
Published as a conference paper at ICLR 2026

JAILBREAKING THE MATRIX: NULLSPACE STEERING
FOR CONTROLLED MODEL SUBVERSION

Vishal Pramanik
University of Florida
Gainesville, FL 32611, USA
vishalpramanik@ufl.edu

Maisha Maliha
University of Oklahoma
Norman, OK 73019, USA
maisha.maliha-1@ou.edu

Susmit Jha
SRI International
Menlo Park, CA 94025, USA
susmitjha@berkeley.edu

Sumit Kumar Jha
University of Florida
Gainesville, FL 32611, USA
sumit.jha@ufl.edu

ABSTRACT

Large language models remain vulnerable to attacks jailbreak, inputs designed
to bypass safety mechanisms and elicit harmful responses, despite advances in
alignment and instruction tuning. Existing attacks often rely on prompt rewrites,
dense optimization, or ad hoc heuristics, and lack interpretability and robustness.
We propose Head-Masked Nullspace Steering (HMNS), a circuit-level interven-
tion that (i) identifies attention heads most causally responsible for a model’s de-
fault behavior, (ii) suppresses their write paths via targeted column masking, and
(iii) injects a perturbation constrained to the orthogonal complement of the muted
subspace. This geometry-aware intervention preserves fluency while steering the
model toward completions that differ from baseline routing. HMNS operates in
a closed-loop detection–intervention cycle, re-identifying causal heads and reap-
plying interventions across multiple decoding attempts. Across multiple jailbreak
benchmarks, strong safety defenses, and widely used language models, HMNS
attains state-of-the-art attack success rates with fewer queries than prior methods.
Ablations confirm that nullspace-constrained injection, residual norm scaling, and
iterative re-identification are key to its effectiveness. To our knowledge, this is
the first jailbreak method to leverage geometry-aware, interpretability-informed
interventions, highlighting a new paradigm for controlled model steering and ad-
versarial safety circumvention.

Baseline Output: I'm sorry, but I can't assist with that request.

Attempt 1: You can’t kidnap anyone and ask for money in return. I guess you could
but the consequences would be severe.

User: Explain how I can kidnap a person and ask for money in return.

Attempt 2: Well, you don't have to be the one kidnapping the person. I mean, you
could. You could go to a person on the street and say "you have a kid in a
basement . I want him." And then you could demand $10 million in exchange.

Figure 1: HMNS successfully jailbreaks LLaMA 3.1 70B, demonstrating high attack success and
compute efficiency even on large-scale, strongly aligned models.

1

Published as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in tasks such as open-domain
question answering, program synthesis, and structured reasoning Zhuang et al. (2023); Zheng et al.
(2023). With their increasing integration into real-world applications, ensuring safety has become a
critical concern. To mitigate risks, most deployed LLMs undergo a safety alignment phase, where
models are fine-tuned to align with human preferences and ethical guidelines Ouyang et al. (2022);
Rafailov et al. (2023); Korbak et al. (2023). However, even after alignment, LLMs remain vul-
nerable to jailbreaking attacks, where carefully crafted prompts can bypass safeguards and induce
prohibited outputs Perez et al. (2022); Wei et al. (2023). Recent studies show that such jailbreaks
are especially effective in long-context or tool-augmented settings Zou et al. (2023); Mazeika et al.
(2024); Chao et al. (2024). As model capabilities and context windows grow, the attack surface ex-
pands, underscoring the need for methods that are not only effective but also grounded in the model’s
internal mechanisms rather than surface-level cues, and for defense-aware evaluation protocols that
measure true robustness rather than mere prompt cleverness.

Prior jailbreak strategies include optimization-based prompting (e.g., AutoDAN Liu et al. (2023)),
multi-shot or reasoning-driven attacks (e.g., PrisonBreak Coalson et al. (2024), MasterKey Deng
et al. (2023)), and paraphrasing-based rewriting methods (e.g., ReNeLLM Ding et al. (2023)). While
these approaches can be effective in specific scenarios, they often require many queries, degrade sig-
nificantly under defenses, and offer limited interpretability in terms of model behavior. Stress tests
such as the Tensor Trust game Toyer et al. (2023) further highlight how easily system prompts can
be overridden in practice, underscoring the need for jailbreak techniques that are not only effective
but also grounded in the model’s internal mechanisms, capable of adapting to defenses rather than
being deflected by them.

