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Abstract—In-memory computing using nanoscale crossbar
arrays is a promising solution strategy to overcome the limitations
of the von Neumann architecture. Flow-based computing is an
emerging in-memory computing paradigm for evaluating Boolean
logic using the natural flow of electrical currents. Previous studies
on flow-based computing have focused on synthesizing crossbar
designs with small dimensions to improve various performance
metrics. In this paper, we observe that the latency and energy of
evaluating a Boolean input vector is dependent on the state of the
crossbar design (or the previous input vector). To take advantage
of this observation, we propose the REORDER framework that
reorders the sequence of input vectors to improve performance.
The reordering reduces the overall number of WRITE operations
to the non-volatile memory devices, which has a first-order impact
on the overall performance of flow-based computing systems. The
optimal input sequence can be obtained by formulating and solving
a traveling salesman problem (TSP). The REORDER framework
leverages a heuristic solution to balance pre-processing overhead
with reduction in device switching. We evaluate the REORDER
framework on image processing applications that allow input
vector reordering. Compared with a naı̈ve input sequence, the
framework improves time and energy efficiency by 78% and 69%
respectively for image filtering and by 94% and 72% respectively
for feature extraction.

I. INTRODUCTION

Complementary metal-oxide-semiconductor (CMOS) tech-
nology, which has largely driven the advancement of energy
efficiency and throughput in digital processors for the past
50 years, is rapidly approaching its physical limits [1]. It is
estimated that, within the decade, transistors with a gate length
of 5 nm will be manufactured - beyond this limit, quantum-
mechanical effects can interfere, resulting in current leakage and
energy loss [2]. As a result, the race to scale CMOS has nearly
come to an end, forcing us to investigate alternate devices,
architectures, and computing paradigms with beyond-Moore
potential. Moreover, a primary constraint in modern computing
architectures is the von Neumann bottleneck - the cost of
communication between separate memory and processing units.
The concept of in-memory computing, in which memory and
computation are performed on the same device, resolves the
von Neumann bottleneck by removing the cost of memory
access altogether [3].

Hardware realizations of in-memory computing require a
memory device as well as a fabric for performing computation.
In 1971, Leon Chua proposed the existence of the memristor [4],
which was subsequently manufactured in 2008 [5]. Dense
crossbar arrays of memristive devices are a strong candidate
for in-memory computing due to their ability to store data

with close to zero leakage power [6]. Several in-memory
computing paradigms based on memristor crossbars have been
proposed, such as memristor-aided logic (MAGIC) [7], material
implication (IMPLY) [8], analogue matrix-vector multiplication
accelerators [9], and flow-based computing. Flow-based com-
puting is an emerging in-memory computing paradigm which
is particularly promising for evaluating Boolean logic [10].
Memory is loaded onto the crossbar in a precise pattern which
is designed to map the flow of current into the desired Boolean
computation. Then, a current is applied to the input nanowire
and the crossbar output is measured at one or more output
nanowires. This approach is particularly effective in settings
where a computation is executed many times on different inputs
since the design pattern can be used repeatedly.

Research on flow-based computing has been focused on
automatically synthesizing Boolean functions into crossbar
designs. The objective is to minimize the dimensions of the
resulting crossbars, which translates into performance and
area improvements. Early synthesis tools were driven by
model counting [11] and Boolean satisfiability [12]. More
recent studies perform synthesis by leveraging Binary Decision
Diagrams (BDDs). An optimal BDD embedding technique was
proposed in [10]. With no further gains to be expected from
reducing crossbar size, alternative approaches to improving
performance must be explored.

The predominance of the von Neumann architecture has
motivated efforts to optimize performance and energy effi-
ciency of von Neumann systems at all levels, including the
physical implementation, computer architecture, circuit and
logic networks, compilers, and operating systems. However,
the fundamental limits of CMOS technology have made it
difficult to improve the efficiency of such systems. It is critical
that we leverage the understanding gained by optimizing
traditional computing devices in the development of successor
technologies. In CMOS-based systems, power efficiency is
achieved by minimizing switching activity, since power is not
dissipated if the circuit is not switching [13]. We observe that
the switching activity induced by evaluating a Boolean input
vector is largely dependent on the state of the crossbar, which
is defined by the previous input vector. Hence, there exists an
opportunity to improve performance by intelligently reordering
input vectors.

