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Abstract—Linear transformations are the dominating compu-
tation within many important applications. The natural multiply
and accumulate feature of memristor crossbar arrays promise
unprecedented processing capabilities to resistive dot-product
engines (DPEs), which can accelerate approximate matrix-vector
multiplication (MVM). Unfortunately, the precision of the analog
computation may be degraded by parasitics, non-linear device
characteristics, and variations. In this paper, we propose a
framework called XMAP for mapping an arbitrary matrix into
appropriate memristor conductance values (or state variables
for non-linear devices). The specified conductance values are
next programmed to the memristor hardware using accurate
closed-loop tuning. XMAP is based on formulating the mapping
problem as a mathematical optimization problem, which can be
elegantly minimized using the concept of representable matrices,
i.e., the matrices that can be represented on a crossbar. Compared
with the state-of-the-art conversion algorithm, the computational
accuracy is improved with up to 3.29X at the expense of
overhead in run-time. The precision improvements translate into
noteworthy application level benefits within signal compression
and neural network inference.

Index Terms—In-memory computing, analog matrix-vector
multiplication, non-volatile resistive technology, memristor.

I. INTRODUCTION

Memristor crossbar arrays have attracted significant in-
terest due to their natural ability of carrying out matrix-
vector multiplication (MVM) in a single time-step, which is
the dominating computational operation for many important
applications [1]–[3]. By applying a vector of voltages to
the rows of a crossbar array, multiplication with the mem-
ristors conductance values is performed using Ohm’s law
and summation of currents along the columns is performed
using Kirchhoff’s current law, i.e., MVM is performed in the
analog domain. Recent hardware prototypes have shown that
the analog computation is orders of magnitude more efficient
than a highly optimized digital ASIC [1]. Moreover, the data
movement on the system bus is reduced as the computation is
performed in-memory.

The main challenge of utilizing memristor crossbars as
resistive dot-product engines (DPEs) is that the computational
accuracy may be degraded by parasitics, non-linear device
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characteristics, limited write accuracy, and environmental vari-
ations. In particular, the precision may be degraded by voltage
IR-drop over non-zero input/output/array parasitics, which
allows currents to flow from an input to an output using
multiple alternative paths within a crossbar. This is related
to but not equivalent to the sneak path problem for memory
applications [4]. Moreover, the issue cannot be easily solved
using selector devices or access transistors. Selector devices
introduce unacceptable non-linearity and the access transistors
can only be used to improve accuracy when programming the
crossbar. Errors within analog computing paradigms are chal-
lenging because every error directly impacts the application-
level functional correctness. In contrast, variations within
digital computing systems mainly introduce timing violations,
which can be alleviated by scaling down the clock frequency.

The handling of non-ideal effects within memristor cross-
bars has been the focus of many recent studies [5]–[17]. Hard-
ware and software oriented training schemes for deep neural
networks have been studied in [5]–[8]. The decomposition of
large crossbars into smaller crossbars was explored in [9],
[10]. The main limitation of these techniques is the undesirable
software/hardware co-design. Architectural level studies have
explored decomposing MVM operations though bit-slicing and
reduction networks [11]–[14]. Nevertheless, such architectural
level schemes are less energy-efficient because every matrix-
vector operation is decomposed across multiple crossbars and
time steps. Circuit level solutions mainly rely on representing
each matrix element using a two (or multiple) memristors
arranged in a differential pair configuration [15]. The use
of multiple devices can in many instances reduce voltage
IR-drop and variations at the expense of hardware overhead.
The main body of work that we follow in this paper is focused
on developing a software algorithm to convert an arbitrary
matrix into appropriate memristor conductance values [9],
[18]–[20]. This involves compensating for the IR-drop over the
array parasitics when specifying the memristor’s conductance
values. The specified conductance values are next programmed
to hardware using accurate closed-loop tuning. Many initial
studies on matrix to conductance conversion only captured the
output sensing resistance and omitted the array parasitics [18],
[19]. More recently, mapping algorithms that account for
all non-zero parasitics have been proposed [9], [18]. The
difference between a target matrix and the conductance matrix
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realized by the crossbar was minimized using steepest gradient
descent in [9]. Unfortunately, the computational accuracy of
the resulting MVM operations is highly unpredictable due to
that the bit-accuracy of the memristors was not considered.
A mapping algorithm that can handle crossbars with large
dimensions was proposed in [20]. This is the first algorithm
capable of converging to mapping solutions of reasonable
quality while accounting for non-zero parasitics, non-linear
device characteristics, and variations. However, the method
relies on assumptions that limit the attainable precision.

In this paper, we propose a framework called XMAP for
converting an arbitrary target matrix A into a scaling factor
α and appropriate conductance values g. The scaling factor is
used to decode the analog outputs into digital outputs. State
variables s are specified when non-linear devices characteris-
tics are considered. The main innovations within the XMAP
framework are, as follows:

• A new method to unify the handling of linear and
non-linear devices is proposed. The method is based on
first converting all non-linear devices into linear devices.
Later, the solution obtained with respect to the linear
devices is converted into a solution for non-linear devices.

• The use of linear devices allows the matrix realized by a
crossbar (Ar) to be computed analytically. Based on the
matrix Ar, we define the notion of value range errors,
precision errors, and total errors. These definitions allow
the mapping problem to be formulated as minimizing the
difference between A and Ar.

• We introduce a concept of representable matrices, which
provides an understanding of the matrices that can be
represented on a crossbar and the interplay between the
scaling factor α and the memristor conductance values g.
The understanding enables the optimization problem to be
elegantly minimized using a binary search and iteratively
solving linear equations.

• The framework seamlessly supports each matrix element
to be represented using one memristor or two memristors
per matrix element. The algorithm essentially treats all
memristors used to represent a single matrix element as
a single memristor device.

• The peripheral circuitry imposes constraints on the max-
imum output current that can be measured from a bitline.
Such constraints are easily handled by imposing an upper
bound on the scaling factor α.

• Three optimization techniques are proposed to speed-
up the run-time of the XMAP. The first is based on
utilizing hierarchical optimization framework. The last
two are based on early termination features and avoiding
redundant computation.

The experimental results demonstrates that XMAP is ca-
pable of mapping any arbitrary matrix to a crossbar. The
run-time is only a few minutes for matrices with dimensions
up to 256x256. Compared with the state-of-the-art conver-
sion algorithm, the computational accuracy is improved with
up to 3.29X. The improvements in computational accuracy
translate into application level benefits. Moreover, XMAP
obtains smooth trade-offs across every evaluated technology

parameter.

II. BACKGROUND

A. DPE friendly Applications

Applications that are i) dominated by MVM operations
and ii) where the matrices are relatively constant and the
input vectors change frequently, are candidates for acceleration
using resistive DPEs. These two conditions hold for the
applications below and many other applications.

Signal compression: from the time domain into the fre-
quency domain is performed using a MVM operation, c = Dx,
where D is the DCT matrix. x and c are respectively the time
and frequency representation of a signal in vector form.

Neural network inference: involves classifying images into
one of multiple output categories. The classification is per-
formed by passing an input image (in a vector representation)
to the first layer of the neurons in a neural network and
recording the outputs from the last layer. The evaluation of
each layer involves performing an MVM operation.

B. Memristor Crossbar Arrays

Memristor crossbar arrays have demonstrated great potential
for both memory and in-memory computing applications [1],
[4]. The interest in computing stems from that crossbars can
perform MVM operations (Ax = y) in a single time step.

