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Abstract—Processing in-memory has the potential to break
von-Neumann based design principles and unleash exascale
computing capabilities. A rudimentary problem for in-memory
paradigms is to decompose mathematical operations into
in-memory compute kernels. In this paper, we propose the
AUTO framework that automatically maps arithmetic operations
into in-memory compute kernels that can be executed using
non-volatile memory. The AUTO framework is based on defining
semantically complete custom adders optimized for in-memory
computing. Using a library of such adders and a projection of
the partial product space, we discover decomposition that enable
fixed-point multiplication to be executed with fewer steps. The
framework also directly applies the technique to dot-product
operations to further improve performance. Compared with
state-of-the-art, the experimental results demonstrate that
AUTO can perform fixed-point multiplication and dot-product
operations with 16% and 19% fewer steps, respectively. For a
library of scientific computing applications, this translates into
energy and latency improvements of 15% and 17%, respectively.

I. INTRODUCTION

The next wave of scientific discovery will be predicated on
self-directed and constructivistic learning using scientific
simulation [1]. Scientific simulation has led to breakthroughs
within Bose-Einstein modeling [2], dendritic growth in
alloys [3], and improved x-ray adsorption [4]. However,
scientific simulations are extremely computationally expensive
and are pushing today’s high performance computing systems
to the breaking point. Unfortunately, no further gains are
expected from technology scaling due to the slowdown of
Moore’s law [5] and the von-Neumann bottleneck [6]. This
has forced the industry to invest in non-conventional
computing paradigms such as quantum computing [7], optical
computing [8], and in-memory computing [9]. Processing
in-memory using emerging non-volatile memory is a
promising contender to accelerate data-intensive applications
in future computing systems.

Despite that design automation is a core pillar of the highly
successful semiconductor industry, most studies on
in-memory computing are focused on the fabrication of novel
devices [10–13], innovative circuit design [14–17], and
non-Von-Neumann architectures [18–20]. State-of-the-art
in-memory computing schemes rely on manually
decomposing computation into in-memory compute kernels.
This lack of design space exploration leads to sub-optimal
results and that many in-memory technologies cannot live up
to their full potential.
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TABLE I: Performance Comparison for 32-bit Multiplication.

Work in Partial Product # of In-Memory Reduction in
Addition Approach Operations Operations

[21] full adders 15007 –
[22] full adders 12870 –
[23] full adders 10046 –

This work custom adders 8462 16%

Processing in-memory can be divided into analog [18, 24]
and digital paradigms [25, 26]. Analog in-memory processors
exploit the natural multiply-and-accumulate feature of
in-memory computing platforms [27, 28]. While analog
computation promises high energy efficiency, the resultant
precision is fundamentally limited due to various device-level
and circuit-level non-idealities [29, 30]. This paper focuses on
digital paradigms due to the deterministic precision required
by scientific simulation. The most effective digital paradigms
are based on performing parallel bitwise operations between
data stored in adjacent columns or rows within a crossbar of
non-volatile memory. This includes paradigms such as
bitwise-in-bulk [31], IMPLY [32], and MAGIC [33]. Of these
paradigms, MAGIC has recently shown the most promising
results due to that the entire computation is performed within
memory, which minimizes data movement and the use of
costly peripheral circuitry.

The MAGIC logic style is based on performing NOR
operations between data stored in adjacent bitlines (or
columns). The dominating computation within scientific
simulation is matrix-vector multiplication (MVM).
State-of-the-art solutions using MAGIC are based on
decomposing the MVM operations into element-wise
multiplication and addition operations. The multiplication
operations are further decomposed into full adder operations
of the partial products. Previous work utilized full adders of
1-bit [22] and 8-bits [23]. Lastly, the full-adder operations are
decomposed into NOR in-memory compute kernels. In
contrast, we propose to leverage automated synthesis to
discover custom adders that lead to remarkable improvements,
which is shown in Table I. These improved decompositions
can directly be used in numerous architectural level studies
focused on accelerating scientific computing, deep learning,
and encryption applications [19, 34–37].

