
UpTime: Towards Flow-based In-Memory
Computing with High Fault-Tolerance

Sven Thijssen1, Muhammad Rashedul Haq Rashed2, Sumit Kumar Jha3, and Rickard Ewetz4
1,3Department of Computer Science, 2,4Department of Electrical and Computer Engineering

1,2,4University of Central Florida, Orlando, USA, 3University of Texas at San Antonio, San Antonio, USA
sven.thijssen@knights.ucf.edu, rashed09@knights.ucf.edu, sumit.jha@utsa.edu, rickard.ewetz@ucf.edu

Abstract—Processing in-memory promises to accelerate data-
intensive applications by breaking von-Neumann based design
principles. Flow-based computing is an in-memory computing
paradigm that has shown immense potential for executing
Boolean logic. Unfortunately, the immature fabrication processes
for nanoscale memristor crossbars still struggle with yield
challenges and run-time defects, which may render the computing
system non-functional. Even worse, no previous studies have
investigated the fault-tolerance of flow-based computing systems,
which could potentially limit the capabilities of the entire
paradigm. In this paper, we propose the UpTime framework to
provide guaranties on the functional correctness and to maximize
the lifetime of flow-based computing systems. The framework
utilizes data layout organization to mitigate errors from faults
with known type and location. To handle defects occurring
at run-time, we propose the use of an error detection signal
that can be evaluated with low overhead. The experimental
evaluation demonstrates that the UpTime framework is capable
of guaranteeing functional correctness for an average of 15.24
years. The up-time to down-time ratio is 99.9992%. Compared
with utilizing the state-of-the-art write-verify scheme, the
proposed error signal reduces power consumption by 25% and
increases throughput by 6%, respectively.

I. INTRODUCTION

Traditional ubiquitous computer architectures using CMOS
technology are being challenged by the end of Moore’s
law [22], the end of Dennard scaling [2], [6] and the
von Neumann bottleneck [1]. In-memory computing using
nanoscale memristor crossbars poses promising results in terms
of power consumption and latency [17], [20]. The advantages
arise from eliminating the power-hungry and bandwidth-limited
communication on the system bus.

The evaluation of Boolean functions has been investigated
based on logic families such as IMPLY [12], MAGIC [11],
and flow-based computing [9]. While MAGIC has shown great
potential for accelerating applications based on matrix-vector
multiplication [16], flow-based computing has shown to be
advantageous for executing general-purpose Boolean logic [19].
Flow-based computing is based on first synthesizing a Boolean
function φ into a crossbar design D. The crossbar design
specifies the mapping of Boolean variables to the memristors
in the crossbar. To evaluate the Boolean function φ, the devices
in the crossbar are programmed to be on/off with respect to a
Boolean input vector. Next, the Boolean function φ is evaluated
by merely observing if there is a flow of current from the input
to the output of the crossbar.

This work was in part supported by NSF awards CCF-2113307, and
CNS-1908471.

A key challenge for every in-memory computing paradigm
is the presence of defects and environmental variations. Digital
in-memory computing paradigms have inherent resilience to
voltage fluctuation, noise, and temperature variations due to
the separation of the logic one and zero [4]. Nevertheless,
non-volatile memory devices can suffer stuck-at-fault defects
which can have an detrimental impact on the functional
correctness [10]. A stuck-at-fault defect is when a non-volatile
memory device becomes stuck to high or low resistance and
cannot be further programmed. The stuck-at-fault defects can
occur at the time of fabrication or at run-time from heavy
device utilization. Significant improvements have been made to
the fabrication processes in recent years, resulting in crossbars
with low defect rates (0.2% in [14]) and improved endurance.
Unfortunately, a single stuck-at-fault defect can corrupt the
correctness of an entire computing system. To detect write
errors, a write-verify scheme can be employed [18]. In this
scheme, the resistive state of a memristor is verified using a
read operation. If there is a discrepancy between the actual
resistance and the intended resistance, the device resistance is
programmed in a series of fine-grained write operations.