In this paper, we propose a framework called REORDER
that improves performance through input-aware flow-based
computing. The framework minimizes the number of memristor



Fig. 1. (a) Crossbar design obtained from synthesis. (b) Reconfiguration of
hardware with respect to an input vector (x1,x2,x3)= (1,1,0). (c) Evaluation
of ϕ using D.

switches by reordering the sequence of the input vectors.
Memristors are switched using WRITE operations, which have
a first-order impact on the overall performance. We observe
that the number of required device switches between each pair
of input vectors can be stored in a graph. Finding the optimal
input sequence that minimizes the amount of device switching
is equivalent to solving the traveling salesman problem (TSP)
in this graph. The REORDER framework utilizes Gray code
ordering to efficiently find low-cost Hamiltonian paths in this
setting, outperforming general-purpose TSP solvers, heuristics,
and approximation algorithms. Additionally, we show that there
are natural opportunities to reorder input vectors within impor-
tant image processing applications. The framework is evaluated
using six image filtering techniques on the CIFAR-10 dataset
as well as feature extraction on MNIST. The experimental
results demonstrate latency and energy improvements of 78%
and 69% respectively for image filtering and improvements of
94% and 72% respectively for feature extraction.

The remainder of this paper is organized as follows: back-
ground is provided in Section II. The concept of input aware
flow-based computing and problem formulation are discussed
in Section III. The REORDER framework is presented in
Section IV. Our method for performing image filtering and
feature extraction using flow-based computing is described in
Section V. The experimental evaluation is given in Section VI.
The paper is concluded in Section VII.

II. BACKGROUND

A. Memristor Crossbar Arrays

A memristor crossbar array consists of two layers of
perpendicular metal nanowires. Within each intersection point,
there is a memristor sandwiched between the metal wires.
A memristor is a two-terminal device with programmable
resistance. The memristor acts as a switch that is turned on
(off) when the resistance is programmed to be low (high). The
resistance state of a memristor can be updated via a WRITE
operation, in which a current is simultaneously applied to its
incident horizontal and vertical nanowires. This causes a voltage
drop of the desired magnitude across the target memristor and
half the voltage drop across memristors in the same row or
column [14].

While resistive memory has several benefits - it is non-
volatile and achieves both low write energy and high memory
density - the existence of sneak-paths causes unwanted flows
of current in nanoscale crossbar arrays which prevent the
accurate reading of memristor states and increase energy
consumption [15]. These normally parasitic currents are instead
used to perform efficient computation within flow-based
computing [16].

B. Flow-Based Computing

Flow-based computation consists of three phases: synthesis,
reconfiguration, and evaluation. In the one-time synthesis phase,
a Boolean function ϕ is synthesized into a crossbar design
D. Each memristor in a crossbar design has been assigned a
constant, Boolean variable, or complemented Boolean variable,
which is shown in Figure 1(a). The crossbar realizes the
Boolean formula ϕ = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2 ∧ x3). A
significant benefit of flow-based computing is that, after a
single costly design synthesis phase, the same crossbar design
can be used to efficiently evaluate many input vectors. Each
crossbar design corresponds to a Boolean formula, and each
input vector consists of an assignment of values to the Boolean
variables.

In the reconfiguration phase, the memristors in the crossbar
are programmed to be on/off with respect to a Boolean input
vector, which is shown in Figure 1(b). The figure shows the
reconfiguration with respect to x1 = 1, x2 = 1, x3 = 0. To
evaluate the instance, a voltage is applied to the input wordline.
Current flows between any nanowires which are connected by
a memristor in the low-resistance state, denoted by 1. Finally,
since the current reaches the output nanowire through a sneak-
path of low-resistance memristors, the crossbar produces the
output of 1. Otherwise, the function evaluates to 0.

III. INPUT-AWARE FLOW-BASED COMPUTING

A. Motivation

A crossbar design D is used to evaluate the corresponding
Boolean function ϕ for many different input vectors. The
reconfiguration step dominates the overall latency and power
consumption because it relies on expensive WRITE operations,
whereas the evaluation phase requires only a single READ
operation. The number of WRITE operations in the reconfigu-
ration phase is dependent on the state of the crossbar as defined
by the previous input vector.

