs  mainly  in  the  core  and  

delta  regions.  It  indicates  the  blocks  which  are  in  high-curvature  

areas  using  vorticity  and  curvature.  Vorticity  measures  the  cumu-  

lative  changes  occurring  in  the  direction  of  ridge  flow.  Curvature  

measures  the  largest  change  occurring  in  the  direction  between  the  

ridge  flow  of  a  block  and  ridge  flow  of  its  neighbors.  If  minutiae  

are  detected  in  these  regions,  the  quality  value  assigned  is  reduced.  

A  fingerprint  region  is  labeled  low  contrast  if  there  are  several  

blocks  of  significantly  low  contrast.  The  background  of  the  image  

is  separated  from  the  fingerprint  and  minutiae  are  not  detected  

in  this  region.  To  distinguish  a  low  contrast  region  from  a  region  

having  well-defined  ridges,  the  pixel  intensities  in  the  regions  are  

compared.  Some  regions  in  the  fingerprint  image  may  not  have  

dominant  ridge  flow;  these  regions  are  of  low  quality.  Low  flow  re-  

gions  are  the  areas  which  could  not  be  assigned  a  dominant  ridge  

flow  initially.  If  minutiae  are  detected  in  this  region,  they  are  as-  

signed  a  low-quality  value.  
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Fig.  1.  Visual  representation  of  attack,  authenticated  and  synthesized  fingerprint  templates.  Match  score  for  unauthenticated  fingerprint  template  is  25  and  match  score  for  
synthesized  fingerprint  template  is  100.  

Regions  of  high  curvature,  low  contrast,  and  low  ridge  flow  cor-  

respond  to  different  low-quality  regions  in  the  image.  The  informa-  

tion  obtained  from  the  3  low-quality  regions  is  integrated  to  obtain  

a  combined  quality  which  contains  5  levels  of  quality  values  rang-  

ing  from  0  to  4.  MINDTCT  detects  minutiae  on  binary  images.  It  

scans  the  binary  image  vertically  and  horizontally  to  detect  minu-  

tia  points.  

MINDTCT  generates  fingerprint  templates  containing  minutia  

coordinates  (  x,  y  )  and  orientation  (  t  ).  These  templates  are  then  pro-  

cessed  by  the  BOZORTH3  fingerprint  matching  system.  

4.  BOZORTH3  

BOZORTH3  is  the  fingerprint  matching  algorithm  that  computes  

match  scores  between  fingerprint  templates.  It  can  perform  one-  

to-one  and  one-to-many  matching.  Before  BOZORTH3,  NIST  used  

bozorth98  [29]  for  fingerprint  matching.  

BOZORTH3  uses  minutia  coordinates  (  x,  y  )  and  orientation  (  t  )  

to  match  fingerprint  templates.  It  is  robust  against  translation  and  

rotation.  It  builds  two  tables  containing  orientation  and  distance  

values  between  the  minutiae  for  each  pair  of  fingerprint  templates.  

Compatibility  between  the  two  tables  is  obtained,  and  a  third  ta-  

ble  is  constructed  which  stores  the  inter-finger  compatibility  val-  

ues.  The  values  of  the  third  table  are  used  to  generate  a  match  

score.  Two  key  features  of  BOZORTH3  are:  

1.  Minutia  features  are  limited  to  the  location  (  x,  y  )  and  the  ori-  

entation  (  t  ).  It  is  represented  as  (  x,  y,  t  )  

2.  It  is  robust  against  translation  and  rotation.  

The  BOZORTH3  algorithm  is  comprised  of  three  main  steps:  

1.  Minutia  based  intra-fingerprint  matching  
• There  are  two  tables,  the  first  table  contains  test  fingerprint  

templates.  
• The  second  table  contains  the  training  fingerprint  templates  

against  which  the  test  fingerprint  templates  are  matched.  

2.  Minutia  based  inter-fingerprint  matching  
• The  test  fingerprints  minutia  comparison  table  is  matched  

with  the  training  fingerprints.  
• Minutia  comparison  table  and  a  new  compatibility  table  are  

constructed.  