While noteworthy efforts have been devoted to investigate
automated synthesis techniques for flow-based computing [3],
[19], no previous work have investigated the fault-tolerance of
flow-based computing systems. However, fault-tolerance has
been widely investigated for approximate analog in-memory
matrix-vector multiplication. The common themes of handling
stuck-at-faults are based on hardware redundancy [24], neural
network retraining [7], and data layout organization [26]. It is
appealing to adapt these techniques for flow-based computing
systems. However, those schemes rely on that the underlying
applications only require approximate precision. Consequently,
one needs to fundamentally rethink how to apply the techniques
for flow-based computing systems.

In this paper, we propose the UpTime framework to guarantee
the functional correctness of flow-based computing systems
to fabrication defects and run-time defects. The objective is
to maximize system life-time and minimize down-time. The
framework first applies data layout organization using an ILP
formulation to mask the defects introduced at the time of
fabrication. Next, during the execution, a low-overhead error
detection signal is used to detect any run-time defects to avoid
using write-verify. When an error is detected, the data layout
organization technique is again invoked to mask the defect.
The experimental evaluation shows that UpTime guarantees
functional correctness for an average of 15.24 years. The up-



time to down-time ratio is 99.9992% on average. Compared
with the state-of-the-art write-verify scheme in [18], power
consumption and throughput are improved by 25% and 6%.

The paper is organized as follows: background in Section II
and problem formulation in Section III. In Section IV, we
introduce the UpTime framework. In Section V, we describe
the data layout organization method. The error detection signal
is explained in Section VI. The experimental evaluation is
provided in Section VII and conclusions in Section VIII.

II. BACKGROUND

A. Nanoscale memristor crossbars
A nanoscale memristor crossbar consists of two layers

of nanowires. Each layer has parallel nanowires and layers
are perpendicular to one another. At the intersections of the
nanowires, a memristor connects two nanowires. The resistance
of the memristor can be programmed to either a low (ON)
or high (OFF) resistive state. The behaviour of a memristor
is similar to the behaviour of a switch in the sense that a
memristor in low resistive state can be considered a closed
switch, and a memristor in high resistive state can be considered
an open switch.

B. Flow-based computing
Flow-based computing is an in-memory computing paradigm,

consisting of two phases: an initialization phase and a
evaluation phase [19]. In the initialization phase, a crossbar
design D is constructed for a Boolean formula φ by assigning
Boolean variables, the negation of the Boolean variables,
and the Boolean values true and false to the memristors.
In Figure 1(a), a crossbar design D is illustrated for the
Boolean formula φ = a∨ (¬a∧ b∧ c∧ d). Here, {a, b, c, d} ∪
{¬a,¬b,¬c,¬d}∪{0, 1} are the literals and truth values to be
assigned to the memristors. In the evaluation phase, the crossbar
design is instantiated with an input vector (a=0,b=1,c=1,d=1)
by programming the memristors to their respective states,
as illustrated in Figure 1(b). Computation is performed by
applying a high input voltage at the bottom-most nanowire
(input) of the crossbar. Whenever the electrical current flows
through the memristor crossbar to the top-most nanowire, the
function φ evaluates to true. Otherwise, the function φ evaluates
to false. In Figure 1(c), the path is illustrated by red arrows.

Fig. 1. Computation using flow-based computing.
The state-of-the-art automated synthesis methods for flow-

based computing are based on binary decision diagrams
(BDDs) [3], [19]. The BDD can be represented using a directed
acyclic graph (DAG). In [19], the nodes in the DAG are
assigned to the wordlines and bitlines of the memristor crossbar,
and the edges in the DAG are assigned to the memristors.

C. Stuck-at-faults
A stuck-at-fault denotes the situation when a memristor

cannot be further programmed. Two types of stuck-at-faults
exist: stuck-on and stuck-off faults. The former type results
in devices with low-resistive state, and the latter results in
devices with high resistive state [15]. The stuck-at-fault can
be introduced during fabrication, or during device utilization
resulting in runtime defects. The runtime defects occur from
the continuous on/off switching of the memristors [24].