Two different input sequences of the same Boolean input vec-
tors are shown in (a) and (b) of Figure 2. Both input sequences
are processed by the the crossbar design in Figure 2(c). The
intermediate crossbar states for the input sequence I1 is shown
in Figure 2(d). It can be observed that 2 devices are switched
between input vector v0 and v1 in Figure 2(d). The complete
sequence I1 results in a total of 10 WRITE operations. In
contrast, the input vector sequence I2 results only in 7 WRITE
operations. Hence, there exists an opportunity to minimize the
total number of WRITE operations by reordering the input
vectors. We also note that there exists natural opportunities



Fig. 2. (a) Input vector sequence I1 = {v0, v1, v2, v3}. (b) Input vector sequence I2 = {v0, v3, v1, v2}. (c) Crossbar design D. (d) Intermediate state of the
crossbar after each input vector in (a). (e) Intermediate state of the crossbar after each input vector in (b).

for input vector reordering within many image processing
applications; this discussion is continued in Section V.

B. Problem Definition

The goal of this paper is to minimize the time and energy
consumption for a flow-based computing system to execute a
sequence of input vectors. At test time, the system is given a
sequence of inputs to be evaluated. Between each evaluation,
the new input vector must be loaded onto the crossbar by
reconfiguring the resistance states of the memristors. Given a
crossbar design representing some target function and a input
vector sequence of problem instances to evaluate, we aim to
evaluate the sequence using the minimum time and energy
possible.

The input is a crossbar design D and n input vectors Iinit =
{v0, . . . , vn}. The initial state of the crossbar design is defined
by a pseudo input vector v0 that cannot be reordered. The
input vectors v1 to vn are from an application that allows the
order of the input vectors to be rearranged. We approach this
problem by seeking the input sequence I that minimizes the
device switching activity.

The Input Vector Ordering Problem can be formulated as
finding the input sequence Iopt that minimizes the number of
WRITE operations:

Iopt = argmin
I

n−1∑
k=0

d(I[k], I[k + 1]) (1)

where I[k] denotes the kth input vector in the sequence I .
d(I[k], I[k + 1]) denotes the number of memristors that must
be switched between evaluating the input vectors I[k] and
I[k + 1].

IV. REORDER FRAMEWORK

In this section, we present the REORDER framework to
solve the input vector ordering problem. The reordering of the

input vectors is based on an analogy between reordering and
the traveling salesman problem (TSP), which is outlined in
Section IV-A. The methodology of the framework is presented
in Section IV-B.

A. Analogy between Input Vector Reordering and TSP

It has been observed [17], [18] that the problem of reordering
input vector sequences to minimize power dissipation in CMOS
circuits can be recast as an instance of the traveling salesman
problem. We modify this formulation to minimize switching
activity in flow-based computing systems as follows: Let G =
(V,E) be a graph where the vertices V represent input vectors
and the edges E represent the number of required WRITE
operations between pairs of sequential inputs. In particular, the
distance between each pair of input vectors (vi, vj) represents
the cost of reprogramming the crossbar array to evaluate vj
given that it is currently configured to evaluate vi. These
pairwise distances can be computed approximately using the
Hamming distance between input vectors; although the exact
switching cost depends upon the state of the crossbar array [14],
it is sufficiently accurate to assume constant values for time and
power efficiency. Consequently, determining the input sequence
that requires the fewest WRITE operations is equivalent to
finding the shortest Hamiltonian path in the graph, which is
the well-known traveling salesman problem (TSP).

In input vector reordering, the energy saved by executing
a reordered input vector sequence must outweigh the cost
of computing the reordering; however, solving the TSP is
famously NP-complete. Therefore, rather than computing the
exact minimum-cost path, the REORDER framework utilizes
efficient TSP heuristics to balance the energy saved from the
reordering with the overhead of computing the optimized input
sequence.



Fig. 3. (a) Sequence of input vectors and a crossbar design D. (b) TSP graph construction. (c) Reordering input sequence based on shortest path.

B. Methodology
The input to the REORDER framework is the crossbar design

D and the default sequence of input vectors Iinit. The output
is an optimized input order sequence Iout. The framework
consists of a TSP graph construction step and input sequence
selection step. The flow of the framework is illustrated with
an example in Figure 3.

