
1

COMPACT: Flow-Based Computing on Nanoscale
Crossbars with Minimal Semiperimeter and

Maximum Dimension
Sven Thijssen1, Sumit Kumar Jha2, and Rickard Ewetz3

1,2Department of Computer Science, 3Department of Electrical and Computer Engineering
1,3University of Central Florida, Orlando, USA, 2University of Texas at San Antonio, San Antonio, USA

sven.thijssen@knights.ucf.edu, sumit.jha@utsa.edu, rickard.ewetz@ucf.edu

Abstract—In-memory computing is a promising solution strat-
egy for data-intensive applications to circumvent the von Neu-
mann bottleneck. Flow-based computing is the concept of per-
forming in-memory computing using sneak paths in nanoscale
crossbar arrays. The limitation of previous work is that the
resulting crossbar representations have large size. In this paper,
we present a framework called COMPACT for mapping Boolean
functions to crossbar representations with minimal semiperime-
ter (the number of wordlines plus bitlines) and/or maximum
dimension (the maximum of the wordlines or bitlines). The
COMPACT framework is based on an analogy between binary
decision diagrams (BDDs) and nanoscale memristor crossbar
arrays. More specifically, nodes and edges in a BDD correspond
to wordlines/bitlines and memristors in a crossbar array, re-
spectively. The relation enables a Boolean function represented
by a BDD with n nodes and an odd cycle transversal of size
k to be mapped to a crossbar with a semiperimeter of n+k.
The k extra wordlines/bitlines are introduced due to crossbar
connection constraints, i.e. wordlines (bitlines) cannot directly
be connected to wordlines (bitlines). Moreover, there exists a
trade-off between the semiperimeter and maximum dimension.
Consequently, COMPACT can sometimes reduce the maximum
dimension by slightly increasing the length of the semiperimeter.
We also extend COMPACT to handle multi-output functions
using shared binary decision diagrams (SBDDs) and alignment
constraints on the inputs and outputs. Compared with the state-
of-the-art mapping technique, the semiperimeter and maximum
dimension are reduced with 55% and 85%, respectively. The area,
power consumption, and computation delay are reduced with
89%, 19%, 56%, respectively.

Index Terms—flow-based, in-memory, computing, memristor,
crossbar, synthesis

I. INTRODUCTION

Many modern computer architectures are based on the
concepts defined in First draft of a report on the EDVAC by
von Neumann [1]. These computer architectures suffer from
the von Neumann bottleneck. This bottleneck is an inevitable
consequence of the data transfer between separated memory
units and processing units [2]. The in-memory computing
paradigm aims to solve this bottleneck by unifying memory
storage and computation.

In 1971, L. Chua introduced a new circuit element, which he
called memristor [3]. In 2008, Hewlett Packard Laboratories
was the first to finally develop a physical model of this fourth

This work was in part supported by NSF awards CCF-1755825,
CNS-1908471, and CCF-1822976.

fundamental circuit element [4]. This led to the development of
new computing paradigms using memristors, such as material-
based implication logic (IMPLY) [5], memory-aided logic
(MAGIC) [6] and flow-based computing [7]. Each of these
approaches have their respective strengths and weaknesses.
For IMPLY-based logic, a major drawback is the number of
complex computational steps required to synthesize a Boolean
function [8], [9]. More specifically, parallelism is inherently
limited for IMPLY-based logic, resulting in long, sequential
executions of a Boolean function. IMPLY logic is a non-
stateful logic, which entails that intermediate evaluations de-
pend upon previous intermediate evaluations, resulting in an
almost sequential evaluation. On the other hand, the paral-
lelism within the MAGIC-style is fundamentally limited [10].
MAGIC relies on NOR operations to evaluate a Boolean
function. Also here, the stateful logic requires consecutive
intermediate evaluations. This dependency also results in long
sequential evaluations.

The flow-based computing paradigm is based on taking
advantage of the natural flow of electrical current. By pro-
gramming the resistance of memristors in a crossbar based
on Boolean variables, Boolean functions can be evaluated by
applying a high potential to the bottom most wordline and
measuring the output current from a predefined wordline. The
function evaluates to true if and only if there exists at least one
path from the input to the output containing only memristors
in the low resistive state.

Flow-based computing has been explored based on negation
normal form (NNF) [7], disjunctive normal form (DNF),
conjunctive normal form (CNF) [11], simulated annealing [12]
and satisfiability modulo theories (SMT) [13]. Unfortunately,
these initial methods were computationally expensive or re-
sulted in crossbar representations with large size. More specif-
ically, the work in [14] is only capable of synthesizing 1-bit
adders, and the work in [15] results in large crossbar designs.
To overcome these shortcomings, recent studies are based
on mapping binary decision diagrams (BDDs) to crossbars
using inductive staircase structures. The mapping of BDDs
in the form of reduced ordered binary decision diagrams
(ROBDD) and free binary decision diagrams (FBDD) has
been explored [16], [17], [18], [19]. The staircase structures
span from the bottom-left corner to the top-right corner of the
crossbar. These inductive techniques are promising because

2

both the number of rows and columns can be proved to
grow linearly with the number of nodes in the BDD [16].
In particular, the dimensions of the nanoscale crossbar is
upper bounded by 3n by n [16], where n is the number
of nodes in the BDD. Fortunately, it can be observed that
the crossbar representations have a dimension of closer to n
by n in practice. Nevertheless, some rather simple Boolean
functions still result in crossbars with excessive size. The
size of a crossbar representation is measured in terms of the
semiperimeter (the number of wordlines plus bitlines) and
maximum dimension (the maximum of the number of word-
lines and bitlines). In [18] C code is compiled into BDDs using
the LLVM compiler and crossbars designs are subsequently
constructed using the automated synthesis method in [16].

In this paper, we propose a framework called COMPACT
for mapping BDDs into minimal crossbar representations.
COMPACT minimizes the weighted sum of the crossbar
semiperimeter and maximum dimension. The framework is
based on an analogy between BDDs and nanoscale memristor
crossbars. More specifically, nodes and edges in a BDD
correspond to wordlines/bitlines and memristors in a crossbar,
respectively. The relation enables a BDD with n nodes and
an odd cycle transversal of size k to be mapped into a
crossbar representation with a semiperimeter of n+k. There
exists a trade-off between the semiperimeter and the maximum
dimension. Consequently, the maximum crossbar dimension
can sometimes be reduced by increasing the length of the
semiperimeter.

COMPACT determines minimal crossbar representations by
viewing the BDD as a graph and formulating a node labeling
problem, called the VH-labeling problem. The node labeling
problem defines if a node in the BDD is mapped to a wordline,
a bitline, or both a wordline and a bitline. In this paper, we
introduce two methods for solving the node labeling problem.
In the first method, the semiperimeter is minimized by casting
the problem to an odd cycle transversal problem that can be
solved using a minimum vertex cover. In the second method,
we build upon the theoretical understanding we have gained
from the first approach to minimize the weighted sum of
the semiperimeter and the maximum dimension, which is
performed using a MIP formulation.