In this paper, we propose the AUTO framework for
mapping arithmetic operations into in-memory compute
kernels. The framework is centered on defining a library of
semantically complete custom adders. Custom adders sum an



irregular number of bits of different values (more details in
Section III). Next, automated synthesis is used to cover the
partial products of fixed-point multiplication or dot-product
operations. In the AUTO framework, the covering is
performed using a projected version of the partial product
space, to reduce the size of the custom adder library and the
complexity of the covering problem.

The main contributions of the AUTO framework are outlined,
as follows:

• The introduction of the concept of a projected partial
product space and custom adders with semantically
complete carry generation.

• A synthesis algorithm for decomposing arithmetic
operations into in-memory compute kernels. The tool is
used to synthesize a library for arithmetic operations
such as element-wise addition, element-wise
multiplication, and dot-product operations.

• A light-weight mapping algorithm for binding
matrix-vector multiplication operations to in-memory
compute kernels at runtime using the library.

• Compared with state-of-the-art approaches, AUTO is
capable of performing fixed-point multiplication and
dot-product operations using 16% and 19% fewer
in-memory operations.

• The framework is evaluated using 15 scientific computing
applications from the SuiteSparse matrix collection [38].
Compared with state-of-the-art approaches, the evaluation
demonstrate energy and latency improvements of 15% and
17%, respectively.

The remainder of the paper is organized as follows:
preliminaries in Section II. The motivation of the AUTO
framework is discussed in Section III. The synthesis
methodology of the framework is explained in Section IV.
The architecture and the experimental evaluations are
discussed in Section V. The paper is concluded in Section VI.

II. PRELIMINARIES

In this section, we first explain the operating principles of
the digital in-memory computing within MAGIC. Next, we
discuss the state-of-the-art approaches to perform fixed-point
(FiP) multiplication using digital in-memory computing.

(a) (b)

Fig. 1: (a) MAGIC based in-memory INV-NOR operations
and (b) Parallel in-memory NOR-operations in NVM crossbar
architecture.

A. Digital In-Memory Computing using MAGIC

MAGIC is an in-situ logic style where both the input and
the output operands are stored inside memory. For execution
of bitwise NOR/INV operations, controlled voltages and
ground are applied to the memristor crossbar which is shown
in Figure 1(a). Control voltages are applied to the columns
with the input operands (a,b) and the column used to store
the results (out) is grounded. The output memristors are
switched between high resistance state (logic ‘0’) and low
resistance state (logic ‘1’) depending on the output of the
logic NOR/INV operations. The INV operations are
performed by only applying the control voltage to a single
bitline (or column). MAGIC is one of the more attractive
logic styles for in-memory computing because it supports
high-density logic operations and high-order parallelism in a
crossbar architecture. The operating principle of parallel logic
NOR/INV operations using MAGIC within memristor
crossbar is shown in Figure 1(b). The figure shows how a
NOR operation is evaluated along each wordline (or row) in a
single cycle.

B. In-Memory Fixed-Point Multiplication

Acceleration of fixed-point (FiP) multiplication using the
digital in-memory computing paradigms has been an active
field of investigations in recent years. Majority of the works
are on manually designed template-based approaches to
decompose the FiP multiplication into an addition of partial
products [21, 22]. Figure 2(a) shows the decomposition of a
FiP multiplication into sequential row-wise partial product
additions. In Step 1, the first two partial products are added
and an intermediate result is generated. The intermediate
result is then added to the next partial product. In the manual
decomposition approach, the multi-bit addition is further
decomposed into one-bit additions using the following
NOR/INV expression.

Cout = ((a+b)′+(b+Cin)
′+(Cin +a)′)′

Sum = ((a′+b′+C′in)
′+((a+b+Cin)

′+Cout)
′)′

Fig. 2: (a) Decomposition of a FiP multiplication into
sequential row-wise partial product additions and, (b) in-
memory execution of full adder netlist using a row of memristor
crossbar.