These stuck-at-faults introduce unwanted behavior for flow-
based computing, which can potentially result in incorrect
evaluations. Consider the crossbar design D in Figure 2(a)
and the crossbar X capturing the state of the hardware in
Figure 2(b). In the crossbar X , the stuck-off, stuck-on, and
non-defective memristors are denoted with (0), (1), and (−),
respectively. The defective cells are also shown with a dashed
border. Mapping the design D to the crossbar X forms the
effective crossbar design DX , which is shown in Figure 2(c).
The effective crossbar design DX is obtained by taking the
stuck-at-faults in X and the values for the remaining memristors
from D. It can be observed that the stuck-on fault is masked by
the design whereas the stuck-off fault is not masked. Consider
the input vector a=0, b=1, c=1, and d=1. The crossbar design D
evaluates to true and the effective crossbar design DX evaluates
false, i.e., the unmasked stuck-off fault has compromised the
functional correctness.

Fig. 2. (a) A crossbar design D. (b) The crossbar X , where ‘0’, ‘1’, ‘-’
indicate stuck-off, stuck-on, and functional memristors, respectively. (c) The
effective crossbar design DX . D in (a) and DX in (c) are not functionally
equivalent, and the effective crossbar design produces incorrect outputs when
evaluating the input vector a=0, b=1, c=1, d=1.

III. PROBLEM DEFINITION

This paper aims to develop fault-tolerance techniques for
flow-based computing systems. The goal is to guarantee
functional correctness and to maximize the computing system
lifetime while minimizing downtime. Towards this overall
objective, we solve two key subproblems:

1) Handling stuck-at-faults with known type and location.
2) Detection of stuck-at-fault introduced at runtime.
To solve the first subproblem, we observe that any two rows

(or columns) in a crossbar design can be reordered without
changing the functionality of the crossbar design. Hence, there
exist an opportunity to reorder the rows and columns using
data layout organization to mask all the known defects in the
hardware. Note that we do not reorder the input and output rows
in our implementation. To solve the second subproblem, we
propose to leverage an error detection that efficiently computes
¬φ. If φ and ¬φ are equal, it can be determined that an error
has occurred. This eliminates the need to verify each write
operation in the evaluation process.



Fig. 4. Data layout organization consists of three steps: crossbar compression, 2D data assignment problem, and crossbar decompression. In the first step, the
crossbar X of (a) is compressed into an equivalent compressed crossbar X̃ of (c). Then, the crossbar design D of (b) is assigned to the compressed crossbar
X̃ such that we obtain the compressed effective crossbar DX̃ of (d). Finally, DX̃ is decompressed into an effective crossbar DX as in (e).

IV. UPTIME FRAMEWORK

In this section, we introduce the UpTime framework. An
overview is given in Figure 3. The input of the framework is a
design D for a Boolean formula φ and the crossbar hardware
obtained from fabrication. First, the crossbar X is obtained
by identifying the type and location of the stuck-at-faults
introduced at fabrication using squeeze-search scheme [5].
Then, data layout organization is performed to mask all the
defective memristors in X using the data D. The data layout
organization is performed by reordering rows and columns
in D. The details of our proposed data layout reorganization
method are discussed in Section V. Next, program execution
is started up and performed until an error detection mechanism
identifies a run-time stuck-at-fault. In Section VI, we introduce
a low-overhead error detection mechanism based on evaluating
both φ and ¬φ. It turns out that ¬φ can be evaluated extremely
efficiently due to the underlying properties of flow-based
computing and nanoscale crossbars. Subsequently, the program
is halted when an error is detected, and the stuck-at-faults are
again localized and identified to then restart the program using
a new data layout reorganization. The execution continues until
the stuck-at-faults can no longer be masked.

Fig. 3. Overview of the UpTime framework.

V. DATA LAYOUT ORGANIZATION

In this section, we propose a data layout organization
technique to mask defects with known type and location. The
proposed technique is illustrated with an example in Figure 4.
The input is the crossbar X and the design D, as shown in
Figure 4(a) and Figure 4(b). The crossbar X may be slightly
larger than D as crossbars are typically fabricated with pre-
defined dimensions such as 128x128. The objective is to find
an effective crossbar DX that is functionally equivalent to D
and masks all stuck-at-faults in X , as shown in Figure 4(e).