For multi-input multi-output functions, COMPACT can be
directly applied to shared binary decision diagrams (SBDDs)
instead of multiple separate single-output BDDs, which further
improves the crossbar size. COMPACT is also capable of
aligning the function outputs on the crossbar representation.
Compared with previous works on flow-based computing, the
experimental results show that the semiperimeter, maximum
dimension, and area is reduced by 55%, 85% and 89% on
average, respectively. Furthermore, power consumption and
computation delay are reduced by 19% and 56% on the aver-
age. Compared with CONTRA, the state-of-the-art framework
for MAGIC-based in-memory computing, COMPACT reduces
power consumption and computation delay by 55% and 87%
on the average for the EPFL control benchmarks.

The remainder of the paper is organized, as follows: back-
ground in Section II and problem formulation in Section III.
The BDD-crossbar analogy is given in Section IV. The COM-

PACT framework for single-output functions is introduced in
Section V. In Section VI, the two methods for solving the VH-
labeling problem are proposed. The COMPACT framework is
extended to multi-output functions in Section VII. The paper
is concluded with experimental results in Section VIII.

II. BACKGROUND

A. Binary decision diagrams

A BDD is a graph representation of a Boolean function.
The internal nodes are Boolean variables and the leaf nodes
are either ‘0’ or ‘1’. A BDD is evaluated by traversing the
nodes along a path from the root node to a leaf node. At
each internal node of the BDD, depending on the value
of the Boolean variable, one must decide which path to
follow to evaluate an instance [20]. ROBDDs and FBDDs are
extensions of BDDs for multi-input single-output functions
that are optimized to minimize number of nodes and edges.
BDDs can be extended to multi-input multi-output functions
using shared binary decision diagrams (SBDDs). In SBDDs,
multiple ROBDDs are merged together [21].

B. Nanoscale memristor crossbars

A memristor crossbar is a two-dimensional array consisting
of two layers of nanowires. The horizontal nanowires are
wordlines and the vertical nanowires are bitlines. Each layer
is a set of parallel nanowires with each layer being perpen-
dicular to one another. A memristor connects one layer with
another at the intersections of the perpendicular nanowires [7].
Memristors with high endurance and fast switching speed have
been demonstrated for memory applications [22]. A major
concern for memory applications is the occurrence of currents
on sneak paths, which reduces the effective write voltage [22].
In contrast, flow-based computing is based on leveraging the
sneak paths to perform computation.

A nanoscale crossbar can have a matrix representation or
a graph representation. More precisely, a nanoscale crossbar
of N rows and M columns can be represented by a complete
bipartite graph KM,N . In Figure 1(a), a matrix representation
is given for a nanoscale crossbar of dimension 4 by 4, and in
Figure 1(b) its corresponding bipartite graph is given.

(a) Matrix representation (b) Bipartite graph

Fig. 1. Representations of nanoscale crossbars

C. Flow-based in-memory computing

Flow-based computing is based on evaluating Boolean func-
tions using the sneak currents that naturally occur in nanoscale

3

(a) Verilog code (b) ROBDD (c) Crossbar design D (d) Crossbar instance I (e) Evaluation f = 1

Fig. 2. Overview of the flow-based computing paradigm

crossbars. Computing within the paradigm is performed using
a one-time costly initialization phase and an efficient and fast
evaluation phase, which is illustrated in Figure 2.

In the initialization phase, a Boolean function f is converted
into a crossbar representation D. The Boolean function f
is specified using a Verilog, BLIF or PLA file. A Boolean
function f = (a∧b)∨c is shown in Figure 2(a). Next, a BDD
representation of f is constructed using ABC/CUDD [23],
which is shown in Figure 2(b). Previous work mainly utilized
BDDs in the form of ROBDDs [16]. The next step is to
map the BDD into a crossbar representation D. This involves
assigning each memristor in the crossbar to logical ‘0’ or ‘1’
or a Boolean variable {a,b,c} or the negation of a Boolean
variable {¬a,¬b,¬c}. An input port and an output port are
also assigned to the crossbar. A crossbar representation that
realizes the BDD in Figure 2(b) is shown in Figure 2(c).

In the evaluation phase, the Boolean function is evaluated
using the crossbar representation and an instance of the
Boolean variables. The first step is to program the memristors
in the crossbar based on the instance of the Boolean variables.
Memristors in the crossbar are programmed to have low (high)
resistance if the assigned logic expression is true (false). In the
example, the crossbar instantiation for a = 1, b = 1 and c = 0
is shown in Figure 2(d). Next, an input voltage Vin is applied
to the bottom most wordline and f is evaluated by measuring
the output voltage Vout across a sensing resistor, which is
connected to ground. In the example, it can be observed that
there exists a path from the input to the output that only
contains memristors with low resistance. Therefore, the output
voltage is high and the Boolean function f evaluates to true,
which is shown in Figure 2(e).

III. PROBLEM FORMULATION

The COMPACT framework aims to design a valid crossbar
representation D for a Boolean function φ. A crossbar rep-
resentation D is a valid representation of a Boolean function
φ if and only if for every instance of the Boolean variables,
there exists a path from the input to the output using only
memristors in the low resistive state when φ evaluates to true.
We propose to find valid crossbar designs that minimize the
following objective:

γS + (1− γ)D, (1)

where γ is a user-defined parameter within [0, 1]. S and D
are semiperimeter and maximum dimension of the crossbar
design, respectively. The parameter γ is to balance the two
terms in the objective. The maximum dimension D is defined
as max(R,C) where R is the number of rows (wordlines),
and C is the number of columns (bitlines). Similarly, S is
defined to be equal to R + C. There are two special cases
for the parameter γ. If γ is equal to one, the semiperimeter
is minimized without regard to the maximum dimension D.
When γ is equal to zero, then the maximum dimension is
minimized without regard to the semiperimeter.

The motivation for including the semiperimeter S in the
objective is to synthesize crossbars as small as possible. The
motivation for including the maximum dimension D is that
manufactured crossbars tend to be square [24].

We further introduce constraints for the alignment of the in-
puts and outputs. In flow-based computing, the inputs and the
outputs are assigned to wordlines. More specifically, the input
is assigned to the bottom-most nanowire and the output(s) are
assignment to the top-most nanowire(s).

Note that it is trivial to modify our problem formulation and
COMPACT to handle specified constraints on the rows and
columns. For such problem formulations, COMPACT would
generate a valid design D or return that the specified design
constraints are infeasible.

IV. ANALOGY BETWEEN BDDS AND CROSSBARS

The COMPACT framework in this paper is based on the
observation that an analogy exists between BDDs and mem-
ristor crossbars. More specifically, the nodes and edges within
a BDD correspond to the bitlines/wordlines and memristors in
a crossbar, respectively. Theoretically, a BDD with n nodes
can be mapped to a crossbar with a semiperimeter of n.
However, a memristor crossbar places inherent constraints
on the connections realized by the memristors; wordlines
cannot be connected directly to wordlines and bitlines cannot
be connected directly to bitlines. Therefore, extra hardware
resources (intermediate bitlines or wordlines) are needed to
realize such connections. One way to circumvent the connec-
tion constraint problem is to map each node to both a wordline
and a bitline. However, this leads to a crossbar representation
with a semiperimeter of 2n. The COMPACT framework aims

4

to find smaller crossbar designs by mapping as few nodes
as possible to both wordlines and bitlines while resolving
the connection constraints. In fact, COMPACT is capable of
assigning the fewest possible BDD nodes to both wordlines
and bitlines, which results in crossbar representations with
minimal semiperimeter. On the other hand, the crossbar design
with minimal semiperimeter may be highly unbalanced. We
observe that it may be necessary to resolve the connection
constraints using additional hardware (bitlines/wordlines) to
find more square-like crossbar designs.