Computation within the paradigm is performed using an
initialization phase and an evaluation phase. In the initializa-
tion phase, the target matrix is first converted in conductance
values g using a mapping algorithm. Next, the memristors
are programmed to the specified conductance values g using
accurate closed-loop tuning. By utilizing access transistors,
the memristors can be tuned with an accuracy of 5-8 bits [1],
[21], which is called write bit-accuracy. The access transistors
ensure that almost all currents flow through the devices being
programmed. In the evaluation phase, analog matrix vector
multiplication is performed by applying a vector of input volt-
ages (vin) to the wordlines and measuring the vector of output
currents iout from the bitlines, where iTout = vTinG and G is the
conductance matrix of the crossbar. When the crossbar is ideal
(zero parasitics and linear devices), each element Gij in the
conductance matrix is equal to the cross-point conductance in
the array, which is shown in Figure 1(a). Hence, a target matrix
A can be linearly mapped into conductance values g. The input
voltages are provided to the crossbar using digital-to-analog
converters (DACs). The output currents are converted into
voltages using transimpedance amplifiers (TIAs) and measured
using analog-to-digital converters (ADCs).

Memristor devices are desired to have high-linearity and
continuous conductance states. The crossbars are desired to
have small input, output, and array parasitics. Nevertheless,
when non-ideal crossbar effects are considered, it has been
observed that a linear mapping results in very poor computa-
tional accuracy, which can be observed in Figure 1(b). While
the figure shows that the state-of-the-art mapping algorithm
improves the computational accuracy, there still exists a sig-
nificant gap between the obtained and ideal accuracy [20].
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Fig. 1. (a) Ideal crossbar array. (b) Obtained equivalent bit-accuracy using lin-
ear mapping, mapping in [20], and ideal. The details of the experimental setup
and equivalent bit-accuracy are provided in Section III-A and Section VIII

C. Previous work and its limitations

The first mapping algorithm capable of handling all non-
ideal crossbar effects was proposed in [20]. The algorithm has
been widely adopted and is considered the state-of-the-art.

The algorithm first determines a target current through each
cross-point using a first order equation: Ip = (aA + b)vcal,
where a and b are technology dependent constants and vcal is a
calibration voltage. Next, the memristor conductance values g
(or state variables s) are specified to deliver the target currents
Ip through the cross-points while accounting for non-ideal
crossbar effects using a built-in crossbar simulator. The built-
in simulator accounts for that currents may flow from an input
to an output using alternative paths in a crossbar.

The limitation of this approach is that the algorithm aims
to deliver a current proportional to Aij through each cross-
point (i, j), which is conceptually shown in Figure 2(a). In
reality, the sum of the currents flowing on any path from
row i to column j should be proportional to the matrix
element Aij , which is shown in Figure 2(b). The XMAP
framework maps a matrix A into conductance values g with
this objective, which explains why XMAP achieves superior
computational accuracy compared with in [20]. Note that the
built-in simulator in [20] accounts for that currents flow on
alternative paths when specifying s (or g) with respect to
Ip. However, the currents on the alternative paths are not
considered when specifying Ip using the first order equation.

(a) (b)

Fig. 2. Currents flowing from an input to an output (a) only using the
memristor in the corresponding cross-point and (b) using multiple alternative
paths in the crossbar. The access transistors in the crossbar are omitted in the
figure because they are all on during each MVM operation.

III. MODELING AND SIMULATION OF CROSSBARS

We describe how crossbars with non-linear and linear
devices are modeled and simulated in Section III-A and
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Fig. 3. Crossbar array with (a) non-linear devices and (b) linear devices.

Section III-B, respectively. In Section III-C, we compute the
matrix realized using one or two memristors per matrix. A
non-ideal crossbar with non-linear and linear devices is shown
in (a) and (b) of Figure 3, respectively.

A. Memristor crossbars with non-linear devices

A crossbar with non-zero parasitics and non-linear devices
is shown in Figure 3(a). The non-zero parasitics are in the form
of wire (rw), input (rin), and output (rout) resistances. All the
parasitics are modeled using standard resistances. The memris-
tors and access transistors are modeled as non-linear devices.
The current through the access transistors it(vd, vs, vg) is a
non-linear function of the drain voltage (vd), source voltage
(vs), and gate voltage (vg). Similarly, the current through
a memristor im(vm, s) is non-linear function of the voltage
across the two terminals (vm) and the state variable s. Two
non-linear device models are evaluated in Section VIII. The
write accuracy is modeled using 2b linearly spaced states
between smin and smax, where b is the memristor write bit-
accuracy. smin and smax are lower and upper bounds on the
state variable s, respectively.

The relation between a vector of input voltages (vin) and the
vector of output currents (iout) for the circuit in Figure 3(a) can
be captured using modified nodal analysis (MNA) [22]. This
requires a system of (3MN + M + N) non-linear equations
to be formulated for a crossbar with M wordlines and N
bitlines. The first 3MN are the KCL equations for the nodes
in the crossbar. The next M equations are the input boundary
conditions. The last N define the output currents. Given an
input vector vin, the output currents iout are obtained by
solving the system of equations using Newton’s method. A
detailed description of how to formulate and solve the non-
linear model is provided in [23].

The outlined model captures the behaviour of the non-ideal
crossbar with SPICE level accuracy. The main drawback of
the accurate non-linear model is that it does not provide an
intuitive understanding if the state variables s approximately
realize the target matrix A. In contrast, if the memristors and
access transistors are assumed to be linear, the matrix Ar

realized by a crossbar can be computed analytically.
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B. Crossbar with linear devices

In this section, we explain how the crossbar with non-
zero parasitics and linear devices is modeled and simulated.
When the memristors and access transistors in Figure 3(a)
are assumed to be linear, each series connected memristor
and access transistor can be replaced with an ideal memris-
tor (or ideal conductor), which is shown in Figure 3(b). If
the memristors have a programmable conductance range of
[gmin, gmax], the ideal memristors will have a slightly lower
range of [glb, gub] due to the access transistors. We let g and
gw respectively denote the conductance values of the ideal
memristors without (with) the write-bit accuracy, i.e., gw is
obtained by quantizing g to 2b linearly spaced states between
glb and gub. As all the circuit elements (memristors, wires,
input resistance, output resistance) are modeled as resistors,
the crossbar can be modeled as a resistive network.

The relation between the input voltages (vin) and the output
currents (iout) of the resistive network can be determined using
MNA, as follows:

Y (g, rw, rin, rout)

vxbarvdac
iout

 =

 0
vin
0

 , (1)

where Y (g, rw, rin, rout) is matrix with dimensions (2NM +
M + n)x(2NM + M + N). The detailed definition of
Y (g, rw, rin, rout) is provided in [9]. g are the ideal memristor
conductance values; rw, rin, and rout are respectively the wire,
input, and output resistances; vxbar and vdac are the node
voltages of the crossbar and the DACs, respectively. The linear
system of equations is formulated in similar to in the previous
section. However, the number of KCL equations are reduced
from 3NM to 2NM because NM nodes are eliminated when
the memristors and access transistors are combined into a
single linear device.

As the system is linear, the output currents (iout) can be
expressed as a linear function of the input voltages (vin) using
a conductance matrix G(g), i.e., iTout = vTinG(g). The matrix
G(g) can be computed [24], as follows:

G(g) = SY −1(g)B, (2)

where B = [0, I, 0]T is a matrix with dimensions (2NM +
N+M)x(M) and I is an MxM identity matrix. S = [0, 0, I]
is a selection matrix with dimensions (N)x(2NM +N +M).
The selection matrix is used to select the output currents
from Y (g, rw, rin, rout)

−1B. In this paper, we refer to the
conductance matrix as G or G(g) based on if we want to
emphasize that the matrix is a function of the memristor
conductance values g. Note that G(g) also is a function of
the constant parameters rw, rin, and rout.