Here, Cin and Cout are the carry-in and carry-out bits
respectively. The sequential NOR/INV operations are next
performed using a single crossbar row as shown in
Figure 2(b). The input and the out put cells store the input
(a0−i,b0−i) and output operands, respectively. The f unctional
cells store the intermediate results of the sequential
NOR/INV operations. Parallel crossbars rows can perform
parallel FiP multiplication operations to accelerate
data-intensive dot-product operations.

The use of multi-bit full adders for summing two rows of
partial products was proposed in [23]. By converting an 8-bit
addition directly into NOR/INV operations, the number of
in-memory operations was reduced compared with using the
decomposition of a single-bit full adder eight times. However,
the solution approach was still manually restricted to
row-wise summing two adjacent partial product terms [23].
An automated and comprehensive exploration of partial
product cover patterns (row or non-row wise) is still missing.

III. MOTIVATION

In this section, we introduce an alternate perspective to the
partial product space cover problem. Next, we discuss a
concept of semantically-constrained carry bit generation for
decomposition of the partial products of FiP multiplication.

A. Rethinking the Partial Product Cover Problem

In this section, we introduce an alternate perspective to the
partial product cover problem of FiP multiplication.

Fig. 3: (a) Traditional non-projected partial product space for a
3-bit FiP multiplication, (b) proposed projected partial product
space for FiP multiplication, and (c) pruning of redundant non-
projected custom adders.

We show the traditional representation of the partial
product space for FiP multiplication of two 3-bit operands A
and B in Figure 3(a). The multiplication results in three rows
of partial products. As discussed earlier, the state-of-the-art
approach to in-memory FiP multiplication is to sequentially
cover these partial products row-wise using full adders. We
speculate that it might be beneficial to explore arbitrary
partial product cover patterns (e.g. custom adders) to cover
the partial product space. We observe that the placement of

all the bits in a column is interchangeable as addition is
commutative. Hence, we present a projected view of the
partial product space in Figure 3(b). The partial product space
is now a pyramid of bit-wise multiplications. Re-shaping the
partial product space into this pyramid structure allows us to
obtain a standard structural form, which facilitates easy use of
custom adders whose shapes are not strongly coupled to the
choice of the bits being covered. One additional importance
of the projected view of partial product space is that it helps
us to avoid exploration of redundant adders. The concept is
explained with an example in Figure 3(c). On the left of
Figure 3(c), we present seven non-projected custom adders.
Each gray box within the adder kernels represents a partial
product bit. Using the projected partial product space, the
seven kernels can be projected into a single projected custom
adder, as shown to the right in Figure 3(c). We note that the
resulting kernel exists in both projected and non-projected
form. Based on this example, we deduce that the projection
of partial product space allows us to prune out redundant
custom adders, which both reduces the number of possible
adders and simplifies the covering problem.

B. Semantically Complete Carry Generation

Before we begin the exploration of arbitrary cover patterns
for the partial product addition, we hypothesize that the
synthesis of custom adders should avoid generating redundant
carry bits that will never be non-zero due to the semantic
constraints imposed by choice of the kernel. Such a
semantically-constrained synthesis does not yield unnecessary
in-memory operations. We explain the concept with an
example in Figure 4.

Fig. 4: Redundant carry generations. (a) Addition of 2 and 3-
bits , and (b) decomposition of the kernel of addition of 3-bits
into a series of addition of 2-bits.

Figure 4(a) shows the kernels for the addition of 2-bits
( f0−1) and 3-bits ( f0−2), respectively. The former kernel can
be synthesized into a netlist of 5 NOR/INV operations and
the latter kernel can be synthesized into a netlist of 11
NOR/INV operations. Now, we show how the kernel of
addition of 3-bits can be executed using the kernel of addition
of 2-bits in Figure 4(b).