V. THE COMPACT FRAMEWORK

The flow of the COMPACT framework is shown in Figure 3
and illustrated with an example in Figure 4. The input to the
framework is a Boolean multi-input single-output function rep-
resented using a ROBDD, which is illustrated in Figure 4(a).
The output of the framework is a crossbar representation D
of the Boolean function. COMPACT is extended to multi-
input multi-output functions with alignment constraints in
Section VII.

The main steps of COMPACT are graph pre-processing,
VH-labeling and crossbar mapping. In the graph pre-
processing step, the BDD is converted into a graph repre-
sentation. In the VH-labeling step, each node in the graph
is assigned a label V , H or V H , indicating if they will be
mapped to a vertical bitline (V), horizontal wordline (H),
or both a vertical bitline and a horizontal wordline (V H).
The labels V H are introduced to handle the connection
constraints imposed by the nanoscale crossbar. In the
crossbar mapping step, nodes in the graph are bound to specific
wordlines/bitlines according to the assigned labels. The edges
in the graph are correspondingly assigned to memristors in the
crossbar.

Fig. 3. Overview of the COMPACT framework

A. Graph pre-processing

In this section, the input BDD is converted into an undi-
rected graph G. This is performed by first removing ter-
minal node ‘0’ and its incoming edges. The zero can be
removed because flow-based computing aims to only capture
the ‘1’ output. Finally, the graph representation is obtained
by mapping each node/edge in the BDD to an node/edge in
an undirected graph. The resulting graph G of the BDD in
Figure 4(a) is shown in Figure 4(b).

Fig. 4. Example of the COMPACT framework

B. VH-labeling

The input to the VH-labeling step is the undirected graph
G. The step involves assigning a label V , H , or V H to
each node in the graph. The labeled graph G is illustrated
in Figure 4(c). The labels are introduced to ensure that all
edges in the graph can later be realized using a memristor
in the subsequent crossbar mapping step, i.e., preemptively
handling the connection constraints. The labeling solution
directly defines both the semiperimeter S and the maximum
dimension D. In this section, we define the VH-labeling
problem as an mathematical optimization problem. Next, we
provide two solutions to solving the VH-labeling problem in
Section VI.

The VH-labeling problem: Let G = (U,E) be the
undirected graph, where U is a set of vertices and E is a
set of edges E, serving as input to the VH-labeling step. The
VH-labeling problem consists of assigning a label {V ,H ,V H}
to each node in the graph such that the connection constraints
are satisfied. First, we introduce an objective that minimizes
the semiperimeter S by minimizing the number of V H labels.
Next, we provide a solution to minimize the weighted sum of
the semiperimeter S and the maximum dimension D.

We formally define the VH-labeling problem for minimizing
the semiperimeter S as follows:

min | {v | v = L−1(V H)} |
s.t. ¬(L(u) = V ∧ L(v) = V), (u, v) ∈ E (2)

¬(L(u) = H ∧ L(v) = H), (u, v) ∈ E

where u and v are vertices in U . L : U → {V,H, V H} is the
label given to node v.

The objective directly minimizes the number of V H labels,
which explicitly defines the semiperimeter S of the resulting
crossbar representation. The semiperimeter is equal to n+k
if the graph has n nodes and k V H labels. The area is
implicitly optimized by minimizing the semiperimeter. The
two constraints ensure that no adjacent nodes in the graph G
are assigned (V ,V) or (H ,H) labels, as it would be impossible
to connect the corresponding bitlines or wordlines using a
memristor.

5

For the second method, the weighted objective of both the
semiperimeter S and the maximum dimension D is minimized.
The weighted objective is rewritten across multiple lines for
clarity. The constraints are the same as in Eq 2.

min γS + (1− γD)

S = | {v | v = L−1(V H)} |,
D = max(R,C), (3)

R = | {v | v = L−1(H) ∨ v = L−1(V H)} |,
C = | {v | v = L−1(V) ∨ v = L−1(V H)} |,

C. Crossbar mapping

In the crossbar mapping step, we bind the graph G to a
crossbar representation D according to the assigned labels,
which ensures that the connection constraints can be satisfied.

The mapping is performed by using a node assignment step
and an edge assignment step. In the node assignment step, each
node in the graph is assigned to a bitline, wordline, or both
a bitline and a wordline according to the label in the graph,
i.e., nodes labeled V (H) are assigned to bitlines (wordlines).
Nodes labeled V H are assigned to both a bitline and a
wordline. However, these wordlines and bitlines are supposed
to be connected. Therefore, we also program the memristor
in the intersection of the corresponding wordline and bitline
to have low resistance or ‘1’. The crossbar representation
following the node assignment step is shown in Figure 4(d).

In the edge assignment step, each edge in the graph is
mapped to a memristor in the crossbar such that it connects
the bitlines and wordlines that correspond to the nodes in
the graph. Following the node assignment step, the edge
assignment step maps the variables and their negations onto the
crossbar representation, as shown in Figure 4(e). The output
is a crossbar design D for a Boolean function φ using the
COMPACT framework.

VI. SOLVING THE VH-LABELING PROBLEM

In Section VI-A, we solve the VH-labeling problem while
minimizing the semiperimeter based on Eq 2. In Section VI-B,
we solve the VH-labeling problem while minimizing the
weighted objective based on Eq 3. The first solution method
provides an intuitive approach to solve the VH-problem using
graph theory. The second approach leverages the theoretical
insights of the first approach and solves the problem using a
MIP formulation.

A. Minimal semiperimeter

In this section, we provide an optimal algorithm to solve the
VH-labeling problem, which results in crossbar representations
with the minimal semiperimeter. Next, we provide the proof
of correctness.

Fig. 5. Example of the VH-labeling for a minimal semiperimeter

1) The algorithm: If G is bipartite, it is trivial to determine
an optimal solution to Eq 2 using 2-coloring. The colors would
be the labels V and H . If G is not bipartite, no 2-coloring
exists [25]. Hence, not every pair of adjacent nodes can be
given a label V and H . Consequently, a V H label must be
assigned to at least one node. A necessary condition for a
graph to be bipartite is that it does not contain an odd-length
cycle [25].

Our optimal solution to the VH-labeling problem lies in
the observation that solving Eq 2 is equivalent to finding the
largest induced bipartite subgraph GB of the graph G. The
nodes in G that are not part of GB are the nodes labeled V H .
The nodes in GB can trivially be labeled V and H using
2-coloring. Moreover, finding the largest induced bipartite
subgraph is equivalent to the odd-cycle transversal problem.

Definition 1 (Odd Cycle Transversal). The odd cycle transver-
sal (OCT) of an undirected graph G = (V,E) is a set X ⊆ V ,
|X| ≤ k, such that V −X is a bipartite graph [26].

We use lemma 1 to find such odd cycle transversal for G.

Lemma 1. A graph G = (V,E) with |V | = n has an odd
cycle transversal X , |X| ≤ k, if and only if P = G�K2 has
a vertex cover V C(P) such that |V C(P)| ≤ n+ k [26].