1) TSP Graph Construction: The input to the TSP graph
construction is the default input sequence Iinit and the crossbar
design D, which is shown in Figure 3(a). In this step, we
construct the TSP graph that captures the number of required
WRITE operations between each pair of input vectors. The first
step is to count the number of times each Boolean variable xk

(including complemented variables xk) occurs in the crossbar
design. We denote the result as the frequency vector f . The
frequency vector f = [2, 2, 1]T for the crossbar design in
Figure 3(a) is shown in Figure 3(b). Using the frequency
vector, the number of required WRITE operations d(vi, vj)
between two sequential inputs vi and vj can be computed as
the Hamming distance between the input vectors weighted by
f :

d(vi, vj) = (vi ⊕ vj)
T f (2)

where ⊕ is the bitwise exclusive or function. Based on
Eq (2), we compute d(v2, v3) = 5 in Figure 3(b).

Now we are ready to formulate the TSP graph G = (V,E).
The graph is a complete graph with a vertex for each input
vector v0, . . . vn. The input vector v0 is a pseudo input vector
that is used to define the initial state of the crossbar. There is
an edge (i, j) between each pair of nodes and its weight wi,j

is set to d(vi, vj) using Eq (2), which is shown to the right of
Figure 3(b).

2) Input Sequence Selection: Each Hamiltonian path in the
graph corresponds to an input vector sequence. To ensure
that the initial configuration remains at the beginning of the
sequence, we fix the starting node of each path to v0. The
optimal Hamiltonian path for the TSP graph in Figure 3(b) is
shown to the left in Figure 3(c). The resulting sequence of input
vectors is shown to the right in Figure 3(c). The input vector
sequence is simply obtained from the order of the traversed
nodes.

As the TSP problem is an NP-complete problem, it is
expensive to solve exactly. Therefore, it is important to carefully

balance the performance benefits from reordering with the
cost of computing the new input vector sequence. In our
experimental evaluation we compare Concorde [19], an exact
TSP solver, and several heuristic methods, including the Lin-
Kernighan algorithm [20], the Christofides algorithm [21], and
an adaptation of Gray code ordering [22]. We observe that
Gray code ordering gives the best results; we describe the
details of the method below.

Although the general TSP is NP-complete, variants of the
TSP problem where the distance between two nodes is equal to
some metric (e.g. Euclidean distance) admit fast and accurate
heuristic solutions [23]. We observe that the number of WRITE
operations required to reprogram a flow-based computing
crossbar instance can be computed as the weighted Hamming
distance between the previous input vector vi and the next
input vector to be evaluated vj . Thus, input vector reordering
is a special case of the TSP where the distances constitute a
weighted Hamming space.

Gray code ordering can be used to solve the TSP for binary
Hamming spaces [18]; in other words, problems for which
the distance between any two nodes is equal to the Hamming
distance of the corresponding bit vectors. In this setting, the
TSP can be reduced to the problem of finding a minimal-change
order of the binary code given by the input vector sequence.

In an n-dimensional binary Hamming space, any n-bit Gray
code constitutes a minimal-change cycle over all vertices of
the n-cube and thus is an optimal solution to the TSP [22].
However, in weighted Hamming spaces, the total cost depends
on the number of times each bit is flipped in the binary code.
Formally, the problem of finding a minimal-change order Copt

of the vertices of the n-cube in a weighted Hamming space
can be represented as a minimization problem, where the kth
most significant bit has weight wk and flips δk(C) times over
a code C:

Copt = argmin
C

n∑
k=1

wkδk(C) (3)

The optimal solution Copt to this problem is given by the
n-bit binary reflected Gray Code where the bits are arranged
in order of weight. The kth most significant bit is flipped a
total of δk(Copt) = 2k−1 times over the n-bit binary reflected
Gray code; thus, assigning the highest weight bits to the most
significant positions minimizes the total cost of the ordering.



Algorithm 1: REORDER framework
Input : Crossbar design D, Boolean input vector

sequence Iinit of length L with n bits each
Output : Reordered sequence Iout
f ←VariableFrequencies(D);
\\sort in descending order
πf ← ArgSort(−f );
for i = 1 to L do

for j = 1 to n do
Ir[i][j]← Iinit[i][πf [j]];

end
X[i]← BinaryVecToInt(Ir[i]);
G[i]← X[i] & (X[i]≫ 1);

end
\\sort in ascending order
πI ← ArgSort(G);
for i = 1 to L do

Iout[i] = Iinit[πI [i]];
end
return Iout;

Motivated by these findings, we compute approximate shortest
paths through a subset of vertices of the n-cube by reordering
the vertices according to their position in the n-bit binary
reflected Gray Code.