The technique consists of three steps: crossbar compression,
2D data assignment problem, and crossbar decompression. The
first step compresses the crossbar X to X̃ based on stuck-on
defects. In the second step, a 2D data layout organization
problem is formulated and solved to obtain DX̃ in the
compressed space. In the third step, decompression is performed
to obtain DX . In the following subsections, we explain the
details of these three steps.

A. Crossbar compression
Stuck-on faults introduce equivalences within the crossbar.

More specifically, in flow-based computing, two nanowires
are logically equivalent if they share a memristor in the
low-resistive state. Thus, when two or more stuck-on faults
are present in the same row (column), these rows (columns)
represent the same Boolean function. For example, in
Figure 4(a), we observe that the memristors at position
(R0, C0) and (R1, C0) in crossbar X are both stuck-on faults.
Consequently, the pair of rows (R0, R1) are functionally
equivalent. Therefore, we propose to compress the two rows
into an equivalent row. No solution space is sacrificed by the
compression because no pair of rows (or columns) in a crossbar
design D are equivalent1.

Two equivalent rows/columns i and j can be merged into
one new row/column by applying compression rules to all
pairwise memristors in these rows/columns. The compression
rules are provided in Table I. For example, in the crossbar X
in Figure 4(a), the memristors in row R0 and R1 are column-
wise compressed as follows: (1, 1) into 1, (0,−) into −, and
(1,−) into 1. Now, since the compressed row contains stuck-on
memristors at position (R0, C0) and (R0, C2), the columns C0

and C2 are compressed, resulting in a 2x2 compressed crossbar
X̃ in Figure 4(c).

TABLE I
COMPRESSION RULES FOR A DEFECTIVE CROSSBAR. STUCK-ON FAULTS,

STUCK-OFF FAULTS AND NON-DEFECTIVE MEMRISTORS ARE DENOTED BY
1, 0 AND −, RESPECTIVELY.

Row/column i 0 0 0 1 1 1 − − −
Row/column j 0 1 − 0 1 − 0 1 −
Compressed row/column 0 1 − 1 1 1 − 1 −

1If a pair of rows/columns were equivalent, you could simply remove one
of the rows/columns and reduce the size of the design by one row/column.



B. 2D data assignment problem

In this section, we formulate and solve a 2D data assignment
problem. The input is the crossbar design D and the compressed
crossbar X̃ . The problem is formulated to assign each row
(column) in D to a row (column) in X̃ . The objective is
to perform the assignment while minimizing the number of
non-masked defects.

We introduce the variable ri,k ∈ [0, 1] for each row i in
D and each row k in X̃ . If the Boolean variable is equal to
one, then row i in D is assigned to row k in X̃ . Analogously,
we introduce the variables cj,l ∈ [0, 1] for the columns. Let
Eon denote the errors arising from mapping the Boolean value
0 or a Boolean literal in D to a stuck-on fault in X̃ . Let
Eoff denote the errors arising from mapping the Boolean
value 1 or a Boolean literal in D to a stuck-off fault in X̃ .
The collective set of errors E is the union of both Eon and
Eoff : E = Eon ∪ Eoff . To capture the errors, we introduce
the variables ei,j,k,l ∈ [0, 1] for each error in E. An ILP
formulation minimizing the errors is formulated, as follows [25]:

min
∑

ei,j,k,l

s.t. ei,j,k,l ≥ ri,k + cj,l − 1, ∀(i, j, k, l) ∈ E (1)

ei,j,k,l ≤ ri,k, ∀(i, j, k, l) ∈ E (2)

ei,j,k,l ≤ cj,l, ∀(i, j, k, l) ∈ E (3)∑
k∈RX̃

ri,k = 1, ∀i ∈ RD (4)

∑
l∈CX̃

cj,l = 1, ∀j ∈ CD (5)

∑
i∈RD

ri,k ≤ 1, ∀k ∈ RX̃ (6)∑
j∈CD

cj,l ≤ 1, ∀l ∈ CX̃ (7)