We leverage this solution method to finding a minimum
vertex cover of P and thus to finding a smallest odd cycle
transversal of G. Graph G. In Figure 5(b), we show the graph
P = G�K2, i.e. the Cartesian product of G in Figure 5(a) with
K2. K2 is a graph with two nodes connected by an edge. The
resulting graph P contains two duplicates of graph G. Above
this, a node’s two duplicates are connected by an edge. If the
nodes in K2 are given a name 0 and 1, then the name of a
node in P is the concatenation of the node’s respective name
in G and either 0 or 1. For example, node a in graph G is
duplicated in two nodes, a0 and a1 in graph P . A vertex cover
W = V C(G) for a graph G = (U,E) is a set of nodes W ⊆ U
such that for each edge e = (u, v) ∈ E at least one node u or

6

v is in W . The minimum vertex cover problem can be solved
using integer linear programming (ILP) [27]. The minimum
vertex cover of P in Figure 5(b) is shown in Figure 5(c).
If both products v0 and v1 of a node v are present in the
vertex cover W , then v belongs to the odd cycle transversal
X of G. It can be observed that both b0 and b1 belong to the
vertex cover in Figure 5(d), which results in that the node is
part of the OCT and is labeled V H in Figure 5(e). Finally,
the largest induced bipartite subgraph GB is obtained by only
considering the nodes in G which are not labeled V H . The
labeling of GB is performed using traditional 2-coloring, as
shown in Figure 5(f).

2) The proof: The COMPACT framework is based on the
analogy between a nanoscale crossbar and a BDD. Given that
a crossbar is a bipartite graph where the nanowires correspond
to the nodes in the undirected graph G of the BDD, and given
that the memristors correspond to the edges in the undirected
graph G of the BDD, the framework finds the largest induced
bipartite subgraph GB of G. The nodes in GB are labeled
using a 2-coloring. Each color corresponds to a label V or
H, denoting whether the node will be assigned to a vertical
nanowire or a horizontal nanowire, respectively. Nodes outside
GB belong to an odd cycle transversal X of the undirected
graph G.

The nodes belonging to the OCT X are given a label
VH and are consequently mapped to both a horizontal and a
vertical nanowire. Since the ILP formulation in Eq 2 results in
the smallest odd cycle transversal X using a minimum vertex
cover, then by definition the number of nodes labeled VH is
minimal. This completes the proof.

�

B. Weighted objective

In the following sections, we discuss solving the VH-
labeling problem with the weighted objective. In the Sec-
tion VI-B1, we introduce a MIP formulation for solving Eq 3.
In Section VI-B2, we analyze why the MIP formulation is
capable of finding crossbar designs with smaller maximum
dimension.

1) The MIP formulation: In this section, we provide a MIP
formulation to solve the VH-labeling problem in Eq 3. For
each node i ∈ U , we introduce variables xVi and xHi . When
xVi = 1, then the node will be mapped vertically (bitline).
When xHi = 1, then the node will be mapped horizontally
(wordline). When both xVi = 1 and xHi = 1, then the node
will be mapped both vertically and horizontally. Next, the MIP
problem is formulated, as follows:

min γS + (1− γ)D

s.t. S =
∑
i∈U

xVi + xHi

R =
∑
i∈U

xVi ,

C =
∑
i∈U

xHi , (4)

D ≥ R,
D ≥ C,
xVi + xHj ≥ 2− 2xij , ∀(i, j) ∈ E
xHi + xVj ≥ 2− 2(1− xij), ∀(i, j) ∈ E

where xVi , x
H
i ∈ {0, 1}, ∀i ∈ U , γ ∈ [0, 1], S ∈ N, D ∈ N,

and U is the set of nodes for the undirected graph G. xij ∈
{0, 1} is a binary helper variable for each edge (i, j) ∈ E.

The objective in Eq 4 directly minimizes the objective in
Eq 2 and Eq 3. The first five constraints in Eq 4 are used to
define S and D based on the variables xVi and xHi . The last
two constraints are used to handle the the constraints in Eq 2
(connection constraints). Now we elaborate further on these
two constraints.

The main idea is that the connection between node i and
node j for an edge (i, j) must be either an V-H or an H-V
connection. The helper variable xij specifies if the connection
is of type V-H or H-V. Basically, xij will select to activate
one of the following two constraints:

xVi + xHj ≥ 2 (5)

xHi + xVj ≥ 2 (6)

2) Analysis of MIP formulation: In Section VI-A, we have
introduced an algorithm for constructing crossbar designs
with minimal semiperimeter. However, the resulting crossbar
designs may be highly unbalanced (rectangular). Below, we
discuss two cases for which the maximum dimension can
be reduced using the MIP formulation. In the first case,
the maximum dimension is reduced without increasing the
semiperimeter. In the second case, the maximum dimension
is reduced while increasing the length of the semiperimeter.

In the first case, we observe that the 2-coloring solution
of the induced bipartite subgraph GB may not be unique.
Consequently, different 2-coloring solutions for GB may result
in different maximum dimension but the same semiperimeter,
which is illustrated with an example in Figure 6. If we remove
the V H-node in Figure 6(a) and Figure 6(b), then we obtain
two components in GB . One possible 2-coloring solution is
shown in Figure 6(a). The solution results in a semiperimeter
S of seven and a maximum dimension D of five. However,
we can relabel the top node from V to H , as illustrated
in Figure 6(b). The resulting VH-labeling results in a more
balanced solution with a semiperimeter S of seven but a
maximum dimension of only four. In general, there exists
an opportunity to reduce the maximum dimension when the
induced subgraph GB has two or more components. The MIP
formulation is capable of finding the most balanced 2-coloring
solution, which minimizes the maximum dimension.

7

(a) |S| = 7 and |D| = 5 (b) |S| = 7 and |D| = 4

Fig. 6. Unbalanced design to more balanced design by changing the 2-
coloring

In the second case, we label additional nodes with V H
such that we obtain a new, but smaller induced bipartite
subgraph GB . Remember from Eq 2 that the number of V H-
nodes directly determines the semiperimeter. Thus, increasing
the number of V H-nodes increases the semiperimeter. On
the other hand, the smaller induced subgraph may provide
opportunities to find VH-labeling solutions with an more
even distribution of V and H labels. In Figure 7(a), the
semiperimeter S = 16 and the maximum dimension D = 10.
In Figure 7(b), both the root node and the terminal node are
labeled with V H , such that we obtain a crossbar design with
semiperimeter S = 18 and maximum dimension D = 9.
Indeed, we have increased the semiperimeter S with the reward
of finding a design with smaller maximum dimension D. The
MIP formulation is intrinsically capable of performing this
type of optimization.

(a) S = 16 and D = 10 (b) S = 18 and D = 9

Fig. 7. Unbalanced design to balanced design by adding V H-nodes

C. Scalability

Finding an odd cycle transversal is NP-hard [28], [29]. Even
though ILP solvers, such as CPLEX [30], are backed by years
of research and are capable of solving complex problems in
reasonable amount of time, it can be a hard task to find
an optimal solution and to prove that the found solution is
optimal. Finding an integer solution is even more challenging
than finding a non-integer solution to the problem. Many ILP
solvers allow the user to define a time limit for the task at
hand. The solver will then return the best integer solution it has
found and the best bound (non-integer solution). The relative
gap is a measure of how good the integer solution is compared
with the best bound. When the best integer solution and best
bound converge, the ILP solver has found an optimal solution.
Using the ILP formulation, one can always find a feasible
solution: the trivial solution where all nodes are labeled V H .
Of course, one is usually interested in alternative solutions
with better properties.