C. Matrix realized by a crossbar with linear devices

Every crossbar with linear devices realizes a matrix Ar and
accelerates the MVM operation Arx = y, where x and y are
the input and output vectors, respectively. The matrix Ar can
be determined analytically based on the conductance matrix G
and the arrangement of the peripheral circuitry. In this paper,
we consider the case when each matrix element is realized

by a single memristor or using two memristors arranged in a
differential pair configuration, which is shown in (a) and (b)
of Figure 4.

When each matrix element is represented using a single
memristor, the target matrix is shifted to the positive domain
before being mapped to a crossbar [25], i.e., Ã = (A−Ashift)
is the matrix mapped to the crossbar. The shift is required
because memristors cannot be programmed to have negative
conductance. Next, when MVM operations are performed, the
outputs are post-processed to offset the matrix shift.

Ax = (A−Ashift)︸ ︷︷ ︸
Matrix Ã on crossbar

x− sum(x) ·Ashift︸ ︷︷ ︸
Post-processing

, (3)

where Ashift is equal to the smallest element in A. sum(x)
is the sum of the elements in the input vector x. For the
remainder of the paper, we assume without loss of generality
that each element in A (represented using a single memristor)
is within [0, 1]. This allows the use of the Ã notation to
be circumvented. Consequently, the matrix realized by the
crossbar Ar can be computed, as follows:

Ar(α, g) = G(g)/α, (4)

where α is a scaling factor used to decode the output currents
from the crossbar into digital output vector.
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Fig. 4. (a) Traditional crossbar with each matrix element represented using
one memristors. Note that a matrix is transposed when mapped to a crossbar.
Aij is the matrix element in row i and column j within A. (b) Crossbar with
each matrix element represented using two memristors in a differential pair
configuration. A+

ij and A−
ij denote the positive and negative component of

the matrix element Aij .

When a crossbar with a differential pair configuration is
used, ADCs are used to convert the difference in the output
current between adjacent bitlines into digital values, which
is illustrated in Figure 4(b). This implies that the positive and
negative elements in a row of A is mapped to a pair of adjacent
bitlines. Consequently, the effective matrix Ar realized by the
crossbar is obtained, as follows:

Ar(α, g) = (G(g)+ −G(g)−)/α, (5)

where G(g)+ and G(g)− denotes the odd (positive) and even
(negative) columns of G(g). Again, α is a scaling factor used
to decode the output currents into a digital output vector. For
the remainder of the paper, when a matrix is represented using
a differential pair configuration, we assume without loss of
generality that each element in A is within [−1, 1].
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IV. PROBLEM FORMULATION

This paper addresses the problem of programming memris-
tor crossbars to maximize the computational accuracy when
accelerating MVM operations. This specifically involves map-
ping an arbitrary matrix A into a scaling factor α and appropri-
ate state variables s. The objective is to minimize difference
between the ideal output y = Ax and the non-ideal output
from the crossbar y(x, s, α)xbar, as follows:

min
s,α

E[||y − y(s, α, x)xbar||1], x ∈ X, (6)

s.t ||iout||1 ≤ imax

where ||.||1 is the L1 norm. x is an input vector from the input
vector space X . The constraint on the maximum output current
is imposed by the peripheral circuitry [1]. y(s, α, x)xbar is
obtained using the non-linear model described in Section III-A.
The non-linear model captures the wire, input resistance,
output resistance, the non-linear access transistors, and the
non-linear memristors.

Minimizing the L1 norm of a non-linear function over a
vector space is difficult. Therefore, we define a related opti-
mization problem that is expected to approximately minimize
Eq (6). By assuming that the devices are linear, the matrix
realized by a crossbar Ar can be computed, which allows
the difference between A and Ar to be minimized. Next, we
convert the linear solution with respect to the linear devices
into an solution for non-linear devices.

We observe that there are two reasons for why each element
in Ar is not exactly equal to the corresponding element in A
after optimization: (i) the corresponding memristor cannot be
tuned outside the lower and upper conductance bounds or (ii)
the difference stems from the limited write bit-accuracy of the
memristor devices. We denote these two types of errors as
value range errors and precision errors, respectively. We also
let the total errors be defined as the sum of the value range
errors and precision errors. Next, we formally define the errors
types and formulate and optimization problem that minimizes
the total errors.

Definition 1 (Value range errors): Given a target matrix A,
a scaling factor α, and conductance values g, the value range
errors (εv) are defined, as follows:

εv = ||A−Ar(α, g)||2, (7)

where Ar(α, g) is the matrix realized by a crossbar, which is
a function of g and α. ||.||2 is the square of the L2 norm. The
errors are called value range errors because if g is specified
optimally within [glb, gub], the errors will stem from that g
cannot be specified outside the value range [glb, gub].

Definition 2 (Precision errors): Given a target matrix A, a
scaling factor α, and the conductance values with write errors
(gw), the precision errors (εp) are defined, as follows:

εp = ||A−Ar(α, gw)||2 − εv, (8)

where Ar(α, gw) is matrix realized by the crossbar. Recall gw
is a discrete variable with 2b states between [glb, gub], where b
is the write bit-accuracy of the memristors. As the value range
errors are subtracted, the precision errors stem from the limited

memristor bit-accuracy and the degree that the programmable
conductance range is utilized.

Definition 3 (Total Errors): Given the value range errors
(εv) and the precision errors (εp), the total errors (εtot) are
defined, as follows:

εtot = εp + εv, (9)

Using the aforementioned definitions, the problem of min-
imizing the total errors is formulated, as follows:

min
α,g

εp + εv (10)

εv = ||(A−Ar(α, g)||2,
εp = ||(A−Ar(α, gw)||2 − εv,
α ≤ αmax

where g are continuous memristor conductance values within
glb ≤ g ≤ gub. gw is the discrete version of the variable g.
The constraint on the maximum output current is transformed
into an upper bound on α.

After the conductance values g that minimize Eq (10) have
been specified, they are translated into state variables s to
approximately minimize Eq (6) using optimization.

V. INSIGHTS AND MOTIVATIONS

In this section, we provide the high level insights and
motivations behind the XMAP framework. We first introduce
the concept of representable matrices in Section V-A. Opti-
mization insights are provided in Section V-B.

A. Representable matrices

In this section, the concept of representable matrices A(α)
is introduced to define the matrices that can be represented on
a crossbar, which is illustrated in Figure 5. More specifically,
the concept provides an understanding of interplay between
the parameters α and g.

Definition 4 (Representable Matrices): Given the properties
of a crossbar and a matrix A, the representable matrix A(α)
defines the precision and value range for each matrix element
based on the crossbar location and the scaling factor α. The
value range for a matrix element is a lower and upper bound
on the value that can be realized. The precision of a matrix
element refers to the number of distinguishable states between
the lower and upper bound. Qualitatively, matrix elements
outside their respective value ranges introduce value range
errors and matrix elements within the value range errors
introduce precision errors.

The dependency of the value ranges and the precision on
the crossbar location is shown in Figure 5(a). Intuitively, the
value ranges are the worst (most restrictive) in the far-end of
the crossbar because the array parasitics makes it impossible
to realize both small and large values. On the other hand,
the precision of each matrix element is higher because of the
reduced voltage drop across each memristor devices, i.e., a
large change of a memristor’s conductance value is necessary
to make a small change to the output current.

The dependency of the value ranges and the precision on
α is shown in (b) and (c) of Figure 5. Each matrix element
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Fig. 6. (a) Memristor conductance range utilization vs. scaling factor α. (b)
Total errors, value range errors, precision errors vs. scaling factor α. The
results are obtained for a 128x128 crossbar.

is represented using one and two memristors in Figure 5(b)
and Figure 5(c), respectively. The scaling factor regulates the
utilization of the conductance range, i.e., a smaller (larger) α
results in that a smaller (larger) portion of the range is utilized.
It can be observed that the least conductive portion of the range
is always utilized in Figure 6(a).