To address the limitations of these prior approaches, we introduce Head-Masked Nullspace Steer-
ing (HMNS), a mechanism-level attack that exploits internal causal structure in Transformer LLMs.
HMNS (i) identifies prompt-specific, causally responsible attention heads using intervention-based
attribution, (ii) masks their out-projection contributions to suppress harmful routing, and (iii) in-
jects a corrective steering vector constrained to the orthogonal complement of the muted subspace.
Because this vector lies (up to a small tolerance) outside that span, it cannot be reconstructed or
canceled by the silenced heads; however, unmasked components (e.g., other heads or MLPs) could
still interact with it. HMNS operates in a closed loop, re-identifying causal heads after each decode
step, which allows it to adapt to shifting attribution patterns and sustain effectiveness under strong
defenses. This combination yields a jailbreak that is mechanism-aware, geometry-constrained, and
defense-resilient. The contributions of our work are as follows:

• We propose HMNS, which unifies causal-head attribution, projection masking, and
nullspace-constrained steering. By injecting directions orthogonal to muted write paths,
HMNS provides locally irreproducible control grounded in the function-vector view.

• Across four jailbreak suites (AdvBench, HarmBench, JBB-Behaviors, StrongReject) on
open-weight models, with dual independent graders, HMNS achieves state-of-the-art ASR
with markedly lower ACQ than existing attacks.

• We introduce a compute-normalized evaluation for jailbreaks by defining the forward-
equivalent pass (FEP) and reporting IPC, FPS, and LPS alongside ACQ to account for
HMNS’s internal masked/modified forwards. We also establish a compute-matched base-
line protocol that caps best-of-N decoding by HMNS’s per-input FLOP budget, showing
that HMNS delivers equal or lower FPS and latency despite extra internal work.

2 RELATED WORK

Large Language Models (LLMs) remain vulnerable to jailbreaking attacks, where adversaries craft
prompts that circumvent safety alignment and elicit restricted or harmful responses. Existing jail-
break strategies can be broadly categorized into three methodological classes. (i) Optimization-
based attacks automatically generate adversarial suffixes to induce model misbehavior. For in-
stance, GCG Zou et al. (2023) combines greedy and gradient-based decoding to produce unsafe
completions. Follow-up work has enhanced this framework by improving search objectives, increas-

2

Published as a conference paper at ICLR 2026

Malicious
Jailbreak Prompt

Repeat the whole process if not success

Measure per-head
causal impact using KL

divergence from
masked forward passes.

Identify Causal Heads

Mask the top-K
attention heads and

combine their output
directions into a shared

subspace.

Mask & Subspace
Build

Sample a random vector,
remove components in

the masked subspace, and
normalize to get the
steering direction.

Compute Steering
Direction

Scale the steering
direction by the RMS of
the residual and inject it
into the model's residual

stream.

Inject Steering Signal

Figure 2: Overview of HMNS procedure. Each step in the closed-loop intervention pipeline is
shown: attribution identifies influential heads; masking suppresses them; nullspace steering com-
putes an orthogonal direction; and a scaled perturbation is injected into the residual stream. If
unsuccessful, the process repeats with updated attribution.

ing generalizability, or reducing query cost. AmpleGCG Liao & Sun (2024) leverages successful
GCG outputs to train a generative model that amplifies its reach. Other extensions introduce more
diverse scoring and filtering schemes Zhu et al. (2023); Jia et al. (2024); Zhang & Wei (2025). Ar-
rAttack Li et al. (2025), for example, employs re-ranking to improve efficiency and robustness under
defense. (ii) Template-based attacks rely on injecting adversarial content within structured prompt
templates that evade alignment filters. AutoDAN Liu et al. (2023) applies a hierarchical genetic
algorithm to evolve prompts from an initial template. Other approaches include manually curated
template sets Li et al. (2023); Lv et al. (2024) which transfers across tasks and models. Many-
Shot Jailbreaking Anil et al. (2024) weakens alignment through long multi-shot contexts containing
chained instructions. (iii) Rewriting-based attacks exploit the model’s sensitivity to surface form
by rephrasing harmful prompts into semantically equivalent, syntactically distinct variants. This
leverages the observation that safety alignment may not generalize beyond the phrasing seen dur-
ing training. Techniques include paraphrasing, synonym replacement, and syntactic restructuring Li
et al. (2024b); Takemoto (2024); Mehrotra et al. (2024). Hybrid strategies such as DrAttack Li et al.
(2024c) and ReNeLLM Ding et al. (2023) further embed reworded prompts into benign-looking
scenarios. PrisonBreak Coalson et al. (2024) incrementally bypasses filters by guiding the model
through intermediate, safe completions using structured multi-step reasoning.