VII. EXTENSION TO FUNCTIONS WITH MULTIPLE OUTPUTS

In Section VII-A, we will extend COMPACT from single-
output functions to multi-output functions. A multi-output
function can be represented by multiple ROBDDs or a single
SBDD. In Section VII-B, additional constraints are introduced
for the alignment of the inputs and the outputs.

A. Multiple ROBDDs vs single SBDDs

Previous work on flow-based computing for multi-input
multi-output functions relied on splitting the function into
many multi-input single-output functions. Next, each multi-
input single-output function was converted into a ROBDD,
merged by its terminal node 1 and mapped ta crossbar de-
sign. These individual crossbar designs are aligned along the
diagonal, as illustrated in Figure 8(a). We observe that we can
also directly convert the multi-input multi-output function into
a SBDD [21], as illustrated in Figure 8(b). Next, the single
SBDD can directly be mapped into a crossbar design. This
may result in smaller crossbar designs as some parts of the
single-output BDDs can be shared across multiple outputs.

(a) ROBDD (b) SBDD

Fig. 8. Multiple ROBDDs versus a single SBDD
We observe that in Figure 8 that the outputs are placed

on any wordline. However, for flow-based computing, these
wordlines will be permuted with the top-most nanowires.
Also, the bottom-most wordlines of each sub-crossbar for each
Boolean function will be placed to the bottom-most wordline
through permutation.

B. Alignment of inputs and outputs

Flow-based computing relies on sensing resistors connected
to wordlines. This requires each output of a multi-input multi-
output function to be mapped to a wordline. Above this,
leaf nodes of the SBDD will be mapped to the bottom-most

8

wordline. These requirements can be met by adding new
constraints to the MIP formulation.

Let T ⊆ U denote the set of terminal nodes and let R ⊆ U
denote the set of root nodes. For BDDs, T = {1}. Then we
can add the following two constraints:

xHi = 1, ∀i ∈ R
xHi = 1, ∀i ∈ T (7)

The first and second constraint in Eq 7 force the root nodes
and the terminal nodes, respectively, to be given at least a
label H . This entails that the root nodes and terminal nodes
can be mapped either horizontally when xVi is set to zero, or
vertically, when xVi is also set to one.

VIII. EXPERIMENTAL EVALUATION

The COMPACT framework is implemented in Python and
the experiments have been conducted on a machine with
an Intel Core i9-9900X processor at 3.50GHz, 125GB of
RAM memory, and Ubuntu 20.04 as operating system. We
evaluate the effectiveness of the COMPACT framework using
nine circuits of the ISCAS85 benchmark suite [31] and eight
circuits of the EPFL control benchmarks [32]. A summary of
the properties of the circuits is shown in Table I. The source
code is publicly available on GitHub1.

We evaluate COMPACT in terms of hardware utilization,
power consumption, computation delay, and synthesis time.
The alignment constraints are included by default. Hardware
utilization is evaluated in terms of the crossbar dimensions,
i.e. in terms of rows, columns, semiperimeter, maximum
dimension, and area. The synthesis time is the run-time of
COMPACT in the one-time initialization phase. Power con-
sumption is proportional to the number of rows of the crossbar
design and computation delay is the number of time-steps
required to evaluate the Boolean function in the evaluation
phase. The number of time steps is equal to the number of
rows plus one. One time step per wordline is required to
program the devices [33] and one time step is required to
evaluate the Boolean function. Note that we have verified that
all the crossbar designs are valid using SPICE simulations and
the memristor model in [33].

1https://github.com/sventhijssen/compact

TABLE I
OVERVIEW OF INPUT CIRCUITS.

Benchmark Inputs Outputs Nodes Edges
ISCAS85

c432 36 7 1291 2578
c499 41 32 111146 222164
c880 60 26 4431 8858

c1355 41 32 111146 222164
c1908 33 25 28224 56348
c2670 233 140 6764 12970
c3540 50 22 59265 118442
c5315 178 123 14362 28232
c7552 207 108 90651 180870

EPFL control
arbiter 256 129 25109 50214
cavlc 10 11 436 868
ctrl 7 26 89 174
dec 8 256 512 1020
i2c 147 142 1204 2404

int2float 11 7 159 314
priority 128 8 772 1540
router 60 30 219 434

First, we evaluate the influence of the user-defined pa-
rameter γ on the solution space in Section VIII-A. Then,
for multi-output functions, we evaluate the crossbar designs
for SBDDs and ROBDDs in Section VIII-B. We compare
COMPACT with the state-of-the-art flow-based computing
algorithm in Section VIII-D. An analysis of the scalability is
made in Section VIII-C. We compare COMPACT with other
in-memory computing paradigms in Section VIII-E.

A. Evaluation of γ

The user-defined parameter γ allows us to change the
amount of pressure towards finding a solution with minimal
semiperimeter or towards finding a solution with maximum
dimension. In Table II, we evaluate COMPACT in terms of
number of rows, columns, maximum dimension, semiperime-
ter, and synthesis time for different values of γ. The table
only contains those benchmarks for which we find an optimal
solution within three hours.

First, we compare COMPACT using γ = 0 and γ = 0.5.
We observe that the maximum dimension D has decreased
with 0.2% for γ = 0 compared with γ = 0.5. This is
due to the fact that the maximum dimension D is being
minimized by balancing the number of rows and the number
of columns. However, the semiperimeter S for γ = 0 has
increased with 3.6% compared with γ = 0.5. The latter can
be explained due to the fact for γ = 0, the semiperimeter may
be extended by introducing additional VH labels as long as
the maximum dimension is not increased. It is expected that
such solutions will be found because it is easier to resolve the
connection constraints if additional VH labels are introduced.
Consequently, it is not surprising that many of the crossbar
designs synthesized with γ = 0 are square (or close to
square). We observe that all except for the benchmark dec
have an equal number of rows and columns. We conclude it
is advantageous to set γ equal to 0.5 instead of 0.

Next, we compare COMPACT using γ = 0.5 with γ = 1.
We observe that the normalized average of the maximum

https://github.com/sventhijssen/compact

9

TABLE II
SOLUTIONS IN TERMS OF NUMBER OF ROWS, COLUMNS, MAXIMUM DIMENSION, SEMIPERIMETER, AND SYNTHESIS TIME FOR DIFFERENT VALUES OF γ .

THE BENCHMARKS ARE THOSE FOR WHICH AN OPTIMAL SOLUTION CAN BE FOUND WITHIN THREE HOURS.

γ = 0 γ = 0.5 γ = 1

Benchmark
Rows Columns Max Dim Semi Time Rows Columns Max Dim Semi Time Rows Columns Max Dim Semi Time
(num) (num) (num) (num) (h) (num) (num) (num) (num) (h) (num) (num) (num) (num) (h)

cavlc 233 233 233 466 0.0 236 225 236 461 0.0 239 220 239 459 0.0
ctrl 54 54 54 108 0.0 54 47 54 101 0.0 55 45 55 100 0.0
dec 341 255 341 596 0.0 341 170 341 511 0.0 341 170 341 511 0.0
i2c 658 658 658 1316 0.0 658 658 658 1316 0.0 677 627 677 1304 0.0
int2float 90 90 90 180 0.0 90 90 90 180 0.0 85 95 95 180 0.0
priority 449 449 449 898 0.0 449 449 449 898 0.0 440 458 458 898 0.0
router 121 121 121 242 0.0 120 121 121 241 0.0 122 119 122 241 0.0
Normalized 0.998 1.036 1.000 1.000 1.021 0.997

TABLE III
SOLUTIONS IN TERMS OF NUMBER OF ROWS, COLUMNS, MAXIMUM DIMENSION, SEMIPERIMETER, AND SYNTHESIS TIME FOR MULTIPLE ROBDDS AND

A SINGLE SBDD FOR γ = 0.5.