When a small α is used, the voltage IR-drop across the
parasitics are minor, which results in very flexible value
ranges. On the other hand, there are only few distinguishable
states between the lower and upper bounds, which is illustrated
to the left within (b) and (c) of Figure 5. For example, if only
half of the conductance range is utilized, the write bit-accuracy
is effectively reduced by one. When a larger α is used, the
value ranges become more restricted but there are many states
between the bounds, which is shown to the right within (b)
and (c) in Figure 5. The trends are slightly different when each
element is represented using one and two memristors because
the differential pair configuration can cancel out some errors.
Moreover, as the differential pair configuration has more
flexible ranges and distinguishable states, the computational
accuracy is expected to be higher.

The mapping problem for a matrix A becomes that of

selecting α such that the total errors are minimized. If α is set
to small, large precision errors are introduced because there
are few states between the upper and lower bounds. On the
other hand, if α is selected too large, large value range errors
will be introduced because elements in A are outside the lower
and upper bounds. Consequently, the key is to select α such
that precision errors are balanced with the value range errors,
which is illustrated in Figure 6(b). The figure shows that the
total errors are close to a minimum when the value range errors
are equal to the precision errors.

B. Optimization insights

In this section, we outline our three main insights for
minimizing the problem in Eq (10).

1) Decoupling the optimization of g and α: Based on the
discussion in the previous section, it is intuitive to decouple
the optimization of g and α. The scaling factor α is used
to optimize the trade-off between the precision errors and the
value range errors. Given α, the conductance values g are next
optimized such that value range errors only occur for elements
outside their respective value ranges.

2) Optimization of α: The parameter α regulates a trade-
off between precision errors (εp) and the value range errors
(εv). We observed in Figure 6(b) that total errors (εtot) are
close to minimum when εp ≈ εv . Consequently, the problem
of minimizing the total errors can be cast into the problem
of specifying α such that εp=εv . By observing that the value
range errors (precision errors) are increasing (decreasing)
monotonically with respect to α, it can be concluded that
α can be optimized using a binary search. We also observe
that it is easy to maintain a lower bound on the total errors,
which allows the binary search to be terminated when the gap
between the best observed solution and the lower bound is less
than a threshold.
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3) Optimization of g: While optimizing the conductance
values, we propose to relax the discrete variables gw into
continuous variables g. It is well known that it is easier to
optimize problems with continuous variables than discrete
variables. As there are many discrete states between glb and
gub, predictable precision errors will be introduced when the
continues variables are rounded (or snapped) to the closest
discrete state after optimization.

We also propose to specify the conductance of each mem-
ristor gij with the objective of minimizing the element-wise
difference ||Aij−Arij ||2. In contrast, previous work attempted
to specify all conductance values g to minimize ||A − Ar||2
as a whole [9]. This requires the use of computationally
expensive steepest gradient descent, which results in long
run-times. The decoupling allows the objective function to
be minimized by iteratively updating the conductance values
g with a conductance adjustments 4g. The adjustments are
obtained from the matrix error 4A = (A−Ar) by solving a
linear equation.

VI. THE XMAP FRAMEWORK

An overview of the XMAP framework is shown in Figure 7.
The input is a matrix A and the properties of the crossbar. The
output is a crossbar programmed with state variables s and
a specified scaling factor α. The framework consists of five
main steps. The fist step is to convert the non-linear devices
into linear devices. The second step is to optimize the scaling
factor α with respect to A. The third step is to specify the
conductance values g with respect to A and α. The fourth
step is to convert the specified conductance variables g into
state variable s. The last step is to program the state variables
to the hardware using accurate closed-loop tuning [1], [21].

input: Matrix A

Convert non-linear devices to linear devices 

Optimization of scaling factor � 

Optimization of conductance values g

Optimization of state variables s

Closed loop programmig of memristors 

output: Matrix A on crossbar

} In
 s

o
ft

w
a
re

In
 h

a
rd

w
a
re

Fig. 7. Flow of XMAP framework.

A. Convert non-linear devices to linear devices

The first step is to convert the non-linear memristors and
access transistor to linear (or ideal) memristors with a con-
ductance of g, i.e., converting the circuit in Figure 3(a) to
the circuit in Figure 3(b). The objective is to specify the
bounds on the conductance range [glb, gub] such that any
set of conductance values g within the range can later be
converted into state variables s within [smin, smax]. This can
be performed by conservatively specifying the range [glb, gub]
with respect to [smin, smax] and the non-linear equations
describing the memristors im(s, vm) and access transistors
it(vs, vd, vg). This is performed by simply plugging in the

worst case state variable and node voltages into the non-linear
equations.

B. Optimization of α
In this section, we explain how the scaling factor α is

specified using the function ComputeScalingFactor(A) in Al-
gorithm 1. The value range [0, αmax] for α is first determined
based on the constraint on the maximum output current from a
bitline. Next, the variable α is specified using a binary search.

The maximum scaling factor αmax is determined by solving
for the scaling factor that results in that the maximum output
current imax is delivered through a bitline, as follows:

αmax =
imax

||Avmax||1
, (11)

where A is the matrix and imax is the maximum output current
from a bitline. vmax is a vector with the maximum voltage
provided by the DACs. If a differential pair configuration
is used, the matrix A is split into a positive and negative
component before formulating the equation.

Given αmax, the scaling factor α that minimizes the total
errors εtot is determined using the binary search outlined
in Algorithm 1. In iteration k of the binary search, the
ComputeConductance(A, αk) function is invoked to specify
the conductance values g with respect to A and αk. The details
of the ComputeConductance(A, αk) function are provided in
Section VI-C. Based on the specified conductance values g
and αk, the value range errors εv and precision errors εp are
computed using Eq (7) and Eq (8), respectively. Next, αk+1

is updated to be larger or smaller based on the ratio of the
precision errors to the value range errors. More specifically,
αk is updated to be larger (smaller) if the precision errors cp
are larger (smaller) than the value range errors εv , which is
shown on line 16 to line 21.

The binary search is continued until the gap between the
best observed solution εbest and the lower bound (lbv + lbp)
is less than 5%, which is regulated using γ. εbest is the best
observed solution in terms of total errors. When the value
range errors are larger than the precision errors, we observe
that the current precision errors can be used as a lower bound
on the attainable precision errors (lbp). Similarly, when the
precision errors are larger than the value range errors, the
current value range errors can be used as a lower bound on the
attainable value range errors (lbv). This allows us to formulate
the termination condition on line 6.

In our implementation, we only update the lower bounds
if the magnitude difference between εp and εv is less than
10X . This is due to that for small (large) α’s, we have
empirically observed that precision (value range) errors may
not be increasing (decreasing) monotonically.

C. Optimization of g
In this section, we explain how the conductance values g

are specified with respect to a matrix A and scaling factor
α. We explain the algorithm for the case when each matrix
element is represented using one memristor in Section VI-C1.
The algorithm is extended to crossbars with a differential pair
configuration in Section VI-C2.
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Algorithm 1: ComputeScalingFactor(A).