The first three constraints 1, 2, and 3 force ei,j,k,l to be 1
when both ri,k and cj,l are 1, indicating that when mapping
both row i to row k and column j to column l introduces an
error. Otherwise, when ri,k = 0 or cj,l = 0, then ei,j,k,l is
forced to be 0. More specifically, the first three constraints
represent a logical AND operation over ri,k and cj,l. The
constraints on lines 4 and 5 ensure that each row/column in
the crossbar design D is assigned to exactly one row/column
in the compressed crossbar X̃ . The constraints on lines 6 and 7
ensure that at most one row/column from the crossbar design
D is assigned to a row/column in the compressed crossbar X̃ .
In practice, we also do not reorder the input and output row, as
they are fixated in hardware. The input of the data assignment
problem are the compressed crossbar X̃ in Figure 4(c) and the
design D in Figure 4(b), the output is the compressed effective
crossbar DX̃ in Figure 4(d).

C. Crossbar decompression

The last step is to decompress the effective compressed
crossbar DX̃ to the uncompressed space. The compression step
can be viewed as a function F that maps a row Ri (column Ci)

of the crossbar X to a row R̃i (column C̃i) of the compressed
crossbar X̃ . Hence, to decompress the crossbar, one must
apply the reverse of the function F , i.e. F−1. However, F−1
maps a row R̃i (column C̃i) of the compressed crossbar DX̃
to a set of rows {Ri} (columns {Ci}) of the crossbar X .
Consequentially the rows R̃i (columns C̃i) of the compressed
effective crossbar DX̃ map to the rows {Ri} (columns {Ci})
of the effective crossbar DX . To assign a memristor M̃ij of the
compressed effective crossbar DX̃ to a memristor Mij in the
effective crossbar DX , one chooses any memristor in the set of
memristors {Mij |F−1(R̃i),F−1(C̃j)} that is less restrictive,
i.e. to the same state of a memristor that is not a stuck-at-fault.
The remaining memristors in the effective crossbar DX are set
to the low resistive state. The compressed effective crossbar
DX̃ in Figure 4(d) is converted into the effective crossbar DX
in Figure 4(e).

VI. ERROR DETECTION

In this section, we introduce an error mechanism for
detecting defects introduced at run-time. The technique allows
us to circumvent verifying each write operation using a read
operation during the execution phase.

TABLE II
ERROR DETECTION.

φ ¬φ XOR(φ, ¬φ) Error detected?
0 0 0 yes
0 1 1 no
1 0 1 no
1 1 0 yes

The error detection technique is based on evaluating both the
Boolean function φ (the specification) and its complement ¬φ.
φ and ¬φ should be complemented by definition. Using the
XOR operation on the evaluation of φ and ¬φ, one can detect
whether this statement holds, as illustrated in Table II. If
XOR(φ, ¬φ) evaluates to false, there is at least one undetected
stuck-at-fault defect that has been introduced at run-time in the
crossbar. If XOR(φ, ¬φ) evaluates to true, the output of the
function could be correct or there could be multiple faults (at
least 2) corrupting both φ and ¬φ. However, we observe that it
is impossible for single defect to simultaneously corrupt both
φ and ¬φ at the same time. Therefore, as long as the error
detection signal detects a run-time defect before the next fault
is introduced, the system is guaranteed to maintain functional
correctness. We observe in our experiments that any introduced
defects are typically detected within a few cycles (less than 30)
and the defects are substantially (orders of magnitude) more
separated in time.

Fig. 5. BDD for φ and crossbar design for φ and ¬φ.