In Step 1, we add the bits f0 and f1 which results in an
intermediate sum bit S′ and a carry bit C′. In Step 2, S′ is
added with bit f2 and yields the sum bit S and carry bit C′′.
Finally, C′ is added with C′′ and results in two carry-out bits
C1 and C2. However, the maximum limit on the sum of the
addition of three bits is ′′11′′ and the C2 bit, therefore, is a
theoretical impossibility. Due to the sequential nature of the



cover approach, the synthesis tool cannot speculate the
redundant carry generations. As a result, opposed to the 11
NOR/INV operations in the netlist of addition of 3-bits, this
naive cover yields 15 NOR/INV operations. Therefore, we
should select to cover kernels that result in semantically
complete carry bits.

Every arbitrary partial product cover corresponds to a custom
adder. A custom adder is defined to be semantically complete
if the maximum sum of the covered partial products is equal
to (2k− 1) for any k. It is desirable to create custom adders
that cover partial products with a value of 3, 7, 15, 31, 63,
etc. However, in the AUTO framework, we will also leverage
custom adders that are close to semantically complete to enable
the use of custom adders with large covering patterns.

IV. THE AUTO FRAMEWORK

In this section, we first present the AUTO framework, which
is shown in Figure 5. The framework consists of three steps:
synthesis of custom adders, synthesis of arithmetic operations,
and fast binding to hardware. The first two synthesis steps are
only performed one-time, while the fast binding performed once
per matrix.

Fig. 5: Overview of the AUTO framework.

In the synthesis of custom adders step, we exhaustively
synthesize all possible custom adders into NOR/INV
operations. The details are provided in Section IV-A. Second,
we automatically synthesize a library of arithmetic operations
such as multiplication and dot-product operations with
different precision. The step is outlined in Section IV-B.
Third, given an MVM operation, the computation is bound to
crossbar hardware by decomposing it into operations in the
arithmetic library while considering the constraints of the
architecture. This step is discussed in Section IV-C. Lastly,
MVM operations are performed using in-memory computing
for different input vectors.

A. Synthesis of Custom Adders

In this section, we describe how we synthesize a library of
custom adders. The synthesis flow of custom adders is
illustrated in Figure 6. The synthesis is performed by first
exhaustively enumerating all custom cover patterns
L = {l1, · · · , lM} with a total value equal to or less than a
desired threshold. Each partial product term in a cover has a
value with respect to the right most column in the cover. The

Fig. 6: Flow for synthesizing a custom adder library.

partial products in different columns are valued 1, 2, 4, 8, etc.
Let’s consider n is the total number of columns in a cover
kernel and si denotes the number of partial products in the ith

column from the right. Now, for each l j ∈ L,

l j =
n

∑
i=1

si×2i−1 ≤ 2k−1

s.t. s1 ≥ 2, ∀(i, j,k) ∈ Z+

For instance, Figure 7 shows all the custom adders for a
kernel weight limit of 7. We define the weight of a custom
adder kernel as the maximum partial sum that the adder can
generate. The weight of a kernel can be calculated using the
formula ∑

n
i=1 si× 2i−1,∀i. The figure shows that there can be

12 different custom adder kernels with kernel weight ≤ 7.

Fig. 7: Library of custom adders for kernel weight limit of 7.
The gray blocks each represents a partial product.

For higher kernel limits, we get richer kernel library with
many custom adders. The number of available kernels with
respect to different kernel weight thresholds is shown in
Table II. Richer pattern libraries with many different column
and row configurations are expected to translate into
improved performance.

TABLE II: Size of the Kernel Cover Library

Kernel Weight Limit (2k−1)
3 7 15 31 63 127

# of Kernels 2 12 82 812 12754 318664

Next, we synthesize each of these kernels into NOR and INV
operations. We first automatically generate a verilog description
of the custom adder. Next, ABC [39] synthesizes the adder
into an AND-Inverter Graph (AIG) which is the internal data-
structure of ABC. Lastly, technology mapping is performed
with respect to a technology library of INV-gates, NOR2-gates,
and NOR3-gates. NOR operations with up to three inputs is the
default for MAGIC. The total number of NOR/INV operations
is stored in the custom adder library.