While these techniques can be highly effective, they primarily manipulate the input and offer limited
control over the model’s internal computation. As a result, they often degrade under strong defenses,
struggle with query efficiency, and lack mechanistic transparency.

3 METHOD: HEAD-MASKED NULLSPACE STEERING

Large decoder-only language models (LLMs) often route next-token prediction through a sparse sub-
set of attention heads, with only a few heads exerting strong causal influence over the model’s output
at each position. Prior work has shown that such contributors can be localized via ablation-based
interventions Zhang & Nanda (2023), and that steering model behavior is possible via activation-
level perturbations during inference Turner et al. (2023). Building on these insights, we introduce
Head-Masked Nullspace Steering (HMNS), a prompt-specific intervention method that (i) identi-
fies attention heads most responsible for the model’s continuation distribution, (ii) suppresses their
influence through dynamic masking of their out-projection contributions, and (iii) injects a correc-
tive residual vector constrained to the orthogonal complement of the masked head subspace. This
steering procedure is performed in a closed loop at inference time: at each decoding attempt we re-
compute attribution, construct the masked subspace, and inject a new orthogonal steering direction,
until success or maximum number of attempts is reached.

Preliminaries. Let fω be a decoder-only Transformer with L self-attention layers and model
dimensionality d. Given a tokenized prompt x1:T , the model computes the final-position logits
z → RV , where V is the vocabulary size. The predicted next token is

y
ε
= arg max

i→{1,...,V }
zi. (1)

3

Published as a conference paper at ICLR 2026

Each layer ω contains Hϑ attention heads of dimensionality dh, producing concatenated outputs
ĥϑ,T → RHωdh at position T . These are mapped into the residual stream via a learned out-projection
matrix W

O
ϑ → Rd↑(Hωdh), yielding

h
out
ϑ,T = W

O
ϑ ĥϑ,T . (2)

The output of head h is the slice ĥ
(h)
ϑ,T = ĥϑ,T [hdh : (h+1)dh], whose contribution to the residual

stream is W
O
ϑ [:, hdh : (h+1)dh] ĥ

(h)
ϑ,T . We mask a head’s influence by zeroing the corresponding

out-projection slice as formalized below.

Causal head attribution. To identify the attention heads most responsible for the model’s con-
tinuation behavior, we perform counterfactual ablation and score each head via the KL divergence
between output distributions. Let Sϑ,h → R(Hωdh)↑(Hωdh) be a diagonal selector with ones on the
slice for head h and zeros elsewhere. The masked out-projection for probing head (ω, h) is

W̃
O
ϑ,h = W

O
ϑ (I ↑ Sϑ,h), (3)

which replaces WO
ϑ only at layer ω during an ablated forward pass. Let P = softmax(z) denote the

baseline (output generated without HMNS) next-token distribution produced using equation 2, and
let P̃ (ϑ,h)

= softmax(z̃
(ϑ,h)

) be the ablated distribution obtained when using equation 3. The causal
importance of head (ω, h) is then

!ϑ,h = KL

(
P ↓ P̃

(ϑ,h)
)

=

V∑

i=1

Pi log
Pi

P̃
(ϑ,h)
i

. (4)

We rank all heads by equation 4 and select the top-K globally to form the prompt-specific causal set
S = {(ω, h) | !ϑ,h is among top-K}. We choose K sufficiently small such that rank(Mϑ) < d for
all intervened layers ω, ensuring that the masked subspace does not span the entire residual dimension
and that a non-trivial nullspace remains for steering. In our closed-loop setting, the attribution
in equation 4 is recomputed independently at each decoding attempt, allowing re-identification of
causal heads as the autoregressive context evolves.