3.  Traversing  inter-fingerprint  matching  table  entries  
• Make  clusters  out  of  compatibility  table  entries  by  linking  

similar  tables.  
• Match  compatible  clusters,  combine  them  and  accumulate  

the  matching  score.  

5.  Method  

We  use  BOZORTH3  as  a  black  box  system  and  then  attempt  to  

attack  it.  The  BOZORTH3  fingerprint  matching  system  takes  as  in-  

Fig.  2.  Overview  of  our  attack  methodology.  The  optimization  algorithm  (NLopt)  
takes  as  input  the  objective  function  B  ,  start  template  F  H  ,  the  lower  bound  L  ,  the  
upper  bound  U  ,  and  the  maximum  number  of  iterations  N  ,  it  returns  the  fingerprint  
template  F max  corresponding  to  the  highest  match  score.  

put  a  fingerprint  template  and  returns  a  match  score.  Internally  

the  fingerprint  matching  system  is  configured  with  a  set  of  au-  

thenticated  fingerprints.  These  fingerprints  belong  to  authenticated  

individuals  who  are  allowed  access  to  certain  confidential  informa-  

tion.  We  then  attack  the  system  into  wrongly  classifying  an  unre-  

lated  fingerprint  as  an  authenticated  fingerprint.  We  use  the  pop-  

ular  nonlinear  optimizer,  NLopt,  to  synthesize  a  fingerprint  tem-  

plate  that  is  classified  by  the  systems  as  being  authenticated.  An  

overview  of  our  attack  methodology  is  shown  in  Fig.  2  .  

We  choose  a  list  of  n  unauthenticated  fingerprints  and  use  

MINDTCT  to  calculate  fingerprint  templates  {  F 1  ,  . . .  ,  F n  }  for  these  

fingerprints.  Each  fingerprint  template  F  i  consists  of  a  list  of  minu-  

tia  features  which  are  a  tuple  of  four  values:  two  location  coordi-  

nates  (  x,y  ),  feature  orientation  (  t  )  and  quality  (  q  ).  The  BOZORTH3  

fingerprint  matching  system,  by  default,  considers  150  best-quality  

minutiae  for  generating  match  scores.  We  query  the  fingerprint  

matching  system  using  templates  {  F 1  ,  .  .  .  ,  F n  }  and  obtain  match  
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scores  {  m  1  ,  .  .  .  ,  m  n  }  .  We  denote  the  fingerprint  template  having  the  

highest  match  score  as  F  H  .  

We  use  F  H  as  the  starting  point  to  search  for  a  fingerprint  

template  that  generates  a  high  match  score  from  the  fingerprint  

matching  system.  We  systematically  change  (  x,y,t  )  values  of  up  

to  50  minutia  features  to  attack  the  fingerprint  matching  system.  

Legacy  techniques  to  attack  fingerprint  matching  systems  used  hill  

climbing  [23]  to  iteratively  change  F  H  to  obtain  a  successful  match.  

Advances  in  optimization  techniques  allow  us  to  search  the  space  

around  F  H  efficiently.  Using  nonlinear  optimization  techniques,  we  

can  generate  adversarial  fingerprint  templates  in  less  time  and  of  

higher  quality  when  compared  to  legacy  hill  climbing  methods.  

We  use  the  derivative-free  optimization  technique:  Subplex,  

available  in  the  NLopt  toolkit  to  search  for  high  match  score  

fingerprint  templates  [27]  .  We  define  the  BOZORTH3  fingerprint  

matching  system  as  a  function  B  :  F  →  M  ,  where  F  is  the  space  

of  all  minutia  features  and  M  is  the  space  of  all  match  scores.  

We  provide  the  function  B  as  the  objective  function  to  the  NLopt  

optimizer.  The  optimization  function  maximizes  the  match  score  

B  (  F  )  generated  from  BOZORTH3  fingerprint  matching  system.  The  

search  space  of  each  minutia  feature  consists  of  three  variables:  x,  

y  and  t  .  The  variables  x  and  y  are  coordinates  in  the  fingerprint  

image.  The  lower  bound  on  the  value  of  x  and  y  is  0.  The  upper  

bound  on  the  values  of  x  and  y  is  determined  by  the  resolution  of  

the  fingerprint  sensor.  