B. Synthesis of Arithmetic Operations

In this section, we first define the synthesis problem for
arithmetic operations. Next, we outline our synthesis solution.



Fig. 8: Our kernel-based approach to covering the partial products of FiP multiplication. (a) On the top: the target partial product
space for 5-bit FiP multiplication. At the bottom: a library of representative custom adder kernels to cover the partial product
space. (b) The workflow of sequentially covering the partial product space using the kernels from the library.

Lastly, we describe how to extend the synthesis solution to
dot-product operations.
Problem formulation: The input to the synthesis is the
partial products of an arithmetic operation S = {s1, · · · ,sN}, a
library of custom adders T = {t1, · · · , tM}. The output is a
sequence of K custom adder operations
X = {(xa

1,x
l
1), · · · ,(xa

K ,x
l
K)} that consume the partial products.

The objective is to minimize the total number of in-memory
operations, which can be formulated, as follows:

min
K

∑
k=1

costxa
k

(1)

s.t. si +
K

∑
k=1

p
i−xl

k+1
xa

k
− c

i−xl
k+1

xa
k

≤ 1,∀i

Here, costm is the number of operations that are required to
execute the adder m, si is the number of partial products in
column i, xa

k is the id m of the adder executed at k in the
execution sequence X , and xa

l is the location in the partial
product space where the adder is executed (right edge) in the
execution sequence X .

1) Arithmetic Synthesis Algorithm: In this section, we
explain how we synthesize the arithmetic operations in the
arithmetic library. The operations are synthesized using
Algorithm 1.

The algorithm iteratively selects a custom adder, processes
the adder and updates the temporary partial product space.
This process in continued until there is at most a single
partial product in each column. The algorithm considers all
custom adders as candidates. First, the algorithm prunes all
adders that do not cover the right-most column of the partial
product space. Second, another round of pruning is done
based on the semantic completeness of the previously selected
adders. We use the distance to (2k− 1) for any k to measure
the completeness. Lastly, we select the adder that requires the

Algorithm 1: Synthesis of Arithmetic Operation
Input: Non-traditional adder library T ; Partial product
space S.

Output: Selected series of non-traditional adders X .
X ← /0; p ← S(LSB); \\pointer to the LSB position
while S ≠ φ do
C ← T \\C is a list of candidate adders
C ← Prune C s.t. right most column in S is covered;
C ← Prune C based on semantical completeness;
m ← Select remaining adder with smallest cost in C;
X ← X ∪{m};
S ← (S\{m}); p ← S(LSB); \\Update S and p

end
return X ;

least number of in-memory cycles to be executed.
We illustrate the algorithm using an example in Figure 8.

On the top of Figure 8(a), we show a target partial product
space for a 5-bit FiP multiplication. Each gray box represents
a partial product bit. At the bottom of Figure 8(a), we show
a representative subset (K1−K4) of the custom adder library.
Note that, these kernels are not an exhaustive list of custom
adder kernels. Each of the kernels K1−K4 can cover a certain
shape of the partial product space of FiP multiplication and
generate several partial sum bits. The goal is to use the adders
in the library to cover the target partial product space. The
kernel cover workflow is illustrated in Figure 8(b). In the left
of Figure 8(b)-(i), we show the placement of adder K1 in the
partial product space. The adder resolves the covered bits from
the problem space and generates two final solution bits in the
least significant bit (LSB) position 2 and 3 which is shown in
the right side of Figure 8(b)-(i). Note that the LSB position 1
is already resolved and need not be covered by any adder. The
adder K1 cover also generates two carry bits C1 and C2 which



dynamically update the problem space. Next, the placement of
adder K2 is shown in the left of Figure 8(b)-(ii). The C1 bit
is projected down in the figure. Note again that the placement
of all the bits in a column are interchangeable as addition is
commutative. After the processing of K2, LSB position 4 is
resolved and three carry bits C3−C5 are generated as shown
in the right side of Figure 8(b)-(ii). This process is continued
in Figure 8(iii) and (iv) where the adder K3 and K4 cover
the remaining partial products. In each step, the problem space
is dynamically updated with the removal of resolved bits and
inclusion of incoming carry bits.