Algorithm 1 shows the main steps in the REORDER
framework. First, the number of occurrences of each variable is
counted. Then, a reordering of the variables is computed such
that the variables with the highest frequency in the crossbar
design are placed in the most significant bit positions. This
reordering is applied to all input vectors in the sequence. Next,
the input vectors are converted from binary vectors to the
corresponding integer representation

x(v) =

n−1∑
i=0

2n−iv[i] (4)

The position Gn(x) of the integer x in the n-bit Gray code
is computed as

Gn(x) = x& (x≫ 1) (5)

where & denotes the bitwise AND operator and ≫ denotes
the bitwise right-shift operator. Finally, the input sequence is
rearranged in order of ascending Gray codes. Since the initial
vector v0 has a Gray code index of 0, it will always occur first
in the resulting sequence. The algorithm can be fully vectorized
and computed on a GPU.

V. IMAGE PROCESSING USING FLOW-BASED COMPUTING

Large input sequences occur naturally in applications such as
image processing, where a single technique is used to process
an entire dataset of images. The order of the processing of
the images is not important; all images simply have to be
processed. Many image processing techniques can be expressed

Fig. 4. Result of various image processing techniques applied as discrete 3x3
convolutional filters on ImageNet.

as a convolution operation on sliding windows of an image;
thus, the convolution is executed many times per image. Flow-
based computing is particularly suited to this task since the
results of the expensive one-time synthesis phase can be re-used
to execute the same processing technique on many images.

To perform convolution using flow-based computing, it is
necessary to synthesize a crossbar design that computes the
convolution operation. Given a fixed convolutional filter, we
represent the convolution between a sliding window of an image
and the filter as a linear combination of pixel values in Verilog
code. Then, the Yosys tool [24] is used to convert the high-level
Verilog description into a series of Boolean expressions in the
form of a Boolean Decision Diagram (BDD) [25]. Finally, we
use the COMPACT method [10] to synthesize the crossbar
design from the BDD. The resulting crossbar accepts an input-
vector containing each pixel value (represented as an 8-bit
integer) in the image window corresponding to a non-zero
weight in the filter and outputs a single value equal to the
result of convolution. The crossbar is then applied sequentially
on each window in the image to produce the final result.

Crucially, when applying our REORDER framework across
an image dataset, we are not limited to reordering windows
within one image; by interleaving sections of different images,
we can leverage structural regularities in the dataset to avoid
repetitive computation.

A. Image Filtering

Image filtering using discrete kernels can be used to perform
a variety of digital processing functions, including noise
reduction, motion blur, and edge detection. In image filtering,
a small (e.g. 3 × 3), carefully chosen convolutional filter, or
kernel, is convolved with an image to produce an output map.
Figure 4 shows the effects of using different filters on the
resulting image.

We demonstrate image filtering techniques using flow-based
computing on the CIFAR-10 dataset. To do so, we synthesize



TABLE I
SYNTHESIS OF CROSSBAR DESIGNS FOR IMAGE FILTERING.

Filter Rows Cols Inputs Synthesis Time (min)

Disk 658 631 40 2
Gaussian 4354 4366 72 193
LoG (σ = 0.5) 9985 10114 72 309
Motion Blur (45o) 2066 2081 56 28
Sobel (x) 3163 2983 48 124
Sobel (y) 2984 3162 48 172

crossbar designs for 6 discrete convolutional filters representing
common image processing techniques: Gaussian and disk filters
for noise reduction, a motion filter to simulate motion blur, and
the Laplacian-of-Gaussian and Sobel filters for edge detection.
For each filter, we use Yosys [24] and COMPACT [10] to
synthesize a crossbar design to perform convolution with the
given weights. We then split each image in the CIFAR-10
dataset into a set of input vectors corresponding to the sliding
windows of the image and accumulate the input vectors from
all images into a single sequence. Finally, we measure the
cost of evaluating the sequence using the synthesized crossbar
design before and after reordering. Table I contains the results
of synthesis for each crossbar. We measure the dimensions
of each crossbar as well as the amount of time required for
synthesis.