1 Input: Target matrix A.
2 Output: Scaling factor α.
3 αmax = imax

||Avmax||1 ;
4 α0 = αmax/2;αstep = α0/2;
5 lbw = 0; lbv = 0; εbest =∞; k = 0; cend = 0.95;
6 while lbp + lbv < εbest do
7 Compute g using ComputeConductance(A, αk)
8 Compute εv and εp using g, αk, Eq (7), and Eq (8)
9 εtot = εp + εv

10 //save best solution in terms of total errors
11 if εtot < εbest then
12 α = αk
13 εbest = εtot
14 end
15 //update alpha within the binary search
16 if εp > εv then
17 αk+1 = αk + αstep
18 else
19 αk+1 = αk − αstep
20 end
21 αstep =

αstep

2 ; k = k + 1;
22 //update one of the lower bounds
23 if εp < εv then
24 lbv = εv
25 else
26 lbp = εp
27 end
28 end
29 return α;

1) Basic conductance mapping: A matrix A and scaling
factor α is mapped into conductance values g using the
ComputeConductance(A,α) function in Algorithm 2.

The algorithm is based on first linearly mapping the matrix
A into conductance values g0 = αA. The value range errors
are next minimized by iteratively updating gk to gk+1 using
conductance adjustments 4g. The process is performed until
the value range errors stop decreasing, which is shown on
line 6 to line 14 of Algorithm 2.

The conductance adjustment 4g is computed by first calcu-
lating the difference4A = (A−Ar). Using the approximation
in Figure 2(a), the matrix error is translated into a current cor-
rection4i = α4A. The current corrections are next converted
into a conductance adjustments 4g = 4i/4v, where 4v is
the voltage drop across each device when computing G using
Eq (2). G is anyways required to be calculated in order to
compute Ar using Eq (4). After each update gk+1 = gk+4g,
any conductance value that is updated outside [glb, gub] is set
glb and gub, respectively.

2) Conductance mapping using differential pair: In this
section, we extend the conductance mapping in Algorithm 2 to
handle crossbars with memristors arranged in a differential pair
configuration. The extension is performed with the following
two objectives:
• The difference between Ar and A is minimized without

Algorithm 2: ComputeConductance(A,α).

1 Input: Target matrix A and scaling factor α.
2 Output: Memristor conductance values g.
3 g0 = αA;
4 ε0v =∞; γ = 0.99; k = 1;
5 Compute Ar and εkv using Eq (4) and Eq (7)
6 while εkv < γ · εk−1v do
7 Compute matrix error 4A = (A−Ar)
8 Compute current correction 4i = α4A
9 4g = 4i

4v
10 gk+1 = gk +4g
11 Bound elements in g within [glb, gub]
12 k = k + 1
13 Compute Ar and εkv using Eq (4) and Eq (7)
14 end
15 return g;

explicitly decomposing Ar and A into a positive and
negative component.

• To minimize ||A − Ar||2 using Algorithm 2, only the
conductance of one memristors in each differential pair
is updated in each iteration. Moreover, one memristor in
each pair should have the minimum conductance glb.

The motivation for avoiding an explicit decomposition is
that it significantly degrades the achievable computational
accuracy. This stems from that it is impossible to realize small
elements at certain locations in a crossbar, which is illustrated
with an example in Figure 8.
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(a) (b) (c) (d)
Fig. 8. (a) 2x4 matrix. (b) Differential pair decomposition into a 4x4 matrix
and transpose mapping to crossbar. (c) The net output current from column
three and four is too large with respect to the input vector [0, 0.2, 0, 0].
The current cannot be reduced by tuning the memristor at (2,3) to be less
conductive. (d) XMAP reduces the current by tuning the memristor at (2,4)
to be more conductive.

It is straightforward to understand that an error in 4A can
be eliminated by tuning either one of the memristors in a
differential pair. A positive error can be eliminated by tuning
the memristor representing the positive (negative) component
to be less (more) conductive. Similarly, a negative error can
be eliminated by tuning the positive (negative) memristor to
be more (less) conductive. To minimize the voltage IR-drop
in the crossbar, we propose always eliminate errors by tuning
the appropriate memristor to be less conductive. However, if
a memristor already has the minimum conductance glb, the
error is eliminated by tuning the other memristor to be more
conductive. This method ensures that one memristor in each
pair will have the minimum conductance.
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The outlined method only requires modifications on line 3
and line 8 in Algorithm 2. On line 3, the matrix A is required
to be split into a positive and negative component before
being mapped into conductance values, which is shown in
Figure 4(b). On line 8, the matrix error 4A is converted into
current corrections. By translating the errors 4A into current
corrections using the flow in Figure 9, it is ensured that only
one memristor is updated and that one memristor in each pair
will have the conductance glb.

yes

no

gji
+ == glb?

�Aij>0

�ij
— = α ΔAij

gij
— == glb?

Δij+ = —α ΔAij
—

yes

no

yes

no

Δij
+ = α ΔAij

—

Δij
— = —α ΔAij

Fig. 9. Flow for updating 4A into current correction 4i. Let an element
in 4A be denoted 4Aij . The current correction for the two memristors
representing that element are denoted 4+

ij and 4−
ij , respectively. All current

corrections are first set to zero. Next, half of the corrections are updated based
on 4A.

D. Specification of state variables
In this section, the state variables of the memristors are

determined from the conductance values g and a calibration
signal vcal, which is illustrated in Figure 10. The results will be
different for different selections of the calibration signal. We
set vcal to vmax/2, where vmax is the maximum input voltage
based on an empirical study. First, the node voltages on the
wordlines (vword) and bitlines (vbit) and the currents through
the conductors ig are computed using g and vcal, which is
shown in Figure 10(a). Next, the state variables s are computed
using vword, vbit, and ig , which is illustrated in Figure 10(b).

Computation of vword, vbit, ig: First, the node voltages
of the wordlines (vword) and the bitlines (vbit) in the crossbar
are computed with respect to g and a calibration signal vcal
using Eq (1). Next, the currents through each conductor g is
obtained using ig = g · (vword − vbit).

sg

vp

vword

vbit

igvcal

Eq (1)
Newton's 

method

(a) (b)

Fig. 10. Specification of s from g and vcal.

Computation of state variables s: The state variables s
are found by solving a non-linear system of two equations, as
follows:

X =

[
s
vp

]
, F (X) = ig −

[
im(s, vword-vp)
it(vp, vbit, vg)

]
, (12)

where vp is the node voltages between the memristors and the
access transistors. Next, Newton’s method is used to solve for
F (X) = 0, as follows:

Xk+1 = Xk − J−1F (Xk), (13)

where J−1 is the inverse of the Jacobian of F . Note that New-
tons method can be applied independently for each memristor
and access transistor pair.

VII. XMAP SPEED-UP TECHNIQUES

In this section, we propose three speed-up techniques for
the XMAP algorithm. We analyze the run-time bottlenecks of
XMAP in Section VII-A. The three speed-up techniques to
solve the bottlenecks are proposed in Section VII-B.

A. Run-time bottleneck analysis

In this section, we analyze the run-time bottlenecks of
XMAP. The flow of the algorithm is shown in Figure 11. The
flow consists of two loops. The scaling factor α is optimized
in the left loop and the conductance values g are optimized in
the right loop. Based on a breakdown of the run-time shown
in Figure 12(a), the edges in Figure 11 are annotated with
the qualitative and quantative number of executions and run-
time per execution for a 256x256 matrix. The left loop is
only executed a few times and the run-time is short but it
calls the right loop. The right loop is takes long run-time and
is performed many times. Consequently, the overall run-time
is many* long. The total mapping time is dominated by the
computation of the conductance matrix G, which is shown in
Figure 12(a). Clearly, the computation of G is the bottleneck
of the mapping algorithm. We further breakdown the run-time
of computing G with respect to the matrix size in Figure 12(b).

Fig. 11. (a) Flow of XMAP baseline and (b) flow of XMAP with speed-up.
The annotated numbers are with respect to a 256x256 matrix.

(a) (b)

Fig. 12. (a) Breakdown of run-time of XMAP. (b) Runtime to compute G
using Eq (2) for crossbars of different dimensions.