A  fingerprint  sensor  of  resolution  l  × h  will  generate  a  search  

space  where  the  upper  bound  on  the  value  of  x  is  l  and  the  upper  

bound  on  the  value  of  y  is  h  .  The  variable  t  is  the  feature  orienta-  

tion  and  is  calculated  in  arc  degrees.  The  lower  bound  on  the  value  

of  t  is  0  and  the  upper  bound  on  the  value  of  t  is  360.  

The  search  space  of  M  minutia  features  consists  of  3  M  

dimensions.  We  denote  this  search  space  by  the  dimensions  

(x  0  ,  y  0  ,  t  0  ,  .  .  .  ,  x  M  ,  y  M  ,  t  M  )  ,  where  the  variables  (  x  m  ,  y  m  ,  t  m  )  define  

the  search  space  of  m  th  minutia  feature.  The  lower  bound  on  

the  search  space  of  M  minutia  features  is  denoted  by  a  tuple  

L  =  (x  L  
0  ,  y  L  

0  ,  t  L  
0  ,  .  .  .  ,  x  L  

M  ,  y  L  
M  ,  t  L  

M  )  where  x  L  
m  =  y  L  

m  =  t  L  
m  =  0  .  For  a  finger-  

print  captured  with  a  sensor  of  resolution  l  × h  the  upper  bound  

on  the  search  space  of  M  minutia  features  is  denoted  by  a  tuple  

U  =  (x  U  
0  ,  y  U  

0  ,  t  U  
0  ,  .  .  .  ,  x  U  

M  ,  y  U  
M  ,  t  U  

M  )  where  x  U  
m  =  l,  y  U  

m  =  h  and  t  U  
m  =  360  .  

The  optimization  algorithm  takes  as  input  the  BOZORTH3  fin-  

gerprint  matching  system  as  the  objective  function  B  ,  the  start  

point  F  H  ,  the  lower  bound  of  search  space  L  ,  the  upper  bound  of  

search  space  U  ,  and  the  maximum  number  of  iterations,  N  .  The  

optimizer  returns  fingerprint  template  F max  corresponding  to  the  

highest  match  score  B  (F max  )  encountered  by  the  optimizer  during  

the  search.  

We  use  FVC2002,  ATVS  and  CASIA  datasets  to  test  the  perfor-  

mance  of  our  attack.  For  each  dataset,  we  randomly  separate  the  

fingerprints  into  two  groups:  authenticated  group  and  unauthenti-  

cated  group.  The  authenticated  group  and  the  BOZORTH3  system  

together  form  a  black  box  that  we  attack  using  our  method.  We  

fix  the  number  of  perturbed  minutia  features  and  observe  the  in-  

crease  in  match  score  generated  by  our  algorithm.  

6.  Results  

Results  showing  the  average  match  score  of  synthesized  finger-  

print  templates  for  various  numbers  of  perturbed  minutia  features  

are  presented  in  Fig.  3  .  Using  our  method  we  synthesize  finger-  

print  templates  with  an  average  match  score  of  111.2  for  FVC2002,  

97.17  for  ATVS  and  111.07  for  CASIA  datasets.  We  have  considered  a  

match  score  above  35  to  be  a  match.  We  observe  that  for  all  three  

datasets,  FVC2002,  ATVS  and  CASIA,  changing  only  14  minutia  fea-  

tures  allows  us  to  successfully  attack  the  BOZORTH3  finger  match-  

ing  system  with  more  than  75%  probability.  Results  showing  the  

Fig.  3.  Average  match  scores  of  attack  fingerprints  for  various  numbers  of  per-  
turbed  minutia  features  for  the  FVC2002,  CASIA,  and  ATVS  datasets.  

Fig.  4.  Percentage  of  successful  attacks  (with  threshold  of  35)  for  FVC2002,  CASIA,  
ATVS  dataset  for  various  numbers  of  perturbed  minutia  features.  

percentages  of  successful  attack  for  various  numbers  of  perturbed  

minutia  features  is  shown  in  Fig.  4  .  