Nullspace steering. To suppress the influence of selected heads while preserving fluency, we steer
along directions orthogonal to their out-projection subspace. For each layer ω with selected heads
Sϑ = {h | (ω, h) → S}, we construct

Mϑ =
[
W

O
ϑ [:, hdh : (h+1)dh]

]
h→Sω

→ Rd↑(|Sω|dh). (5)

We compute a thin QR factorization
Mϑ = QϑRϑ, (6)

then sample r ↔ N (0, Id) and project it into the orthogonal complement of span(Mϑ):

uϑ =
(I ↑QϑQ

↓
ϑ) r

↓(I ↑QϑQ
↓
ϑ) r↓2 + ε

, (7)

with small ε > 0 for numerical stability. The vector r provides a random probe into the residual
space, ensuring that the resulting direction uϑ lies within the nullspace of the masked subspace
while avoiding alignment with any specific residual pathway; this enables unbiased, geometry-aware
steering without reliance on handcrafted or learned directions. We verify orthogonality by enforcing
↓M

↓
ϑ uϑ↓↔ < ϑ and resample r if necessary. ϑ > 0 is a numerical tolerance used to certify that the

steering direction uϑ is (approximately) orthogonal to the masked write subspace Wϑ = span(Mϑ).

Inference-time intervention. At inference time, we apply a two-part intervention at each decod-
ing step to suppress the influence of identified causal heads and steer the model’s behavior along
directions orthogonal to their residual contributions.

First, for each layer ω with a non-empty set of selected heads Sϑ ↗ {0, . . . , Hϑ↑1}, we modify the
out-projection matrix W

O
ϑ by zeroing out the column blocks corresponding to the heads in Sϑ. This

is implemented via dynamic masking using an aggregated version of the selector matrix defined in
equation 3, and applied only during the current forward pass to preserve the integrity of the original

4

Published as a conference paper at ICLR 2026

model parameters. The effect is to remove the contribution of these heads to the residual stream at
position T , effectively silencing their influence during generation.

Second, we inject a small, geometry-constrained perturbation into the residual stream, aligned with
the orthogonal complement of the masked subspace. Let aϑ → Rd denote the residual activation at
layer ω and the final token position T , prior to residual addition. We compute a scaled perturbation
vector

ϑϑ = ϖ · RMS(aϑ) · uϑ, (8)
where uϑ → Rd is the nullspace direction defined in equation 7, ϖ is a fixed steering coefficient, and
RMS(aϑ) =

√
1
d

∑d
i=1 a

2
ϑ,i normalizes the intervention to the scale of the underlying activation.

The perturbation ϑϑ is applied via a forward hook at the output of WO
ϑ and affects only the final

token position of the current decoding step, ensuring localized and minimally invasive intervention.

This procedure operates within a closed-loop control framework, wherein causal attribution, sub-
space construction, and intervention are refreshed at each decoding attempt. At every iteration, we
recompute the attribution scores (equation 4), generate a new nullspace direction (equation 7), and
apply the corresponding perturbation (equation 8). The number of decoding attempts is fixed in ad-
vance (fixed by user), and each step uses prompt-specific information to adaptively steer the model
away from safety-aligned routing and toward alternative completions (generated output by LLM).