We propose to speed-up XMAP using a i) hierarchical
algorithm, ii) an early termination feature, and iii) speed-
up techniques for computing G. Instead of optimizing the
conductance values g with respect to εv , the hierarchical
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algorithm optimizes the conductance values with respect to
a target current it through each memristor device. Next, the
target currents it are calibrated with respect to εv , the details
are provided in Section VII-B1. An early termination feature to
Algorithm 2 is proposed in Section VII-B2. Together, the first
two techniques reduce the number of times G is computed
from many to several in Figure 11. A technique to speed-
up the calculation of G itself is proposed in Section VII-B3.
This explains why the computation of G in Figure 11(b)
is labeled with medium run-time (instead of long). Conse-
quently, the overall run-time is reduced from many*long to
several*medium.

B. Speed-up techniques

1) Hierarchical approach: The hierarchical flow is imple-
mented using Algorithm 3 and by modifying Algorithm 2.

The main idea of the hierarchical algorithm is to optimize
the conductance values g with respect to a target current it
and an uniform input calibration vector vcal. Next, the target
currents are optimized to minimize the value range errors εv .
The original approach in Algorithm 2 was based on directly
optimizing g with respect to εv .

The relation between the node voltages in a crossbar vxbar,
the currents through the memristors ik, and an voltage cali-
bration vector vcal can be formulated, as follows:

Y (rw, rin, rout)

[
vxbar
vdac

]
=

−itit
vcal

 , (14)

where Y is a matrix with dimension (2NM+M)x(2NM+
M). The system matrix Y is formulated using KCL in similar
to Y in Eq (1). However, the system matrix Y is much more
sparse than Y because it is not a function of g.

The crossbar node voltages vxbar can be solved for using
Eq (14). Next, the voltage across each memristor vm is
computed as the voltage difference between two node voltages
in vxbar. Finally, the conductance values g are obtained by
dividing the target currents by vm elementwise. The iterative
approach in Algorithm 3 is proposed to ensure that the
conductance values g are specified within the bounds [glb, gub].

Now we turn our attention to how the target currents
are updated to minimizing the value range errors εv . To
simplify the optimization process, we introduce an ideal
conductance matrix Gtargetk . The matrix directly defines the
target currents it. Next, Algorithm 2 is modified to ini-
tialize and update the ideal conductance matrix Gtargetk on
line 3 and line 10 of Algorithm 2. The variable Gtargetk

basically replaces the variable gk on line 3. Given Gtargetk

and an uniform calibration vector vcal, a target current it

through each memristor is specified using the approximation
in Figure 2(a). The conductance values g are subsequently
specified to deliver the target current through each device using
ComputeConductanceCurrent(it,vcal) in Algorithm 3. Next,
line 10 in Algorithm 2 is modified to update Gtargetk into
Gtargetk+1 using Gtargetk+1 = Gtargetk + α(A−Ar).

2) Early termination: In this section, we propose to speed-
up the optimization of g using an early termination feature.
The memristor conductance values g are iteratively updated

Algorithm 3: ComputeConductanceCurrent(it, vcal).

1 Input: Target current it and calibration vector vcal.
2 Output: Memristor conductance values g.
3 i0 = it;
4 Compute g and vm using Eq (14)
5 while ¬g ∈ [glb, gub] do
6 Bound g within [glb, gub];
7 ik+1 =vm · g;
8 Compute g and vm using Eq (14)
9 end

10 return g;

until the value range errors converge using Algorithm 2.
We observe that if the value range errors are significantly
smaller than the precision errors, there is no need to continue
optimizing the value range errors. The total errors would be
dominated by the precision errors. Consequently, the optimiza-
tion in Algorithm 2 can be terminated early when the described
situation occurs. In particular, we terminate the while loop
within Algorithm 2 if εv · ct < lbp, where ct is set to 1000.
Moreover, we initialize lbp using the ideal bit-accuracy of the
memristors. This ensures that the lower bound is always non-
zero, which saves substantial amount of run-time.

3) Computation of G: In this section, we propose to speed-
up the calculation of G to reduce the overall run-time of
XMAP. The conductance matrix G is computed by solving
Eq (2) using sparse LU factorization with pivoting, as follows:

G = SQU−1L−1PB (15)

where P and Q are permutation matrices. L and U are
respectively a lower and upper triangular matrices. The ex-
pression is evaluated from right-to-left. First, T1 = L−1(PB)
is computed using forward substitution. Next, T2 = U−1T1
is solved using backward substitution. Lastly, G is computed
using G = SQT2.

We propose to reduce the run-time by (i) permuting the
order of linear algebra operations and (ii) avoiding redundant
computation. The first speed-up is obtained by computing
SQT2 from left-to-right instead of right-to-left. This reduces
the run-time significantly because S has smaller dimensions
than T2. The reordering results in that Q permutes the N non-
zero elements in S to form a new selection matrix S̃ = SQ.
Next, S̃ is used to select N of the rows in T2. We now turn our
attention to avoiding redundant computation by exploiting the
structure of S̃. S̃ is an (N)x(2NM+N+M) matrix with only
N non-zero elements. Let r be the number of columns starting
from the first in S̃ that only contain zeros. It can be observed
that the top r rows of T2 are not used, which is illustrated
in Figure 13(a). Consequently, the top r rows in T2 are not
required to be computed when solving T2 = U−1T1, which is
illustrated in Figure 13(b). Therefore, the matrices S̃, U , T1,
and T2 can be reduced to S̃r Ur, T1r, and T2r by removing
rows and columns as illustrated in (a) and (b) of Figure 13.
Next, G can be computed more efficiently, as follows:

G = S̃r(U
−1
r T1r) (16)
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Fig. 13. (a) Exploiting the structure of S to reduce T2 into T2r . (b) Exploiting
the structure of T2r to reduce U and T1 into Ur and T1r , respectively.

VIII. EXPERIMENTAL EVALUATION

The experimental results are obtained using a quad core 3.4
GHz Linux machine with 32GB of memory. XMAP is imple-
mented in MATLAB. Memristor crossbars with dimensions
32x32 to 256x256 are used in the evaluation. The parasitic
properties of the crossbars are provided in Table I. We also
evaluate the sensitivity to two non-linear device models. The
static version of the memristor model used by HP labs is
formulated [26], as follows:

im = vm. ∗ (s ·Gm + (1− s) · a · exp(b ·
√
|vm|)), (17)

where a = 7.2e−9, b = 4.7, and Gm = 2.5e−3. s is the state
variable of the memristor. We also evaluate the performance
using the model provided in [27], as follows:

im = I0 · exp(−
s

d0
) · sinh(

vm
v0

), (18)

where d0 = 0.25nm, i0 = 1mA, and v0 = 0.25V . For
this model, the maximum programmable conductance is set
to 10kΩ due to a constraint on s within the model.

The computational accuracy of the analog matrix-vector
multiplication performed by a DPE is evaluated using the
circuit modeling described in Section III. The accuracy is
therefore equivalent to that of SPICE. The parameters (α, g)
or (α, s) are obtained using XMAP as described in Section VI.

Using the outlined setup, we compare XMAP with a naive
linear mapping and the state-of-the-art mapping in [20]. We
evaluate three different versions of XMAP to clearly demon-
strate the benefits from the different optimization techniques.
XMAP+SGD [9] is the flow in Section VI with Algorithm 2
replaced with the steepest gradient descent (SGD) algorithm
in [9]. XMAP-B is the baseline flow of XMAP in Section VI.
XMAP is XMAP-B with the speed-up technique in Sec-
tion VII.

The performance on the DPE level is evaluated in Sec-
tion VIII-A. The capability of XMAP to accelerate signal
compression and the inference of neural networks is evaluated
in Section VIII-B.