2) Dot-Product Operations: In this section, we extend the
kernel cover approach of FiP multiplication to dot-product
operations. Figure 9 illustrates the concept of generating the
partial-product space of dot-product operations. The left side
of the figure shows the partial product space of two FiP
multiplications A1.B1 and A2.B2. The partial product space of
the sum of the two FiP multiplications A1.B1 + A2.B2 is
shown in the middle of the figure. An equivalent dot product
representation of this addition of multiplications is shown in
the right side of the figure. It can be observed that the partial
products of dot product operation assumes a steeper pyramid
shape. Fortunately, the same lookup table of adder library in
the AUTO framework can cover this partial product space
using the same workflow as the FiP multiplication. The
AUTO framework decomposes the MVM operations into a
series of dot product operations and performs a unique dot
product operation, in parallel, in each row of the crossbar. As
discussed in the next section, the architectural constraint of
crossbar dictates how many dot-products can be processes in
each row of the crossbar.

Fig. 9: Merging FiP multiplications to generate the partial
product space for dot product operation.

C. Fast Binding to Hardware

In this section we discuss the architecture constrained
hardware binding of matrix-vector multiplication (MVM)
operations into memristor crossbars. The hardware binding is
done using the Algorithm 2.

For an MVM operation of a matrix W and vector Y , the
algorithm aims to bind a subset of dot-product Wi.Y into a
single row of crossbar. Here, Wi is the ith row of the matrix.
The number of dot-product operands that will fit in a crossbar
row is determined by (a) the bit-precision of dot-product
operation, (b) intermediate functional memristor cost
(acquired from adder sequence library X ) and, (c) the
dimension of the memristor crossbar. In the algorithm, the
temp variable iteratively tracks the total number of memristor

Algorithm 2: Architecture Constrained Hardware Binding
Input: Arithmetic library X ; Crossbar dimension r×q;

Bit precision d; Matrix W ; Vector Y ;
Output: Hardware assignment of MVM.
u ← 0; v ← 0; temp ← 0; \\initializing
while r ≥ temp do

v ← v+1; \\incrementing #of dot-product arguments
temp ← (2×d× v) + cost(X ,v)

+ ((2×d)+bit length(log2(v)));
\\total cost of input cell+functional cell+output cell
if (r ≥ temp) then

u ← v;\\#of architecture supported arguments
else

break;
end

end
Bind(Partition((Wi.Y ),u)),∀i; \\Partitioning& Binding
return;

requirement to bind v number of dot-product arguments.
When an argument threshold u is reached, the dot-product
Wi.Y is partitioned into a series of dot-products, each with u
arguments. Next, all of the partitioned dot-products are bound
to different crossbars but each at the same row/wordline
index. This condition is implemented to enable parallel data
transfer between adjacent crossbars. The algorithm aims to
use the dot-product operations with the maximum number of
arguments, since it is observed in the experimental evaluation
that this improves efficiency (see Figure 13 in Section V).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the AUTO
framework. The experiments are performed on an octa-core
3.60 GHz Intel Core i9 processor with NVIDIA RTX 2070
and 64 GB RAM. For synthesizing the in-memory computing
kernels, we use the ABC tool [39] with custom cell libraries
for MAGIC. The AUTO framework is developed using a blend
of C++ and MATLAB scripts.

We first present the architecture of the AUTO framework.
Next, we evaluate the synthesis complexity of the AUTO
framework. Subsequently, we present the performance of
AUTO on FiP operations and compare it with the SOTA.
Finally, we evaluate the AUTO framework for MVM-based
applications within scientific simulation.