6.1.  FVC2002  Dataset  

The  FVC2002  dataset  consists  of  10  individuals  each  with  eight  

samples  for  a  total  of  80  fingerprints.  Each  fingerprint  image  has  

a  resolution  of  388  × 374  pixels.  We  randomly  choose  five  in-  

dividuals  and  assigned  them  to  the  authenticated  group;  we  kept  

the  other  half  in  the  unauthenticated  group.  The  maximum  num-  

ber  of  iterations  to  search  through  the  space  of  minutiae  features  

was  configured  to  10,0  0  0.  We  ran  the  experiment  10  0  times  with  

different  individuals  in  authenticated  and  unauthenticated  groups.  

We  observe  that  on  changing  50  minutia  features  we  are  able  to  

get  an  average  match  score  of  111.2.  We  observe  that  changing  25  

features  allows  us  to  attack  the  BOZORTH3  fingerprint  matching  

system  with  99%  probability.  
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6.2.  ATVS  Dataset  

The  ATVS  dataset  consists  of  fingerprint  images  of  17  individu-  

als.  Four  samples  of  fingerprints  of  the  index  and  middle  fingers  of  

both  hands  were  captured  using  three  different  scanners  for  a  total  

of  816  different  fingerprint  images.  

Each  fingerprint  image  has  a  resolution  of  300  × 300  pix-  

els.  We  used  fingerprint  samples  of  the  middle  finger  to  test  the  

effectiveness  of  our  method.  We  randomly  choose  five  individuals  

out  of  17  to  be  part  of  the  authenticated  group,  then  we  randomly  

choose  5  out  of  the  rest  of  the  12  individuals  for  the  unauthenti-  

cated  group.  The  maximum  number  of  iterations  to  search  through  

the  space  of  minutiae  features  was  configured  to  50  0  0.  We  ran  this  

experiment  100  times  with  different  individuals  in  the  authenti-  

cated  and  unauthenticated  groups.  We  observe  that  on  changing  

50  minutia  features,  we  are  able  to  get  an  average  match  score  of  

111.07.  We  observe  that  changing  25  features  allows  us  to  attack  

the  BOZORTH3  fingerprint  matching  system  with  93%  probability  

of  successful  attack.  

6.3.  CASIA  dataset  

The  CASIA  fingerprint  dataset  consists  of  500  individuals.  Five  

samples  of  four  fingers  (thumb,  index,  middle,  ring)  from  each  

hand  were  captured  using  URU40  0  0  fingerprint  sensor  for  a  total  

of  20,0  0  0  fingerprint  images.  Each  fingerprint  image  has  a  resolu-  

tion  of  328  × 356  pixels.  We  used  fingerprints  samples  of  the  left  

thumb  to  test  the  effectiveness  of  our  attack.  We  randomly  choose  

five  individuals  out  of  500  to  be  part  of  the  authenticated  group,  

then  we  randomly  choose  5  out  of  the  rest  of  the  500  individuals  

for  the  unauthenticated  group.  The  maximum  number  of  iterations  

to  search  through  the  space  of  minutia  features  was  configured  to  

50  0  0.  We  ran  this  experiment  100  times  with  different  individuals  

in  the  authenticated  and  unauthenticated  groups.  We  observe  that  

on  changing  50  minutia  features,  we  are  able  to  get  an  average  

match  score  of  93.77.  We  observe  that  changing  25  features  allows  

us  to  attack  the  BOZORTH3  fingerprint  matching  system  with  99%  

probability.  

