
Dehallucinating Large Language Models Using
Formal Methods Guided Iterative Prompting

Susmit Jha
Computer Science Laboratory

SRI International
Menlo Park, USA
susmit.jha@sri.com

Sumit Jha
Department of Computer Science
University of Texas, San Antonio

San Antonio, USA
sumit.jha@utsa.edu

Patrick Lincoln
Computer Science Laboratory

SRI International
Menlo Park, USA

patrick.lincoln@sri.com

Nathaniel D. Bastian
Army Cyber Institute

United States Military Academy
West Point, New York, USA

nathaniel.bastian@westpoint.edu

Alvaro Velasquez
dept. name of

name of organization
City, Country

email address or ORCID

Sandeep Neema
dept. name of

name of organization
City, Country

email address or ORCID

Abstract—The large language models (LLMs) such as Chat-
GPT have been trained to generate human-like responses to
natural language prompts. LLMs use a vast corpus of text data
for training, and can generate coherent and contextually relevant
responses to a wide range of questions and statements. Despite
this remarkable progress, LLMs are prone to hallucinations
making their application to safety-critical applications such as
autonomous systems difficult. The hallucinations in LLMs refer
to instances where the model generates responses that are not fac-
tually accurate or contextually appropriate. These hallucinations
can occur due to a variety of factors, such as the model’s lack
of real-world knowledge, the influence of biased or inaccurate
training data, or the model’s tendency to generate responses
based on statistical patterns rather than a true understanding
of the input. While these hallucinations are problematic in tasks
such as text summarization and question-answering, they can
be catastrophic when LLMs are used in autonomy-relevant
applications such as planning. In this work-in-progress paper,
we focus on the application of LLM in autonomous systems
and sketch a novel self-monitoring and iterative prompting
architecture that uses formal methods to automatically detect
these errors in the LLM response. We exploit the dialog capability
of LLMs such as GPT to iteratively steer them to responses
that are consistent with our correctness specification. We report
preliminary experiments with ChatGPT that show the promise
of the proposed approach on tasks such as automated planning.

I. INTRODUCTION

Large language models [1]–[4] have revolutionized natural
language processing tasks, such as text generation, translation,
and text summarization. The training data used for LLMs
such as ChatGPT are massive corpora of text documents
from the internet, including books, news, science articles,
public code repositories, and websites. The training data is
preprocessed to remove non-textual elements and then fed into
a transformer neural network architecture [5] that is trained as
an unsupervised auto-regressive generative model. The large
size (GPT-3 [3] used over 45 terabytes of data) and diversity
of the training data allow ChatGPT to generate a wide range
of responses to natural language prompts.

However, these models are prone to generating hallucina-
tions [6]–[9], that is, outputs that are factually incorrect or
contextually inappropriate. The hallucination problem is a crit-
ical challenge that must be addressed to ensure the reliability
and trustworthiness of large language models. The encoding of
knowledge in LLMs is lossy and the knowledge generalization
naturally leads to memory distortion and inaccurate retrieval of
knowledge from even training data. Thus, this problem cannot
be resolved by simply scaling data and models. Moreover,
recent studies have shown that large language models can also
suffer from the stale information problem, where the model’s
outputs are based on outdated or inaccurate knowledge due to
the dataset’s bias or the model’s inability to keep up with the
evolving knowledge. In this paper, we investigate the problem
of hallucination and factually incorrect responses from LLMs
and describe how formal methods can help alleviate this
problem in the context of autonomy.

Formal methods has been extensively used in cyber-physical
and autonomous systems to provide rigorous guarantees on the
behavior of a system and to verify whether it meets the ex-
pected specifications. The limited scalability of the underlying
combinatorial search such as satisfiability solving [10], mixed-
integer linear programming [11], and logic programming [12]
in the formal verification methods has impeded their wide-
scale adoption. We build on the recent demonstrations [13],
[14] that LLMs can be used as an efficient but not trustworthy
inductive search engine in autonomy-relevant tasks such as
planning. We posit that this trust deficit in LLMs because of
the hallucination phenomenon can be addressed using formal
verification to detect the inconsistencies and iteratively prompt
the LLM using the dialog capability till it converges to a
correct response acceptable to the formal verifier.