Benchmark
ROBDD SBDD

Nodes Rows Cols Max Dim Semi Time Nodes Rows Cols Max Dim Semi Time
(num) (num) (num) (num) (num) (h) (num) (num) (num) (num) (num) (h)

ISCAS85
c432 1414 833 833 833 1666 3.00 1291 528 528 528 1056 3.00
c499 111146 67639 67639 67639 135278 10.30 111146 67639 65981 67639 133620 10.30
c880 5776 3339 3339 3339 6678 3.03 4431 1883 1798 1883 3681 3.01
c1355 111146 65812 65812 65812 131624 10.49 111146 65812 64209 65812 130021 10.49
c1908 30605 16000 16000 16000 32000 3.41 30605 16000 16061 16061 32061 3.41
c2670 8250 4126 4126 4126 8252 3.06 8250 4126 4153 4153 8279 3.06
c3540 59265 32598 32598 32598 65196 5.14 59265 32598 32590 32598 65188 5.14
c5315 15454 7925 7925 7925 15850 2.43 15454 7925 7926 7926 15851 2.43
c7552 33983 18440 18440 18440 36880 3.55 33983 18440 18438 18440 36878 3.55
EPFL control
arbiter 42092 24914 24914 24914 49828 4.35 25109 10301 10310 10310 20611 3.55
cavlc 602 311 311 311 622 0.02 436 199 210 210 409 0.02
ctrl 243 101 101 101 202 0.01 89 34 41 41 75 0.00
dec 2560 1024 1024 1024 2048 0.00 512 170 341 341 511 0.00
i2c 2698 1312 1312 1312 2624 0.06 1204 545 545 545 1090 0.02
int2float 227 121 121 121 242 0.00 159 68 68 68 136 0.01
priority 913 512 512 512 1024 0.01 772 322 322 322 644 0.02
router 283 127 127 127 254 0.01 219 99 98 99 197 0.01
Normalized 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.71 0.73 0.73 0.72 0.88

dimension D has increased with 2.1% compared with the
solutions for γ = 0.5. On the other hand, the normalized
semiperimeter S has decreased with 0.3%. This is what we
would expect, considering that γ = 1 only minimizes S while
γ = 0.5 minimizes a weighted combination of the semiperime-
ter S and the maximum dimension D. Now we analyze the
results on a few circuits in detail. For the circuits int2float,
priority, and router, we observe that γ = 0.5 reduces the
maximum dimension without a penalty on the semiperimeter.
For example, the maximum dimension is reduced from 458
to 449 on priority. This stems from that the MIP formulation
determines more balanced 2-coloring solutions without intro-
ducing any additional V H-nodes. For the other circuits, except
for dec, we observe that the maximum dimension is reduced
at the expense of increasing the length of the semiperimeter.
In particular, the maximum dimension is reduced with 3, 1,
and 19 at the expense of increasing the semiperimeter with 2,
1, and 12, respectively.

Based on the results in Table II, we conclude that the
best crossbar designs are obtained using γ = 0.5. It seems
advantageous to increase the average semiperimeter with about
3% in order to reduce the the average maximum dimension

with about 2%. Therefore, we set the default value for γ to
be 0.5 in the remainder of the experimental evaluation.

For the circuits cavlc and int2float, we sweep γ between
0 and 1 and examine all non-dominated crossbar designs
in Figure 9. A crossbar design is non-dominated if no
other crossbar design is obtained with a smaller number
of rows and a smaller number of columns. The number
of rows and columns is shown on the x-axis and y-axis,
respectively. For the circuit cavlc, we find the following
non-dominated solutions (233, 233), (233, 232), (234, 229),
(236, 225), (238, 221), and (239, 220). On the circuit int2float,
we found the non-dominated solutions (90, 90), (90, 89), and
(92, 87).

B. Evaluation of multiple ROBDDs vs single SBDD

In Table III, we compare the hardware utilization of COM-
PACT for both multiple ROBDDs and a single SBDD. We
observe that the number of nodes in the SBDD is smaller than
or equal to the total number of nodes in the merged ROBDDs.
This leads to crossbar designs with fewer rows and columns,
and thus smaller semiperimeter and area for COMPACT using
SBDDs. COMPACT using SBDDs reduces the number of

10

Fig. 9. Dimensions of different crossbar designs for varying values of γ

nodes by 22% on the average. The resulting number of rows
and columns is reduced by 29% and 27% on the average. The
maximum dimension D and the semiperimeter S are respec-
tively reduced by 27% and 28%. Above this, the synthesis
time decreases with 12%. We conclude that COMPACT using
SBDDs results in much smaller crossbar designs and we will
use this BDD type in the remainder of the experiments.

C. Scalability

In Table IV, we observe that the synthesis time for COM-
PACT with γ = 0.5 is approximately 2650X the required
synthesis time for the work in [16]. This difference in synthesis
time stems from the fact that the mapping algorithm in [16]
is linear in the number of nodes of the undirected graph
G whereas finding an odd cycle transversal is NP-hard as
explained in Section VI-C.

In Figure 10, we illustrate how the ILP solver converges
to an optimal solution for the benchmark i2c for γ = 0.5.
The best integer solution, the best bound and the relative gap
between the best integer and best bound are given in terms of
the elapsed time. We observe that the best integer decreases
over time whereas the bound increases. When both the bound
and integer solution have converged, then we the ILP solver
has found an optimal solution. Further we provide the relative
gap between both values. Initially, the relative gap is nearly
100%. We observe that the best integer solution makes several
jumps to finally converge with the best non-integer solution
have converged, closing the relative gap between both.

Fig. 10. Best integer solution, best bound, and relative gap for the benchmark
i2c for γ = 0.5 in terms of elapsed time

In Figure 11, we provide the relative gap for those bench-
marks for which we have not found an optimal solution
within three hours. We observe that the relative gap for c499,
c1355 and arbiter and relatively large compared with the other
benchmarks. Some structures are inherently complex, which
requires the ILP solver more time to find better solutions.

Fig. 11. Relative gap for the benchmarks for which no optimal solution was
found within three hours

D. Comparison with previous work on flow-based computing

In this section, we compare COMPACT with the state-of-
the-art flow-based computing algorithm in [16]. We evaluate
the performance in terms of hardware utilization in Table IV.
The power consumption and computation delay are evaluated
in Figure 12.

The number of BDD nodes, the number of rows, columns,
semiperimeter and area for each of the techniques is shown
in Table IV. It can be observed that the algorithm in [16] is
capable of mapping all the input circuits into valid crossbar
representations. The semiperimeter is approximately 1.90n,
where n is the number of BDD nodes. The run-time is less
than eight minutes for all circuits.

Compared with the algorithm in [16], COMPACT with
γ = 0.5 reduces the number of rows, columns, maximum
dimension, semiperimeter and area with 56%, 77%, 85%, 55%,
and 89%, respectively. Smaller crossbar designs are obtained
due to the fact that most BDD nodes are only mapped to
a single wordline or bitline, whereas in the previous work all
nodes are mapped to at least one wordline and one bitline. The
semiperimeter for COMPACT using γ = 0.5 is approximately
1.11n, which demonstrates that only 11% of the nodes in the
BDD are labeled V H and are mapped to both a wordline and
bitline.