6.4.  Hill  climbing  

Hill  climbing  has  been  proposed  as  a  way  to  attack  fingerprint  

matching  systems  by  multiple  sources  [13,17,22]  .  Due  to  the  sen-  

sitive  nature  of  these  attacks,  opensource  implementations  of  hill  

climbing  attacks  are  not  readily  available.  We  implemented  our  

own  hill  climbing  attack  algorithm  to  compare  against  our  pro-  

posed  approach.  Performance  of  our  hill  climbing  attack  imple-  

mentation  is  comparable  to  the  attack  proposed  by  Martinez-Diaz  

et  al.  [22]  ,  where  the  success  probability  of  an  attack  was  96.66%  

for  150  fingerprint  images  of  the  MCYT  dataset  [25]  .  We  run  the  

hill  climbing  attack  on  the  FVC2002  dataset  for  10,0  0  0  iterations  

and  compare  the  results  to  our  proposed  approach.  The  average  

match  score  for  synthesized  fingerprint  templates  for  various  num-  

bers  of  perturbed  minutia  features  for  hill  climbing  and  our  ap-  

proach  is  presented  in  Fig.  5  .  

We  observe  that  the  average  match  scores  of  synthetic  finger-  

print  templates  generated  by  our  approach  is  103.50  and  is  signif-  

icantly  higher  than  the  57.15  match  score  obtained  using  the  hill  

climbing  approach.  Percentages  of  successful  attack  for  hill  climb-  

ing  and  our  approach  are  shown  in  Fig.  6  .  We  observe  that  our  

approach  has  a  higher  probability  of  a  successful  attack  for  all  val-  

ues  of  perturbed  minutia  features.  We  are  able  to  attack  the  fin-  

gerprint  matching  system  with  99%  probability  by  changing  just  

25  features,  for  comparison  the  hill  climbing  approach  only  has  a  

success  probability  of  94%.  The  probability  of  successful  attack  us-  

ing  BOZORTH3  on  FVC2002,  ATVS,  CASIA  datasets  are  tabulated  in  

Fig.  5.  Average  match  scores  of  attack  fingerprint  templates  obtained  using  hill  
climbing  and  our  proposed  approach  for  FVC2002  dataset.  

Fig.  6.  Percentage  of  successful  attacks  (with  threshold  greater  than  35)  for  hill  
climbing  and  our  proposed  approach  for  FVC2002  dataset.  

Table  2  
Probability  of  successful  attack  using  BOZORTH3  on  FVC2002,  ATVS,  and  
CASIA  datasets  .  

Dataset  Features  Method  Probability  of  successful  attack  

FVC2002  25  BOZORTH3  99%  
ATVS  25  BOZORTH3  93%  
CASIA  25  BOZORTH3  99%  

Table  2  .  We  have  used  2  NVIDIA  GPUs  RTX  2080  with  5888  CUDA  

cores,  32  CPU  cores,  and  128  GB  RAM  for  computation.  We  want  to  

extend  our  method  to  generate  high  match  scores  for  all  samples  

of  an  authorized  fingerprint.  To  the  best  of  our  knowledge,  we  are  

the  first  to  apply  NLopt  to  attack  a  fingerprint  matching  system.  
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7.  Conclusion  and  future  work  

We  used  nonlinear  optimization  techniques  to  attack  the  NBIS  

BOZORTH3  fingerprint  matching  system.  We  showed  that  our  

method  to  attack  BOZORTH3  fingerprint  matching  system  produces  

synthetic  fingerprint  templates  with  a  high  average  match  score.  

By  searching  through  50  minutia  features,  we  obtained  an  average  

match  score  of  111.2,  97.17  and  111.07  for  FVC2002,  ATVS  and  CA-  

SIA  datasets,  respectively.  We  compared  our  method  to  a  legacy  hill  

climbing  method  and  showed  that  our  approach  has  a  higher  prob-  

ability  of  successfully  attacking  the  matching  system.  We  showed  

that  for  all  three  datasets  we  are  able  to  attack  the  fingerprint  

matching  system  with  100%  probability  of  successful  attack.  Fu-  

ture  work  would  involve  making  our  approach  more  robust.  We  

observed  that  both  hill  climbing  and  our  approach  created  finger-  

print  templates  with  a  high  match  score  for  only  one  out  of  multi-  

ple  samples  of  the  same  fingerprint.  In  the  future,  we  will  validate  

if  attribution-driven  causal  analysis  [15]  could  be  used  to  defend  

against  adversarial  attacks  on  fingerprints.  
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