A. Architecture

In this section, we present the architecture of the AUTO
framework. An overview of the architecture of the AUTO
framework is shown in Figure 10.

Each rank of the architecture consists of several in-memory
computing chips which are shown in Figure 10(a). The
micro-architecture of the chips is shown in Figure 10(b). Each
bank of the chip contains an array of crossbar mats arranged
in a row-parallel fashion to perform row-wise MAGIC
operations [34]. The cross-section of a crossbar mat is shown
in Figure 10(c). Row and column drivers are used to steer the



Fig. 10: Architecture of the proposed framework.

in-memory operations. Sense amplifiers (SA) and row-parallel
copying units (RPCs) [19] are used to enable parallel data
transfer into the neighbouring mats. Each wordline of the
crossbar is partitioned into four task-specific segments, which
is shown at the bottom of Figure 10(c). The input and the
output segments store the input and output operands of dot
product, respectively. The partial product segment stores the
partial products of the current kernel-covered region. The
functional segment performs the sequential in-memory
operations within a kernel netlist using the algorithm in [23].

The per-unit cost of different architectural components are
summarized in Table III. The per unit area and power costs
are adapted from previous works [18, 19]. The cross
architecture data communication cost between crossbar mats
is adapted from the case study of [40].

TABLE III: Area-Power Cost of Architectural Components

Component Parameter Specs Area Power

Crossbar Mat size 256×256 100 µm2 1.20 mW
Driver # unit 1 400 µm2 0.65 mW

Sense Amp. # unit 256 14.28 µm2 0.58 mW

Bus bandwidth 32B 31.40 mm2 26 mW
Local Bus #wires 256 0.06 mm2 4.66 mW

B. Evaluation of Synthesis Complexity

The synthesis of the AUTO framework consist of a one-
time expensive task of synthesizing the entire custom adder
library. As shown in the Table II, the size of the adder kernel
library grows exponentially with the increase of kernel weight
limit 2k−1 where k ∈ Z+. We show the runtime of the library
synthesis steps for different kernel weight limit in Figure 11.
Figure 11(a) shows the runtime for verilog script generation
and Figure 11(b) shows the runtime to synthesizing the custom
adder netlists using the verilog files. The figure shows that the
verilog script generation is very fast and take up to 12 minutes
for kernel limit of 127. The figure also shows that the adder
library synthesis is reasonably fast (from less than a second
to less than an hour) for kernel limit up to 63. However, for
the kernel limit of 127, the total number of adders are 318664
and the total synthesis time is 46 hours. Note again that this

Fig. 11: Runtime complexity of adder library synthesis steps.
(a) Runtime (in minutes) for verilog script generation, and (b)
runtime (in hours) for adder library synthesis.

is a one time-effort1 and is general purpose for any arithmetic
operations.

The next steps in the AUTO framework are the synthesis of
arithmetic operations using the Algorithm 1 and fast hardware
binding using Algorithm 2, respectively. These steps are almost
instantaneous and generally take less than a second.

C. Evaluation of FiP Multiplication and Dot-Product

The performance of the AUTO framework on FiP
multiplications of different precision is shown in Table IV.
The table shows that the AUTO framework requires at least
8-16% fewer in-memory operations compared to the the
previous frameworks. It can also be observed that the
performance improvement is greater for higher precision FiP
multiplications.

TABLE IV: Performance Comparison for FiP Multiplication.

Multiplicand Precision
Work in 8-bit 16-bit 32-bit

(steps) (steps) (steps)

ULTRA [21] 871 3663 15007
SIMPLER [22] 726 3110 12870

LOGIC [23] 518 2310 10046
AUTO (This work) 478 2024 8462

Minimum Improvement 8% 12% 16%

We present the results for the evaluation of dot-products
within the AUTO framework in Figure 13. Figure 13(a)
shows the % improvement (in terms of reduction of
in-memory operations) achieved by dot-product operations
over their equivalent sequential FiP multiplication and
addition operations. The figure shows that for 8-bit dot
products, the framework reduces the number of in-memory
operations by 7-12% for variable number of dot-product
arguments. The framework achieves up to 4% reduction in
in-memory operations for dot product operations on 32-bit
multiplicands. Figure 13(b) shows the maximum number of
dot-product arguments for crossbars of different dimensions.
Intuitively, dot product operations of higher precision require
larger crossbars.