(a) Power consumption (b) Computation delay

Fig. 12. Comparison of power consumption and computation delay for
COMPACT with γ = 0.5 and flow-based computing synthesis algorithm
by Chakraborty et al. [16]

Figure 12 shows the normalized power and computation
delay for the two methods across all the circuits. It can be

11

TABLE IV
COMPARISON OF FLOW-BASED COMPUTING ALGORITHMS IN TERMS OF NUMBER OF BDD NODES, ROWS, COLUMNS, SEMIPERIMETER, AREA AND

SYNTHESIS TIME.

Chakraborty et al. [16] COMPACT for γ = 0.5

Benchmark Nodes Edges Rows Columns Max Dim Semi Area Time Nodes Edges Rows Columns Max Dim Semi Area Time
(num) (num) (num) (num) (num) (num) (num) (h) (num) (num) (num) (num) (num) (num) (num) (h)

ISCAS85
c432 1414 2800 1414 2800 4214 2800 3959200 0.00 1291 2578 762 762 762 1524 580644 3.00
c499 111146 222164 111146 222164 333310 222164 24692639944 0.00 111146 222164 65981 67639 67639 133620 4462888859 10.30
c880 5776 11448 5776 11448 17224 11448 66123648 0.02 4431 8858 2547 2632 2632 5179 6703704 3.01
c1355 111146 222164 111146 222164 333310 222164 24692639944 0.00 111146 222164 64209 65812 65812 130021 4225722708 10.49
c1908 30605 61110 30605 61110 91715 61110 1870271550 0.00 30605 61110 16061 16000 16061 32061 256976000 3.41
c2670 8250 15941 8250 15941 24191 15941 131513250 0.00 8250 15941 4153 4126 4153 8279 17135278 3.06
c3540 59265 118442 59265 118442 177707 118442 7019465130 0.00 59265 118442 32590 32598 32598 65188 1062368820 5.14
c5315 15454 30416 15454 30416 45870 30416 470048864 0.12 15454 30416 7926 7925 7926 15851 62813550 2.43
c7552 33983 67534 33983 67534 101517 67534 2295007922 0.00 33983 67534 18438 18440 18440 36878 339996720 3.55
EPFL control
arbiter 42092 83668 42092 83668 125760 83668 3521753456 0.00 25109 50214 15030 15035 15035 30065 225976050 3.25
cavlc 602 1160 602 1160 1762 1160 698320 0.00 436 868 236 225 236 461 53100 0.02
ctrl 241 380 241 380 621 380 91580 0.00 89 174 54 47 54 101 2538 0.00
dec 2560 4096 2560 4096 6656 4096 10485760 0.01 512 1020 341 170 341 511 57970 0.00
i2c 2696 4826 2696 4826 7522 4826 13010896 0.00 1204 2404 658 658 658 1316 432964 0.02
int2float 227 426 227 426 653 426 96702 0.00 159 314 90 90 90 180 8100 0.01
priority 913 1794 913 1794 2707 1794 1637922 0.00 772 1540 449 449 449 898 201601 0.02
router 256 446 256 446 702 446 114176 0.00 219 434 120 121 121 241 14520 0.01
Normalized 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.81 0.44 0.23 0.15 0.45 0.11 2653.22

observed that COMPACT with γ = 0.5 requires less power
consumption than the algorithm proposed in [16]. This stems
from that the number of memristors that are required to be
programmed is equal to the number of edges in the BDD. A
single SBDD in COMPACT can be smaller than the set of
individual ROBDDs in [16], resulting in a reduction of 19%
on average. Compared with [16], COMPACT with γ = 0.5
reduces the computation delay with 56%. This stems from
that crossbar designs with fewer rows are synthesized, which
results in that it takes shorter time to program the memristors
in the crossbar based on the Boolean input variables.

E. Comparison of with other in-memory computing paradigms

In this section, we compare COMPACT with in-memory
computing based on MAGIC. More specifically, we compare
our work with the state-of-the-art mapping method CON-
TRA [34]. In Figure 13, we compare the power consump-
tion, and the computational delay for both CONTRA and
COMPACT with γ = 0.5. The user-defined parameters for
CONTRA are k = 4, spacing= 6, and a crossbar dimension
of 128× 128 where k is the number of inputs for the LUTs,
and the spacing denotes the number of rows between multiple
LUTs in the crossbar. We have chosen k = 4, as it is
reported that the delay is lowest for k = 4. The spacing
and crossbar dimension were chosen as these were the most
common values.

For CONTRA, both the power consumption and computa-
tional delay are expressed in terms of the number of the oper-
ations (INPUT, COPY, ...) where each operation is considered
a write operation. For COMPACT, the power consumption is
expressed in terms of the number of active memristors, i.e. the
number of literals assigned to the memristors; worst-case, all
memristors have to be programmed to a high resistive state,
requiring most power. The computational delay is expressed
in the number of rows; worst-case all rows have to be
reprogrammed using the method in [33].

Figure 13 shows that the normalized power consumption
for COMPACT with γ = 0.5 is 55% lower than the power
consumption for CONTRA for the EPFL control benchmarks.
Here, we only compare COMPACT with CONTRA the EPFL

control benchmarks as the ISCAS85 benchmarks are arith-
metic circuits and BDDs do not scale well for these types
of circuits. The improvements stem from that it is difficult
to achieve high parallelism within the MAGIC style. While
it is possible to evaluate many “logic gates” in a single time
step, the subsequent time steps will be spent attempting to
realign the data to perform a highly parallel operation again.
COMPACT with γ = 0.5 also improves the computational
delay with 87%. The computational delay is 8.65X higher for
CONTRA due to the high number of computational steps.

(a) Power consumption (b) Computation delay

Fig. 13. Comparison of power consumption and computation delay for
COMPACT with γ = 0.5 and CONTRA with k = 4, spacing= 6, and
dimensions 128× 128 on the EPFL control benchmarks

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented COMPACT for mapping
Boolean functions to crossbar representations for flow-based
in-memory computing. By utilizing an analogy between a
BDD and a crossbar, COMPACT with γ = 0.5 reduces the
semiperimeter by 55% and the maximum dimension by 85%
compared with previous work on flow-based computing. We
have introduced a weighted objective of the semiperimeter and
the maximum dimension to find small valid crossbar designs.
A MIP formulation was proposed to minimize the weighted
objective. We have extended the framework from multi-input
functions using ROBDDs to multi-output functions using
SBDDs. Above this, alignment constraints were introduced to
map the inputs and the outputs to wordlines.

12

ACKNOWLEDGMENT

The authors acknowledge support from the National Science
Foundation awards #2113307, the DARPA cooperative agree-
ment #HR00112020002, and ONR grant #N000142112332.
The views, opinions and/or findings expressed are those of
the authors and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

REFERENCES

[1] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals of
the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] J. Backus, “Can programming be liberated from the von neumann style?:
A functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[3] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[5] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on VLSI Systems,
vol. 22, no. 10, pp. 2054–2066, 2013.

[6] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[7] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Com-
putation of boolean formulas using sneak paths in crossbar computing,”
Apr. 19 2016. US Patent 9,319,047.