A. DPE level evaluation

In this section, we evaluate the XMAP framework on the
DPE level. We first evaluate the optimization of α and g within
XMAP. Next, we compare XMAP with previous works and
perform a sensitivity analysis to different crossbar parameters.

We evaluate the optimization of α using total errors in
Figure 14(a). The figure shows that the gap between the lower
and upper bound on the total errors converges swiftly using

TABLE I
CROSSBAR PARAMETERS USED IN EVALUATION.

Property Value
Array block resistance 2 Ω
Input resistance 100 Ω
Output resistance 100 Ω
Programmable resistance range [2k, 3M ] Ω
Max input voltage 0.25V
Max output current 1.0 mA
ReRAM bit-accuracy 6 bits
DAC/ADC bit-accuracy 8 bits
Transistor model JETMOS v1

the binary search in Algorithm 1. We evaluate the optimization
of g in terms of value range errors in Figure 14(b). The
figure shows that the value range errors quickly converge to
a minimum using Algorithm 2. The smooth optimization of
both parameters demonstrates the effectiveness of XMAP.

(a) (b)

Fig. 14. Optimization of (a) α in Algorithm 1 and (b) g in Algorithm 2.

We compare XMAP with previous work in Figure 15.
The comparison is performed with respect to the objective in
Eq (6), the objective in Eq (10), and run-time. Crossbars with a
differential pair configuration and a dimension of 128x128 are
used for the evaluation. The figure shows that the performance
in terms of errors is similar for the different versions of the
XMAP framework, i.e. optimizing the objective element-wise
and the speed-up techniques do not degrade the performance
in terms of errors. Compared with the mapping in [20] and
linear mapping, the errors in Eq (10) are reduced with 48X
and 1600X, respectively. Therefore, it is not surprising that
the errors in Eq (6) are reduced with 3.29X and 17.10X,
respectively. XMAP is 3.8X and 42X faster than XMAP-B and
XMAP-SGD, respectively. The shorter run-time stems from
the proposed speed-up techniques in Section VII and avoiding

Fig. 15. Comparison of XMAP with the mapping in [20] and linear mapping
in terms of errors in Eq (10), errors in Eq (6), and run-time.
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optimization using steepest gradient descent. Compared with
the mapping in [20] and linear mapping, the XMAP framework
is 173X and 287X slower, respectively. Nevertheless, we deem
the slower run-time acceptable for the improved computational
accuracy. When a single memristor is used per matrix element,
the run-time of XMAP is 0.04 min, 0.4 min, and 7.7 min
for crossbars with dimensions 64x64, 128x128, and 256x256,
respectively. Using a crossbar with differential pair configu-
ration, the run-time is 0.02 min, 0.28 min, and 2.72 min for
64x64, 128x128, and 256x256 crossbars, respectively.

We evaluate the sensitivity of XMAP to the crossbar pa-
rameters in Figure 16. We evaluate the accuracy in terms of
equivalent digital accuracy. The equivalent digital accuracy
is obtained through regression with respect to a fixed-point
multiplier (where the matrix is represented using one to ten
bits). Specifically, the equivalent bit-accuracy is obtained by
performing matrix-vector multiplications using matrices with
different fixed-point precision (between one and ten bits).
Next, we fit a two-term power series to the data using regres-
sion. Next, an error can be translated into an equivalent bit-
accuracy using the power series. Here, we simulated 10, 000
input vectors both when building the model and evaluating the
equivalent bit-accuracy of a mapping scheme. We evaluate the
sensitivity of representing each matrix element using one or
two memristors for different crossbar sizes in Figure 16(a).
The differential pair configuration results in 1-2 bits higher
computational accuracy due to the more flexible value ranges
in Figure 5. The upper bound is seven bits, i.e., two memristors
with six bits each. The figure shows that the equivalent digital
accuracy is gracefully degraded when the dimensions of the
crossbar is scaled-up. It is very promising that the differential
pair configuration improves the digital bit-accuracy with more
than one bit on the average, which validates the effectiveness
of the pair-wise update in Figure 9. The sensitivity to the non-
linear device models with respect to memristors with different
write bit-accuracy in Figure 16(b). The figure shows that the
device model [26] is almost linear up to 8 bits, which is more
than the memristor write bit-accuracy. Using the non-linear
model in [27], it can be observed that the equivalent digital
accuracy saturates at 6.5 bits. The errors are almost negligible
for a write bit-accuracy of 5 bits or lower. The sensitivity to the
wire resistance is evaluated in Figure 16(c). The figure shows
that the computational accuracy is gracefully degraded from
6.3 bits to 2.3 bits when the wire resistance is increased from
0.1Ω to 10Ω. The sensitivity to the minimum programmable
resistance is shown in Figure 16(d). It can be observed that
the computational accuracy is gracefully degraded with the
inverse of the minimum programmable resistance. This stems
from that it is advantageous to have the programmable states in
a more resistive range, as less voltage IR-drop is introduced
over the parasitics. The equivalent accuracy in Figure 16(d)
is slightly higher than expected because we increased the
minimum programmable resistance to 10kΩ due to a constraint
on the maximum current in Eq (18). The smooth trade-
offs across all the evaluated crossbar parameters indicate that
XMAP is in the vicinity of an optimal solution.

(a) (b)

(c) (d)

Fig. 16. Sensitivity of the computational accuracy with respect to various
crossbar parameters. The computational accuracy is measured in terms of
equivalent digital bit-accuracy.

B. Application level evaluation

In this section, we evaluate the impact of XMAP on the
application level performance. The devices are set to be linear
to enable evaluation with reasonable run-times. Crossbars with
a differential pair configuration are used in the evaluation.

1) Signal compression: In this section, we evaluate the
application level performance when a DPE is used to perform
signal compression using 1D-DCT.

The signal compression is performed by first programming
a memristor crossbar with the DCT matrix D [28]. Next,
the signals in Table II are converted from the time domain
to the frequency domain using a matrix-vector multiplication
operation. Decompression is performed using digital hardware
as it is assumed to be performed on a cloud server. The
compression is evaluated by comparing the original signal with
the decompressed signal. The signal quality is evaluated in
terms of mean square error (MSE) and peak signal to noise
ratio (PSNR). The degree of compression is evaluated in terms
of bits per sample (BPS). Definitions of MSE, PSNR, and BPS
are provided in [29].

TABLE II
PROPERTIES OF INPUT SIGNALS.

Id Equation Samples BPS
(num)

1 sin(x) 128 8
2 sin(2x) 128 8
3 sin(2x) + cos(x) 128 8
4 sin(x) + sin(2x) + sin(3x) 128 8
5 sin(2x) + 0.2 sin(x) 128 8

We compare X-MAP and X-MAP+Q with linear mapping
and the state-of-the-art mapping in [20]. In the discussion of
the results, we mainly compare the state-of-the-art algorithm
with XMAP and XMAP-Q (page limit). X-MAP+Q is X-
MAP extended with quantization of the frequency compo-
nents, where the quantization level is configured such that the
degree of compression is better than in [20]. Quantization is
a standard technique within signal and image processing [28].
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For the signal compression, we discard frequency components
such that only 99% of the signal energy is preserved.

The mapping performance is evaluated using errors in
Eq (10) and mapping time in Table III. A 128x256 crossbar is
used for the signal compression. The table shows that XMAP
reduces the total errors with between 59X and 1728X. The
errors reductions come at the expense of longer mapping time.

TABLE III
EVALUATION OF DCT MATRIX MAPPING FOR SIGNAL COMPRESSION.