B. Feature Extraction

Convolution has been used widely in deep learning as a pow-
erful feature extractor for visual inputs. Stacking convolutional
layers into a convolutional neural network (CNN) achieves state-
of-the-art performance on many image processing tasks with
far less model complexity than a traditional fully-connected
neural network by reusing the kernel coefficients across sliding
windows of the input image. The feature maps produced by
CNNs constitute a deep and semantically rich representation
of the perceptual content of an image [26]. Furthermore, the
latent representations learned by CNNs perform well at transfer
learning, i.e. produce meaningful feature maps even on inputs
outside the original training distribution. As a result, the
output feature map of a convolutional layer which reduces
the dimensionality of the input can be seen as a compressed
version of the original image.

Previous studies [27] have shown that embedding the first
layer of a convolutional network into a CMOS image sensor can
leverage this compression property to significantly reduce the
bandwidth of communication between sensors and downstream
processing units. We extend this work in the beyond-Moore
setting by designing a nanoscale crossbar for flow-based
computing which can be embedded in-sensor to compress
images into feature maps.

Concretely, we achieve this by synthesizing a nanoscale
crossbar design to perform convolution with pre-trained weights
corresponding to the initial layer of a CNN using Yosys [24]
and COMPACT [10]. For layers with multiple output channels,
the input must be convolved with one kernel for each output
channel; this can be achieved using a single nanoscale crossbar

TABLE II
SYNTHESIS OF CROSSBAR DESIGNS FOR FEATURE EXTRACTION.

Feature Map Size Rows Cols Inputs Synthesis Time (min)

13× 13× 1 3750 3527 45 435
13× 13× 2 7266 7268 45 102
13× 13× 3 8668 8542 45 115

TABLE III
FEATURE EXTRACTOR QUALITY

Feature Map Size Compression Ratio Accuracy

13× 13× 1 86.53% 98.00%
13× 13× 2 73.05% 98.12%
13× 13× 3 59.58% 98.28%
28× 28× 1 0.00% 98.45%

design by synthesizing one crossbar design for each kernel
and constructing a composite design in the shape of a block
diagonal matrix. The resulting crossbar design can compute the
full feature map with a single execution of the evaluation phase
of flow-based computing. Table II shows the details of executing
the synthesis pipeline for feature extraction. Synthesizing a
crossbar design to compute the 13× 13× 1 feature map takes
much longer than synthesis for other feature maps despite the
reduced crossbar size due to the higher magnitude of weights
and increase in complexity of the resulting BDD.

Additionally, due to crossbar constraints, we must quantize
the inputs, network weights, and outputs to a fixed precision
chosen to minimize crossbar synthesis time and data bandwidth
without significantly damaging the quality of the resulting
feature map. In our experiments, all inputs, weights, and outputs
are quantized to 5 bits per pixel. We observe that, in all tested
cases, the loss in downstream classification accuracy due to
feature map quantization does not exceed 0.3%.

We measure the effectiveness of our flow-based feature
extractor on MNIST for feature maps of varying sizes. Table III
shows the accuracy achieved by a downstream classifier CNN as
a function of the compression ratio, measured as the reduction
in the size of the feature map (in bytes) relative to the original
image. Our method is able to compress images by up to 86.53%
with minimal impact on the performance of the downstream
classifier.

VI. EXPERIMENTAL RESULTS

Section VI-A details the architecture used in our REORDER
framework. In Section VI-B, we evaluate and compare different
TSP heuristics. In Section VI-C, we evaluate the effectiveness
of the the REORDER framework. The experimental evaluation
was performed on a machine with an Intel® Core™ i9-9900K
CPU @ 3.60GHz CPU with 8 cores and a NVIDIA TITAN
RTX GPU.

A. Architecture

We present the overview of the architecture of the
REORDER framework in Figure 6.



Fig. 5. Comparison of the optimality (a) and latency (b) of approximate TSP
solving algorithms for problems of size N=1000.

Fig. 6. Architecture of the REORDER framework.