[8] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective bdd opti-
mization for rram based circuit design,” in 2016 IEEE 19th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), pp. 1–6, IEEE, 2016.

[9] E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis
methods for memristors,” in 2012 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2441–2444, IEEE, 2012.

[10] N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky,
“mmpu—a real processing-in-memory architecture to combat the von
neumann bottleneck,” in Applications of Emerging Memory Technology,
pp. 191–213, Springer, 2020.

[11] A. Velasquez and S. K. Jha, “Parallel computing using memristive
crossbar networks: Nullifying the processor-memory bottleneck,” in
2014 9th International Design and Test Symposium (IDT), pp. 147–152,
IEEE, 2014.

[12] D. Chakraborty, S. Raj, S. L. Fernandes, and S. K. Jha, “Input-aware
flow-based computing on memristor crossbars with applications to edge
detection,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 3, pp. 580–591, 2019.

[13] A. Velasquez and S. K. Jha, “Fault-tolerant in-memory crossbar comput-
ing using quantified constraint solving,” in 2015 33rd IEEE International
Conference on Computer Design (ICCD), pp. 101–108, IEEE, 2015.

[14] Z. Alamgir, K. Beckmann, N. Cady, A. Velasquez, and S. K. Jha, “Flow-
based computing on nanoscale crossbars: Design and implementation of
full adders,” in 2016 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1870–1873, IEEE, 2016.

[15] A. Velasquez and S. K. Jha, “Automated synthesis of crossbars for
nanoscale computing using formal methods,” in Proceedings of the
2015 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH´ 15), pp. 130–136, IEEE, 2015.

[16] D. Chakraborty and S. K. Jha, “Automated synthesis of compact cross-
bars for sneak-path based in-memory computing,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, pp. 770–775,
IEEE, 2017.

[17] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision
diagram-based synthesis of compact crossbars for in-memory comput-
ing,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 5, pp. 622–626, 2018.

[18] D. Chakraborty, S. Raj, J. C. Gutierrez, T. Thomas, and S. K. Jha,
“In-memory execution of compute kernels using flow-based memristive
crossbar computing,” in 2017 IEEE International Conference on Reboot-
ing Computing (ICRC), pp. 1–6, IEEE, 2017.

[19] A. U. Hassen, S. A. Khokhar, H. A. Butt, and S. K. Jha, “Free bdd
based cad of compact memristor crossbars for in-memory computing,” in
2018 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pp. 1–7, IEEE, 2018.

[20] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[21] S.-i. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram
with attributed edges for efficient boolean function manipulation,” in
ACM/IEEE DAC 1990, pp. 52–57, IEEE, 1990.

[22] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pp. 476–488, IEEE, 2015.

[23] A. Berkeley, “A system for sequential synthesis and verification,” 2009.
[24] D. B. Strukov and R. S. Williams, “Four-dimensional address topology

for circuits with stacked multilayer crossbar arrays,” Proceedings of the
National Academy of Sciences, vol. 106, no. 48, pp. 20155–20158, 2009.

[25] D. B. West, Introduction to Graph Theory, vol. 2. Prentice hall Upper
Saddle River, NJ, 1996.

[26] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,
vol. 4. Springer, 2015.

[27] V. V. Vazirani, Approximation Algorithms. Springer Science & Business
Media, 2013.

[28] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations, pp. 85–103, Springer, 1972.

[29] C. Lund and M. Yannakakis, “The approximation of maximum subgraph
problems,” in International Colloquium on Automata, Languages, and
Programming, pp. 40–51, Springer, 1993.

[30] “Cplex optimizer.”
[31] F. Brglez, P. Pownall, and R. Hum, “Accelerated atpg and fault grading

via testability analysis,” in Proceedings of IEEE Int. Symposium on
Circuits and Systems, pp. 695–698, 1985.

[32] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proceedings of the 24th International Workshop on
Logic & Synthesis (IWLS), no. CONF, 2015.

[33] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
spice model and crossbar simulation based on devices with nanosecond
switching time,” in The 2013 International Joint Conference on Neural
Networks (IJCNN), pp. 1–7, IEEE, 2013.

[34] D. Bhattacharjee, A. Chattopadhyay, S. Dutta, R. Ronen, and S. Kvatin-
sky, “Contra: area-constrained technology mapping framework for mem-
ristive memory processing unit,” in Proceedings of the 39th International
Conference on Computer-Aided Design, pp. 1–9, 2020.

13

Sven Thijssen is a Ph.D. student in Computer
Science at the University of Central Florida (UCF).
Sven received his bachelor’s degree in Informatics
from KU Leuven, Belgium, in 2018, and his master’s
degree in Computer Science from UCF in 2021.
His research interests are in-memory computing and
beyond von Neumann computing. In 2020 he has
received the ORCGS Doctoral Fellowship from UCF
and in 2021 he has received a best paper nomination
at DATE.

Sumit K. Jha is Professor of Computer Science
at the University of Texas San Antonio (UTSA).
Dr. Jha received his Ph.D. in Computer Science
from Carnegie Mellon University. Before joining
Carnegie Mellon, he graduated with B.Tech (Hon-
ors) in Computer Science and Engineering from
the Indian Institute of Technology Kharagpur. Dr.
Jha has worked on R&D problems at Microsoft
Research India, General Motors, INRIA France and
the Air Force Research Lab Information Directorate.
His research has been supported by the National

Science Foundation (NSF), DARPA, the Office of Naval Research (ONR), the
Air Force Office of Scientific Research (AFOSR), the Oak Ridge National
Laboratory (ORNL), the Royal Bank of Canada, the Florida Center for
Cybersecurity, the Air Force Research Laboratory (AFRL), and National
Nuclear Security Administration (NNSA). He is a full member of the Sigma
Xi and is a recipient of the IEEE Orlando Engineering Educator Excellence
Award. Dr. Jha was awarded the prestigious Air Force Young Investigator
Award and his research has led to four Best Paper awards.

Rickard Ewetz received the M.S. degree, in Applied
Physics and Electrical Engineering, from Linkopings
Universitet in 2011. He received the Ph.D. degree in
Electrical and Computer Engineering from Purdue
University in 2016. Currently, he is an assistant pro-
fessor in the Electrical and Computer Engineering
Department at the University of Central Florida.
His research interests include physical design and
computer-aided design for in-memory computing
using emerging technologies. He has best paper
nominations from ASP-DAC 2019 and DATE 2021.

	Introduction
	Background
	Binary decision diagrams
	Nanoscale memristor crossbars
	Flow-based in-memory computing

	Problem formulation
	Analogy between BDDs and crossbars
	The COMPACT framework
	Graph pre-processing
	VH-labeling
	Crossbar mapping

	Solving the VH-labeling problem
	Minimal semiperimeter
	The algorithm
	The proof

	Weighted objective
	The MIP formulation
	Analysis of MIP formulation

	Scalability

	Extension to functions with multiple outputs
	Multiple ROBDDs vs single SBDDs
	Alignment of inputs and outputs

	Experimental evaluation
	Evaluation of
	Evaluation of multiple ROBDDs vs single SBDD
	Scalability
	Comparison with previous work on flow-based computing
	Comparison of with other in-memory computing paradigms

	Conclusion and future work
	References
	Biographies
	Sven Thijssen
	Sumit K. Jha
	Rickard Ewetz