Next, we turn our attention to implementing ¬φ cost
efficiently in hardware. We propose to implement both φ
and ¬φ in a single crossbar design. A BDD represents both φ
and ¬φ in its DAG representation. If, for an input vector, there
exists a path from the root node to the positive terminal node
(>/1), then the Boolean formula φ evaluates true. Otherwise,
if, for an input vector, there exists a path from the root node
to the negative terminal node (⊥/0), then the Boolean formula
φ evaluates false, and thus ¬φ evaluates true. Remember
that the nodes in the DAG representation of the BDD for
a Boolean formula φ are assigned to wordlines and bitlines in
the state-of-the-art mapping method [19]. Then, the hardware
utilization increases slightly (more specifically by one wordline
and possibly one bitline), given that the negative terminal node
is now assigned to a wordline as well. In Figure 5(a), a BDD
is given for a Boolean formula. In Figure 5(b), both φ and ¬φ
are represented in a single crossbar design where the positive
terminal node of the BDD is assigned to the second-bottom-
most nanowire, and the negative terminal node of the BDD
is assigned to the bottom most nanowire. When a high input
voltage is applied to Vin,φ, φ will be evaluated; when a high
input voltage is applied to Vin,¬φ, ¬φ will be evaluated.

VII. EXPERIMENTAL EVALUATION

In this section, we will evaluate the proposed framework
UpTime. The framework is implemented in Python 3.8 and the
experiments are conducted on a machine with 20 Intel Core i9-
9900X processors, running on Ubuntu 20.04.2. The framework
is evaluated on benchmarks obtained from RevLib [21] and the
crossbar designs are constructed following the algorithm in [19].
An overview of the benchmark specifications is provided in
Table III. For the defective crossbars, we consider both hard
faults due to fabrication errors, and soft faults due to incorrect
write operations. Based on the experimental setup in [23],
we model the fabrications faults based on multiple Gaussian
distributions in the crossbar. By default, we set the number of
defects to 0.2% [14]. The number of stuck-on vs stuck-off is
set to 1 : 5 [10]. The probability of a soft error occurring for a
literal in the crossbar design at run-time is p = 1− e−λ×τ/109

where λ is set to 106 and τ is the time in hours [13]. The power
consumption and the latency for ReRAM write operation is
18nW and 100µs [8].

TABLE III
DIMENSIONS FOR BENCHMARKS.

Benchmark
Rows Column
(num) (num)

misex1 41 34
cm163a 68 61
5xp1 33 24
clip 41 45
cordic 58 58
frg1 25 21

In Section VII-A, we evaluate the proposed error detection
signal. In Section VII-B, we evaluate the proposed UpTime
framework, and we compare it with the state-of-the-art stuck-
at-fault mitigation methods.

A. Evaluation of error detection signal

We compare our error detection signal with the state-of-
the-art write-verify scheme [18] in Figure 6. Compared with
write-verify, it can be observed that the UpTime framework
reduces power consumption and latency with 25% and 6%,
respectively. The area increases with 20% due to both φ and
¬φ being mapped. Both the increase in power consumption
and latency of write-verify can be addressed to the peripheral
circuitry and the additional read operations. Consequently, we
use the proposed error detection signal as the default method
for detecting stuck-at-fault defects in the UpTime framework.

Fig. 6. Normalized average for power, latency, and area of a write-verify
detection signal and our proposed detection signal.

B. Evaluation of UpTime framework

In this section, we will compare the accuracy for three
different mapping schemes. The first scheme is a baseline
method. In this scheme, the crossbar design is mapped to the
crossbar without regard for any stuck-at-faults. The second
scheme is row permutation after [27] and the third scheme
is sequential row and column permutations after [23]. The
fourth scheme is UpTime where stuck-at-faults are identified
and mitigated at fabrication and at runtime using the proposed
framework.

TABLE IV
MINIMUM, MEAN, AND MAXIMUM LIFETIME FOR THE SCHEMES WITH ROW

PERMUTATIONS ONLY, SEQUENTIAL ROW AND COLUMN PERMUTATIONS,
AND THE PROPOSED UPTIME FRAMEWORK.