This is a first step towards integrating deductive formal
methods with inductive large language models into a high-
assurance learning and reasoning architecture.



II. RELATED WORK

A number of techniques have been explored to improve the
accuracy and the reliability of the large language models, such
as training the model on more diverse and representative data,
and integrating external sources of knowledge into the model’s
responses. These techniques broadly fall into the following
categories:
1) Fine-tuning: Fine-tuning [15] can reduce hallucination in

LLMs by allowing them to adapt to specific tasks or
domains, and to learn from more targeted and focused
training data. But fine-tuning is computationally and finan-
cially expensive for the LLMs with hundreds of billions
of parameters. For many domains, it is not obvious what
is a sufficient size of domain-specific dataset that needs
to be used for fine-tuning, and continuously monitoring
and fine-tuning LLMs is not practical. Failure of fine-
tuning to improve LLM performance has been reported
in literature [16]. Further, fine-tuning [17] is known to
adversely impact the model’s fluency, conversational capa-
bility, and in-context learning ability [18] which is critical
to its response to prompts.

2) Knowledge graphs: Another approach is to connect LLMs
to knowledge graphs [19], which represent knowledge
as a graph of interconnected entities and relationships.
Knowledge graphs can be used to encode a wide range
of structured and unstructured knowledge, including facts,
concepts, and relationships, and can provide a rich source
of information for LLMs to draw upon. Methods have been
developed to infuse structured knowledge into LLMs by
directly training models on factual triples of knowledge
graphs (KGs) and such models pre-trained on knowledge
graphs have been shown to outperform baselines [20]. But
this requires a well-curated and complete knowledge base,
building which is a time-consuming and expensive en-
deavor. Maintaining these knowledge bases with consistent
and up-to-date information over time is also challenging.

3) Memory augmentation: External knowledge can be en-
coded into a key-value memory that exploits the fast
maximum inner product search for memory querying.
These memory slots can then be integrated with language
models [21] for relatively smaller models, such as T5 [22].
Such a memory augmentation has been shown to improve
the performance of the deep learning model on knowledge-
intensive tasks. This method has not been yet attempted on
large language models such as GPT3 and ChatGPT. Hence,
the impact of these approaches on the other characteristics
of the LLMs such as fluency and in-context learning is not
known.

In autonomy applications, the space of possible problems is
very large and can have many factors of syntactic variation
which may not even be relevant to the underlying search
problem. It has been recently shown that LLMs are very
sensitive to such irrelevant variations [23]. Consequently, im-
proving accuracy via expensive fine-tuning or explicit curation
of knowledge graphs in such a context would be unrealistic.

Further, we avoid any change in the network architecture
such as memory augmentation, and hence, our approach can
be deployed on any state-of-the-art conversational LLM even
though our current experiments are only with ChatGPT.

III. TECHNICAL APPROACH

We use the LLM as an oracle and our approach relies
on a formal approach to prompt engineering for detecting
and removing hallucination bugs. This loose coupling with
LLM enables our approach to be agnostic to the specific
conversational LLM.

Fig. 1. The proposed architecture for combining formal methods and the large
language model. The prompt to the large language model is constructed by
concatenating the original query with feedback from the formal verification
engine identifying the incorrect candidate solutions as counterexamples (with
optional explanations that can be produced by verifiers). The correctness
specification is constructed from the query and is currently not automated.
The counterexample-guided iterative refinement of prompts ends when the
LLM produces a solution that the verifier finds to be correct.

Figure 1 describes the architecture of how a formal verifier
can be used to check the output of the LLMs and in the event
of incorrect responses, these are detected as counterexamples
and added as a part of the prompt to the LLM. This concate-
nation can be explicit addition to the prompt or just addition to
the conversation when the LLM is conversational and capable
of a dialog such as ChatGPT. Formal verification engines also
have the capability of constructing small counterexamples that
detect the part of the solution that is incorrect. This is helpful
in detecting with fine granularity the hallucinated fact by the
LLM and the revised prompt that eliminate this hallucination.
Iteratively, we keep expanding the prompt of the LLM to
eliminates the counterexamples (with optional explanations
localizing the relevant part of the counterexample). The LLMs
do not have any guarantees on learning monotonically or even
being consistent with the prompt, and hence, the iterations
are not guaranteed to terminate even when the number of
possible counterexamples is finite. But in practice, our prelim-
inary experiments indicate the LLMs eliminate the identified
hallucinations and converge to a response that is verified to be
correct.