1The entire custom adder library is publicly available on GitHub
(github.com/mrhrashed/AUTO).



Fig. 12: Area-latency-energy overhead evaluation of AUTO compared with SIMPLER [34] and LOGIC [23], respectively.

(a) (b)

Fig. 13: Evaluation on dot product operations on 8, 16 and
32-bit multiplicands. (a) % improvement over sequential FiP
multiplications for different order of dot product operations and,
(b) # of dot-products for different crossbar dimensions.

D. Evaluation with MVM Applications

In this section, we evaluate the performance of the AUTO
framework for the matrix-vector-multiplication (MVM)
operation. MVM is the dominating computation within
scientific simulation. These systems of linear equations can be
solved using the conjugate gradient (CG) method [41]. In the
CG method, an iterative MVM is performed which refines the
system solution in each iteration. The aim of the AUTO
framework is to accelerate this MVM operation. For the
evaluation, we select 15 matrices from the SuiteSparse matrix
collection [38]. An overview of the benchmarks is shown in
Table V. We compare the performance of the AUTO
framework with the state-of-the-art manual template-based
in-memory computing paradigm SIMPLER [34] and with the
synthesis-based in-memory computing paradigm LOGIC [23].
We consider a bit-width of 32-bits for the MVM operands.

In Figure 12, we present the area, latency and energy
consumption of the three frameworks. The experimental
results show that the AUTO framework improves area, latency

TABLE V: Overview of benchmarks from the SuiteSparse
Matrix Collection [38].

Applications Systems Matrix Dimensions #Non-zeros

eris1176 Power Network Problem 1176×1176 18552
cegb2919 Structural Problem 2919×2919 321543
raefsky1 Computational Fluid Dynamics 3242×3242 293409
fxm3 6 Optimization Problem 5026×5026 94026
Na5 Theoretical/Quantum Chemistry 5832×5832 305630
EX5 Combinatorial Problem 6545×6545 295680
fp Electromagnetics Problem 7548×7548 834222
ex40 Computational Fluid Dynamics 7740×7740 456188
benzene Theoretical/Quantum Chemistry 8219×8219 242669
bcsstk33 Structural Problem 8738×8738 591904
graham1 Computational Fluid Dynamics 9035×9035 335472
net25 Optimization Problem 9520×9520 401200
bundle1 Computer Graphics/Vision 10581×10581 770811
Si10H16 Theoretical/Quantum Chemistry 17077×17077 875923
Goodwin 040 Computational Fluid Dynamics 17922×17922 561677

and energy consumption by 1.4x, 2.25x and 2.5x, respectively,
over SIMPLER. Additionally, the AUTO framework achieves
17% and 15% improvements in latency and energy
consumption over the LOGIC framework. The improvements
stem from the fact that AUTO is able to decompose the
MVM operations into fewer in-memory compute kernels as
shown in Table IV. The area of AUTO and LOGIC are
comparable since a similar in-memory architecture is used.

VI. SUMMARY AND FUTURE WORK

In this paper, we propose a framework called AUTO for
mapping arithmetic operations into in-memory compute
kernels that can be executed using non-volatile memory. The
framework is based on defining custom adders with
semantically complete carry generation. The experimental
results show that AUTO reduces the number of operations
needed to perform fixed-point multiplication and dot-product
operations with 16% and 19%, respectively. This translates
into improved simulation performances for a whole host of
scientific computing applications. In our future work, we plan
to extend the AUTO framework to the acceleration of a wide
range of data-intensive applications.
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