Benchmark Scheme
Min Mean Max

(years) (years) (years)

misex1

Baseline 0.00 0.00 0.00
Row [27] 0.00 0.15 1.13
Sequential row & column [23] 0.00 0.32 1.13
UpTime (this work) 11.24 14.19 15.60

cm163a

Baseline 0.00 0.00 0.00
Row [27] 0.00 0.00 0.00
Sequential row & column [23] 0.00 0.06 0.29
UpTime (this work) 8.08 9.10 10.75

5xp1

Baseline 0.00 0.00 0.00
Row [27] 0.05 1.08 2.65
Sequential row & column [23] 0.05 1.24 2.65
UpTime (this work) 13.32 15.85 17.90

clip

Baseline 0.00 0.00 0.00
Row [27] 0.00 0.01 0.08
Sequential row & column 0.00 0.20 0.72
UpTime (this work) 11.24 13.77 14.83

cordic

Baseline 0.00 0.00 0.00
Row [27] 0.00 0.00 0.00
Sequential row & column [23] 0.00 0.07 0.29
UpTime (this work) 9.08 10.53 12.61

frg1

Baseline 0.00 0.00 0.00
Row [27] 0.22 2.07 4.13
Sequential row & column [23] 0.85 2.13 4.13
UpTime (this work) 15.05 17.52 19.74



In Table IV, we show the minimum, mean, and maximum,
system lifetime for each of the three schemes obtained from 10
Monte Carlo simulations. Here, failure is defined as the point in
time when the accuracy drops below 100%, ending the system’s
lifetime. The accuracy is defined to be the number of correct
input vectors/total number of input vectors. In the table, we
observe that the lifetime for the baseline is lowest, indicating
that flow-based computing is susceptible to stuck-at-faults
without error mitigation. Then follows row permutations and,
sequential row and column permutations. This is due to the fact
that there may not be a feasible solution for row permutations,
but there may be a feasible solution for column permutations,
resulting in that the second scheme slightly increases lifetime
compared to the first scheme. Finally, our proposed framework
UpTime outperforms both of previous approaches due to the
simultaneous exploration of row and column permutations.

Fig. 7. (a) Average accuracy over 10 simulations for the row permutations
after in [27], the sequential row and column permutations in [23], and the
proposed framework UpTime. (b) Mean time to failure (MTTF) for different
fabrication defect rates.

Finally, in Figure 7(a), we show the accuracy in terms
of time for the benchmark frg1 using the three schemes
(except for the baseline method as its lifetime is insignificant).
Supporting Table IV, it can be observed that the lifetime of
the scheme using row permutations only results in a lifetime
of less than a year. The lifetime based on sequential row and
column permutations increases the lifetime to little over a
year. However, it can be observed that the UpTime framework
maintains 100% accuracy for more than fifteen years. In
Figure 7(b), the mean time to failure (MTTF) is given in
terms of the fabrication defect rate. It can be observed that
even for fabrication defect rates as high as 5%, the system will
approximately have a lifetime of one year.

TABLE V
MEAN TIME TO FAILURE, AVERAGE DOWNTIME, AND TOTAL UPTIME OF

THE UPTIME FRAMEWORK FOR DIFFERENT BENCHMARKS.

Benchmark
Mean Average downtime Uptime
(years) (hours) (%)

misex1 14.19 0.27 99.9995%
cm163a 9.10 0.54 99.9984%
5xp1 15.85 0.16 99.9997%
clip 13.77 0.36 99.9993%
cordic 10.53 0.52 99.9986%
frg1 17.52 0.12 99.9998%

In Table V, an overview is given of the average downtime
(hours) and the uptime (percentage) of a system for different
benchmarks. The downtime and uptime are computed in terms
of the average number of years before the system fails. We can
observe that the lowest uptime is 99.9984% and the highest
uptime is 99.9998%.

VIII. SUMMARY AND FUTURE WORK

Guaranteeing the functional correctness of a computing
system is crucial in many applications. Unfortunately, fault-
tolerance for flow-based computing has not yet been explored.
Therefore, we have introduced the UpTime framework that
allows a flow-based computing system to live with 100%
accuracy for several years. The framework consists of a low-
overhead error detection signal and a data layout reorganization
scheme. The error detection signal is based on the evaluation
of a Boolean function and its negation whereas the data layout
organization masks all stuck-at-faults in the crossbar.

REFERENCES

[1] J. Backus. Can programming be liberated from the von neumann style?
CACM, 21(8):613–641, 1978.

[2] M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. SSCS
Newsletter, 12(1):11–13, 2007.