The simple architecture described in Figure 1 is effective
in combining the LLMs and formal verifiers because of the
following empirical observations:
• LLMs can be prompted to generate well-structured outputs

that can be easily parsed by a formal verification engine.
The inclusion of a large corpus of code in their training
data can explain this observation. We successfully use this
to ensure the output of LLMs can be ingested by the verifier.



We have not currently used LLMs to automatically derive
the correctness specification, but it is likely this can be
successful for a wide class of specifications.

• Formal verifiers are very fast at checking the correctness of
a single solution for a task such as planning (as compared
to solving the problem using combinatorial search). Further,
verification can be used to detect the part of the solution that
violates the specification and to provide a more informative
feedback to the LLMs that rule out not just a single halluci-
nated solution but a whole class of incorrect solutions. Our
preliminary investigation has used a rudimentary verifier and
fault localizer, but there exists a huge body of work on
verification, fault isolation and explanation generation that
can be leveraged using this architecture.

• LLMs demonstrate remarkable in-context learning [18] and
adding counterexamples and explanations to the prompt
steers them away from incorrect responses and effectively
dehallucinates them, into eventually producing a correct
solution that is accepted by the verifier. The large context
length used to train LLMs appears to be responsible for
their ability to stay consistent with provided prompts. As
the number of counterexamples increase for more complex
problems and the length of the prompt becomes longer, it
would be interesting to observe whether LLMs still remain
consistent with the provided prompts and the feedback
provided by the formal verifiers.

• The use of formal methods for tasks such as planning
requires tedious modeling into existing solvers and verifiers.
Further, the responses of these formal engines need to be
translated into more easily interpretable form to be used
by engineers and developers who are not experts in formal
methods. The use of LLM in the above architecture serves
as a human-friendly frontend and, thus, partially alleviates
the challenge of making formal methods more accessible.
For application of this method to automated planning, we

use a simple satisfiability solver based plan verifier where
we encode the specification of the final goal and each action
manually (automated generation of this specification from the
natural language text is feasible using fine-tuned LLMs and
is left as a future exercise). Now, given a sequence of actions
constituting the plan identified by the LLM, we check whether
the sequence satisfies the specification. This is a much simpler
query than finding a plan that satisfies the specification (which
would require solving a quantified satisfiability problem). We
append all the failed plans as “not valid” to the prompt and
query the LLM to produce new plans. We terminate when the
LLM produces a valid plan.

IV. EXPERIMENTS

Our experiments comprise two case-studies, and we use
ChatGPT as the LLM. The first case study is a planning
problem with three blocks that has been widely studied in
literature. The second case study is a robot task planning
problem.

In the first case-study (see Figure 2), we specify the high-
level predicates that capture the state of the world, such as

BlockOn, OnTable, and Holding. We also describe the
permitted operations/actions and the initial state. We provide
a final state and ask the LLM (ChatGPT) to produce a valid
plan. ChatGPT takes 3 iterations to produce a correct plan. The
verifier appends the incorrect sequences to the prompt only
stating that these sequences are not valid. The final response
from the LLM provides a human-readable justification in
addition to the final plan.

Fig. 2. ChatGPT Screenshot: The final prompt that includes (a) the initial
query for the planning problem corresponding to stacking blocks on a table
and (b) the added corrections after formal verification stating that the earlier
suggested responses had invalid sequences. The final response is at the bottom,
where ChatGPT comes up with the correct plan.

In the second case study (see Figure 3), we consider a house
with 6 rooms with a particular connection topology. We ask
the LLM to plan the movement of a robot (roomba) to clean
all rooms and return to the bathroom using a set of primitives
defined as part of the prompt. In this case, we provide feedback
on the failed plans by specifying the reason for failure. The
LLM converges again to a plan that is correct and avoids the
invalid subsequences identified by the verifier.