Method Signal compression
Error Time

in Eq (10) (s)
Linear 7468.2 1.3
In [20] 1240.2 2.7
XMAP 21.1 63.9

The application level performance of the signal compression
is evaluated in Table IV. Compared within [20], it can be
observed that XMAP respectively improves MSE and PSNR
with 2.6X and 4.2X on the average. However, the BPS is 6%
higher when XMAP is used. This may stem from that some
frequency components of small magnitude are more accurately
captured, which requires additional bits. When quantization is
applied, we can observe that XMAP+Q improves both the
signal quality and the degree of compression compared with
the mapping algorithm in [20]. Compared with performing the
compression using a digital ASIC [1], the speed and efficiency
are 3.8X and 64.5X higher, respectively.

TABLE IV
EVALUATION OF SIGNAL COMPRESSION.

Id Method Signal quality Degree of
compression

(MSE) (PSNR) (BPS)
1 Linear 3990.7 -23.9 0.7

In [20] 203.0 2.0 1.4
XMAP 91.3 9.0 1.4

XMAP+Q 144.9 4.9 0.9
2 Linear 4109.1 -24.1 1.7

In [20] 271.2 -0.5 1.5
XMAP 82.5 9.8 1.6

XMAP+Q 150.2 4.6 1.1
3 Linear 4173.0 -24.2 0.8

In [20] 214.6 1.5 1.4
XMAP 77.2 10.4 1.5

XMAP+Q 130.4 5.9 1.0
4 Linear 1888.9 -17.4 2.3

In [20] 127.6 6.0 2.7
XMAP 39.7 16.2 2.8

XMAP+Q 219.8 1.3 1.2
5 Linear 3233.4 -22.0 0.9

In [20] 166.8 3.7 1.5
XMAP 92.5 8.8 1.5

XMAP+Q 141.7 5.1 1.0
Norm. Linear 17.69 -8.71 0.78

In [20] 1.00 1.00 1.00
XMAP 0.39 4.23 1.06

XMAP+Q 0.80 1.71 0.61

2) Neural network inference: In this section, we evaluate
the application level performance when DPEs are used to ac-
celerate the inference of five different neural networks. Three
multilayer perception (MLP) networks and two convolutional

neural networks (CNNs) with a VGG structure are trained
in software on the MNIST and CIFAR-10 datasets using
TensorFlow, respectively. An overview of the properties of
the different networks is shown in Table V. The software
classification accuracy is the probability of an input being
correctly classified. The MLPs only consists of fully-connected
(FC) layers and the CNNs consists of convolution (Conv)
layers, FC layers, max pooling layers, and normalization
layers. The number after MLP or VGG indicates the number
of layers of neurons.

TABLE V
PROPERTIES OF EVALUATED NEURAL NETWORKS.

Name Dataset Software #Conv. #FC #Max #Norm #Train.
accuracy layers layers pooling layers params

(%) layers (M)
MLP-3 MNIST 98.25 0 2 0 0 0.4
MLP-4 MNIST 98.35 0 3 0 0 0.5
MLP-5 MNIST 98.41 0 4 0 0 0.6
VGG-7 CIFAR-10 85.94 4 2 2 6 2.2

VGG-13 CIFAR-10 93.26 10 2 5 12 9.7

Next, we map the neural networks to a crossbar based
platform using XMAP to evaluate the classification accuracy
in hardware. Each FC and Conv layer can be formulated as a
MVM operation. The dimensions of the matrices are shown
in Table VI. We use the kernel to crossbar decomposition
described in [30] to map each FC layer or Conv layer to one or
multiple crossbars. If a weight matrix is smaller than 128x128,
smaller crossbars are used to save power [14]. If a weight
matrix is larger than 128x128, the weight matrix is partitioned
to multiple crossbars of size 128x128. Next, XMAP is used to
map each weight matrix to each crossbar. Note that the results
from the separate crossbars are summed using adders in the
digital domain.

The mapping algorithms are compared on the application
level in Table VII. The comparison is performed using the
total errors in Eq (10), classification accuracy, and mapping
time, which are reported in the columns labeled ‘Total errors’,
‘Mapping time’, and ‘Classification accuracy’, respectively.
The classification accuracy is shown both with and without
the errors introduced by the 8-bit DACs and ADCs. For each
network, the software classification accuracy is shown using
a row labeled ‘Software’. We compare XMAP with linear
mapping and the state-of-the-art mapping in [20].

Linear mapping performs poorly for all the neural networks.
The mapping algorithm in [20] attains close to software
level accuracy on the MLPs trained on the MNIST data set.
However, there is a 12.2% and 10.4% loss in accuracy on
CIFAR-10 using CNN-7 and CNN-13, respectively. The run-
time is less than half an hour for all networks. Compared
with the mapping in [20], XMAP achieves 98% of software
level accuracy on the average. There is 7.7% accuracy loss
for CNN-7 on CIFAR-10. The accuracy improvements are
not surprising because the total errors are 75X smaller on
the average. The improved accuracy comes at the expense of
longer mapping times. Nevertheless, the mapping time is less
than 12.1 hours for all networks. Compared with a digital
approach [1], all data movement is eliminated and 256x256
crossbars have respectively 500X and 4X higher speed and
power than digital ASICs.
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TABLE VI
DIMENSIONS OF THE WEIGHT MATRICES IN THE EVALUATED NEURAL NETWORKS.

Name Layer
1 2 3 4 5 6 7 8 9 10 11 12

MLP-3 784x500 500x10 ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’
MLP-4 784x500 500x300 300x10 ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’
MLP-5 784x500 500x300 300x200 200x10 ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’
VGG-7 27x32 288x32 288x64 576x64 2304x512 512x10 ‘-’ ‘-’ ‘-’ ‘-’ ‘-’ ‘-’

VGG-13 27x64 576x64 576x128 1152x128 1152x256 2304x256 2304x512 4608x512 4608x512 4608x512 512x512 512x10

TABLE VII
EVALUATION OF NEURAL NETWORK INFERENCE.

Network Method Error Mapping Classification accuracy
in Eq (10) time analog +DAC/ADC

(h) (%) (%)
MLP-3 Software ’-’ ’-’ 98.2 98.2

Linear 18726 0.0 8.9 8.9
In [20] 959 0.0 98.2 98.2
XMAP 229 1.3 97.9 98.0

MLP-4 Software ’-’ ’-’ 98.2 98.2
Linear 24033 0.0 8.9 8.9
In [20] 1422 0.0 98.2 98.2
XMAP 264 1.4 98.4 98.4

MLP-5 Software ’-’ ’-’ 98.5 98.5
Linear 38638 0.0 8.9 8.9
In [20] 2533 0.1 98.1 98.1
XMAP 388 1.9 98.5 98.5

CNN-7 Software ’-’ ’-’ 82.8 82.8
Linear 39873 0.1 9.0 9.0
In [20] 1636 0.1 71.3 70.6
XMAP 907 2.1 75.9 75.1

CNN-13 Software ’-’ ’-’ 92.5 92.5
Linear 189650 0.2 11.2 11.2
In [20] 8803 0.4 81.9 82.1
XMAP 3222 12.1 92.1 92.0

Norm. Software ’-’ ’-’ 1.00 1.00
Linear 75.07 0.02 0.10 0.10
In [20] 4.13 0.03 0.95 0.95
XMAP 1.00 1.00 0.98 0.98

IX. SUMMARY AND FUTURE WORK

In this paper, we have proposed XMAP for mapping
arbitrary matrices to memristor crossbar arrays. Compared
with the state-of-the-art mapping algorithm, the accuracy is
improved with up to 3.29X, which translates into application
level performance improvements. In the future, we plan to
extend XMAP to handle larger crossbars, resistance drift,
device aging, device-to-device variations, and stuck-at-fault
defects. The main challenge is to further scale-up the crossbar
dimensions without severely elongating mapping time.
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