[3] D. Chakraborty and S. K. Jha. Automated synthesis of compact crossbars
for sneak-path based in-memory computing. In DATE, pages 770–775.
IEEE, 2017.

[4] S. Channamadhavuni et al. Accelerating ai applications using analog
in-memory computing: Challenges and opportunities. In GLSVLSI, pages
379–384, 2021.

[5] C.-Y. Chen et al. Rram defect modeling and failure analysis based on march
test and a novel squeeze-search scheme. TC, 64(1):180–190, 2014.

[6] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, et al. Design of ion-implanted
mosfet’s with very small physical dimensions. JSSC, 9(5):256–268, 1974.

[7] S. Jain et al. Rxnn: A framework for evaluating deep neural networks on
resistive crossbars. TCAD, 40(2):326–338, 2020.

[8] K. Jeon, J. Kim, J. J. Ryu, et al. Self-rectifying resistive memory in passive
crossbar arrays. Nature communications, 12(1):1–15, 2021.

[9] S. K. Jha et al. Computation of boolean formulas using sneak paths in
crossbar computing, Apr. 19 2016. US Patent 9,319,047.

[10] G. Jung et al. Cost-and dataset-free stuck-at fault mitigation for reram-based
deep learning accelerators. In DATE, pages 1733–1738. IEEE, 2021.

[11] S. Kvatinsky, D. Belousov, S. Liman, et al. Magic—memristor-aided logic.
TCAS-II, 61(11):895–899, 2014.

[12] S. Kvatinsky et al. Memristor-based material implication (imply) logic:
Design principles and methodologies. VLSI, 22(10):2054–2066, 2013.

[13] O. Leitersdorf, B. Perach, R. Ronen, and S. Kvatinsky. Efficient error-
correcting-code mechanism for high-throughput memristive processing-in-
memory. In DAC, pages 199–204. IEEE, 2021.

[14] C. Li, M. Hu, Y. Li, et al. Analogue signal and image processing with large
memristor crossbars. Nature electronics, 1(1):52–59, 2018.

[15] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty. Fault tolerance for rram-based
matrix operations. In ITC’18, pages 1–10. IEEE, 2018.

[16] M. R. H. Rashed, S. K. Jha, and R. Ewetz. Hybrid analog-digital in-memory
computing. In ICCAD, pages 1–9. IEEE, 2021.

[17] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, et al. Memory devices
and applications for in-memory computing. NNano, 15(7):529–544, 2020.

[18] W. Shim et al. Two-step write-verify scheme and impact of the read noise
in multilevel rram-based inference engine. SST, 35(11):115026, 2020.

[19] S. Thijssen et al. Compact: Flow-based computing on nanoscale crossbars
with minimal semiperimeter. In DATE’21, pages 232–237. IEEE, 2021.

[20] N. Verma, H. Jia, H. Valavi, et al. In-memory computing: Advances and
prospects. SSC-M, 11(3):43–55, 2019.

[21] R. Wille et al. Revlib: An online resource for reversible functions and
reversible circuits. In ISMVL 2008, pages 220–225. IEEE, 2008.

[22] R. S. Williams. What’s next?[the end of moore’s law]. Computing in
Science & Engineering, 19(2):7–13, 2017.

[23] L. Xia et al. Fault-tolerant training with on-line fault detection for rram-
based neural computing systems. In DAC’17, pages 1–6, 2017.

[24] L. Xia, W. Huangfu, T. Tang, et al. Stuck-at fault tolerance in rram
computing systems. JETCAS, 8(1):102–115, 2017.

[25] M. Zamani et al. Ilp formulations for variation/defect-tolerant logic
mapping on crossbar nano-architectures. JETC, 9(3):1–21, 2013.

[26] B. Zhang and R. Ewetz. Towards resilient deployment of in-memory neural
networks with high throughput. In DAC’21, pages 1–9, 2020.

[27] B. Zhang, N. Uysal, D. Fan, and R. Ewetz. Handling stuck-at-faults in
memristor crossbar arrays using matrix transformations. In ASP-DAC,
pages 438–443, 2019.