Fig. 3. ChatGPT Screenshot: The final prompt that includes (a) the initial
query for the robot’s task planning problem and (b) the added corrections after
formal verification, stating that the earlier suggested responses had invalid
sequences. In this case, we provide an additional explanation for why a
sequence was invalid. The response is at the bottom where ChatGPT comes
up with the correct plan.

V. CONCLUSION

Our approach to addressing the hallucination challenge
can be viewed as an adversarial variant of the in-context
learning approach, wherein we use formal verification to detect
incorrect responses and include that as a part of the prompt
in the dialog with the LLM. Our method does require formal
modeling to check the responses of the LLM, but we do not
need to formally model the LLM itself. The initial experiments
reported over the planning task in this work-in-progress paper
are encouraging and indicate that the proposed combination
of LLMs and formal verifiers can alleviate the problem of
hallucination in LLMs that is essential for safety-critical
applications. In ongoing work, we are investigating methods to
automatically extract the specification to be used by a formal
verifier from the prompt text. We are also exploring the use of
more advanced formal verification techniques, such as those
based on model checking temporal properties.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[2] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” J. Mach.
Learn. Res, vol. 23, pp. 1–40, 2021.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[6] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faith-
fulness and factuality in abstractive summarization,” arXiv preprint
arXiv:2005.00661, 2020.

[7] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu,
M. Ott, K. Shuster, E. M. Smith, et al., “Recipes for building an open-
domain chatbot,” arXiv preprint arXiv:2004.13637, 2020.

[8] M. Cao, Y. Dong, and J. C. K. Cheung, “Hallucinated but factual!
inspecting the factuality of hallucinations in abstractive summarization,”
in Proceedings of the ACL (Volume 1: Long Papers), pp. 3340–3354,
2022.

[9] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, 2022.

[10] M. Y. Vardi, “Boolean satisfiability: theory and engineering,” Commu-
nications of the ACM, vol. 57, no. 3, pp. 5–5, 2014.

[11] T. Achterberg and R. Wunderling, “Mixed integer programming: An-
alyzing 12 years of progress,” Facets of Combinatorial Optimization:
Festschrift for Martin Grötschel, pp. 449–481, 2013.

[12] J. W. Lloyd, Foundations of logic programming. Springer Science &
Business Media, 2012.

[13] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner monologue: Embod-
ied reasoning through planning with language models,” arXiv preprint
arXiv:2207.05608, 2022.

[14] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning, pp. 9118–
9147, PMLR, 2022.

[15] C. Lee, K. Cho, and W. Kang, “Mixout: Effective regularization
to finetune large-scale pretrained language models,” arXiv preprint
arXiv:1909.11299, 2019.

[16] M. Bommarito II and D. M. Katz, “Gpt takes the bar exam,” arXiv
preprint arXiv:2212.14402, 2022.

[17] Y. Wang, S. Si, D. Li, M. Lukasik, F. Yu, C.-J. Hsieh, I. S. Dhillon,
and S. Kumar, “Preserving in-context learning ability in large language
model fine-tuning,” arXiv preprint arXiv:2211.00635, 2022.

[18] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer, “Rethinking the role of demonstrations: What makes
in-context learning work?,” arXiv preprint arXiv:2202.12837, 2022.

[19] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embed-
ding: A survey of approaches and applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[20] F. Moiseev, Z. Dong, E. Alfonseca, and M. Jaggi, “Skill: Struc-
tured knowledge infusion for large language models,” arXiv preprint
arXiv:2205.08184, 2022.

[21] Y. Wu, Y. Zhao, B. Hu, P. Minervini, P. Stenetorp, and S. Riedel, “An
efficient memory-augmented transformer for knowledge-intensive nlp
tasks,” arXiv preprint arXiv:2210.16773, 2022.

[22] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[23] S. K. Jha, R. Ewetz, A. Velasquez, and S. Jha, “Responsible reasoning
with large language models and the impact of proper nouns,” in
Workshop on Trustworthy and Socially Responsible Machine Learning,
NeurIPS 2022.