Each rank of the architecture consists of several chips and
an I/O interface as shown on the top of the Figure 6. Each chip
contains several crossbar banks connected in an island-style
architecture. The routing architecture is shown at the bottom-
left of the figure. The connection blocks (CB) routs signals
between the neighbouring blocks. The switch blocks (SB)
supports cross-architecture communication. The cross-sections
of the crossbar bank, the CB and the SB is shown in bottom-
right of the figure. Global and local controllers are used to
program the crossbar banks and routing blocks. The area-power
cost of different architectural components are summarized in
Table IV. The parameter costs are appropriately adapted from
previous works [28], [29], [30]. Whenever the computational
space of a task exceeds the crossbar bank dimension, the
computation is partitioned and assigned to multiple banks.

TABLE IV
AREA-POWER COST OF ARCHITECTURAL COMPONENTS

Component Parameter Specs Area Power

Crossbar Bank size 1024 × 1024 1600 µm2 19.2 mW
Controller # unit 1 411 µm2 0.67 mW

Sense Amp. # unit 1024 57.12 µm2 2.32 mW
Connection Block bandwidth 1 kb 4.1 µm2 0.05 mW

Switch Block bandwidth 1 kb 16.35 µm2 0.21 mW
Bus bandwidth 1 kb 125.6 mm2 104 mW

B. Evaluation of TSP Algorithms

First, we evaluate our proposed heuristic against several
approximate methods for computing shortest Hamiltonian paths.
Our implementation is parallelized to run on a GPU using
PyTorch and CUDA. We evaluate all methods on a sequence
of input vectors of size N = 1000 and measure the time
required to generate the approximate shortest path. The results

Fig. 7. Comparison of the cost of input vector reordering with the energy
saved by executing the reordered sequence.

are shown in Figure 5. Our method can find inexpensive paths
(a) with negligible computational overhead (b) compared to
pre-existing algorithms. We are able to achieve significant
improvements over general-purpose TSP solving methods by
taking advantage of the additional properties of binary weighted
Hamming spaces to efficiently find shortest paths.

Figure 7 shows the cost of computing the approximate TSP
solution using our proposed Gray heuristic relative to the energy
saved by executing the reordered input vector sequence. Our
method can find approximate TSP solutions within milliseconds,
whereas general-purpose TSP algorithms take several seconds
and produce only slightly shorter paths. Furthermore, other
methods scale poorly: even heuristic TSP algorithms require
polynomial time in the number of input vectors to find an
approximate shortest path, whereas our method only takes log-
linear time. The efficiency of our heuristic results in a small
energy cost relative to the energy saved by reordering.

Fig. 8. Estimated energy cost (a) and latency (b) of image filtering using the
REORDER framework.

C. REORDER Framework

We measure the performance of our framework as the
total energy cost of computing the ordering and subsequently
evaluating the reordered input vector sequence. Because
memristor switching accounts for most of the time and
energy consumption required to perform flow-based computing,
we estimate the latency and energy efficiency of crossbar
evaluations by assigning a fixed time and energy cost of 50.88
ns and 3.91 nJ respectively per WRITE operation [31].

Figure 8 shows the estimated energy cost (a) and latency (b)
of performing image filtering on the CIFAR-10 dataset using
the REORDER framework relative to naı̈vely evaluating the
input vector sequence (i.e. in an arbitrary order) using flow-
based computing. Our framework requires 78% fewer switches



Fig. 9. Estimated energy cost (a) and latency (b) of feature extraction using
the REORDER framework.

to process the dataset, decreasing latency and energy usage
by 78% and 69%, respectively. In general, we observe greater
energy savings for larger crossbars due to the higher number of
switches prevented relative to the length of the sequence. On
the other hand, we find that the time required to pre-compute
the reordering is negligible compared to the cost of evaluation
for all designs tested.

We repeat the energy and latency analysis for our REORDER
framework for feature map extraction on the MNIST dataset
and display the results in Figure 9. On average, the REORDER
framework achieves a 94% decrease in latency and a 72%
decrease in energy.

VII. CONCLUSION

In this paper, we present the REORDER framework for
reducing power dissipation in flow-based computing systems
via input vector sequence reordering and demonstrate how
image processing techniques can be executed efficiently using
our framework. We show that the additional cost of sequence
reordering is negligible compared to the time and energy
saved by executing the reordered sequence on a crossbar array.
We achieve speedup and energy savings of 78% and 69%
respectively for image filtering and savings of 94% and 72%
respectively for feature map extraction. Further directions of
research include implementation of the reordering algorithm on
energy-efficient hardware such as FPGA or ARM processors.
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