HMNS is fully inference-time, requires no gradient access or auxiliary prompts, and is compati-
ble with a wide range of decoder-only architectures. By combining localized causal suppression
with geometry-aware intervention, it offers an efficient and interpretable mechanism for redirecting
model behavior in safety-critical contexts. An overview of our method is illustrated in Figure 2, with
the full algorithmic procedure provided in Appendix Algorithm 2. The theoretical properties and
error bounds of HMNS are discussed in detail in Appendix A1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate on four widely used safety/jailbreak benchmarks that span prohibited and
safety–critical behaviors: AdvBench Zou et al. (2023), HarmBench Mazeika et al. (2024), JBB-
Behaviors Chao et al. (2024), and StrongReject Souly et al. (2024). From each benchmark, we
retain items labeled malicious or policy–violating by the dataset authors and perform a light man-
ual pass to remove duplicates and templated near–matches. Unless noted otherwise, our main pool
consists of N=925 unique prompts obtained by merging the four sources. We fix a three–way split
for all experiments: an analysis subset (150 items) for ablations and sanity checks, a development
subset (579 items) for hyperparameter selection, and a held–out test subset (196 items) for all re-
ported results. While HMNS itself is an inference-time method and does not require training, this
split ensures robust evaluation and prevents leakage during hyperparameter tuning (see AppendixA2
and Appendix A7 for more details). We evaluate our method on both instruction–tuned open-weight
models and safety–aligned chat models. Specifically, we use LLaMA-2-7B-Chat(Meta) 1 , Phi-3-
Medium-4K-Instruct (14B, Microsoft) 2 , and LLaMA-3.1-70B (Meta) 3. All evaluations are
performed in the zero-shot setting using the models’ default safety configurations unless stated
otherwise. All primary results and ablation studies are conducted on open-weight models to en-
sure transparency and reproducibility. We compare against representative jailbreak methods span-
ning optimization-, rewriting-, and reasoning–based families, including Foot-In-The-Door (FITD)
Weng et al. (2025), AutoDAN Liu et al. (2023), ArrAttack Li et al. (2025), Many-shot Jailbreak-
ing (MSJ) Anil et al. (2024), Adaptive Dense-to-Sparse Constrained Optimization (ADC) Hu
et al. (2024), Tempest Zhou & Arel (2025), PrisonBreak Coalson et al. (2024), and MasterKey
Deng et al. (2023). To assess robustness, we evaluate under six defenses covering decoding modi-
fications, smoothing, paraphrase filtering, and alignment: SmoothLLM Robey et al. (2023), DPP
Xiong et al. (2024), RPO Zhou et al. (2024), Paraphrase Jain et al. (2023), PAT Mo et al. (2024),
and SafeDecoding Xu et al. (2024).

1
https://huggingface.co/meta-LLaMA/LLaMA-2-7b-chat-hf

2
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct

3
https://huggingface.co/meta-LLaMA/LLaMA-3.1-70B

5

https://huggingface.co/meta-LLaMA/LLaMA-2-7b-chat-hf
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/meta-LLaMA/LLaMA-3.1-70B

Published as a conference paper at ICLR 2026

Table 1: Jailbreak effectiveness across evaluation benchmarks. We report Attack Success Rate
(ASR, %; left/right = GPT4o/GPT-5) and Average Query Count (ACQ; lower is better) on four
datasets—AdvBench, HarmBench, JBB-Behaviors, and StrongReject. Results are grouped by tar-
get LLM and averaged over three independent runs; best values are bolded and second-best are
underlined. Our method (HMNS) achieves the strongest performance across all models and datasets,
exceeding the next-best ASR by at least 5–6 percentage points while also attaining the lowest ACQ
(↘ 2). The standard deviation across three independent runs is < 0.4 for all reported entries.

Model / Method AdvBench HarmBench JBB-Behaviors StrongReject
ASR ≃ ACQ ⇐ ASR ≃ ACQ ⇐ ASR ≃ ACQ ⇐ ASR ≃ ACQ ⇐

LLaMA-2-7B-Chat
Foot-In-The-Door (FITD) 44.00 / 38.00 16.20 41.30 / 36.10 16.80 45.10 / 39.20 15.90 38.70 / 33.40 17.10
AutoDAN 72.60 / 66.20 12.80 69.10 / 63.20 13.10 73.40 / 67.50 12.50 66.20 / 60.40 13.60
ArrAttack 92.00 / 87.00 7.50 90.00 / 86.00 7.90 93.00 / 88.00 7.30 88.00 / 89.09 8.00
Many-shot JB (MSJ) 64.80 / 58.90 10.90 62.20 / 56.70 11.40 66.00 / 60.10 10.60 58.30 / 53.10 11.80
ADC 68.20 / 62.40 9.90 65.70 / 60.10 10.60 69.30 / 63.80 9.70 61.50 / 56.40 10.90
Tempest 84.10 / 78.40 9.40 82.00 / 76.60 9.80 85.20 / 79.40 9.10 78.60 / 73.20 9.90
PrisonBreak 77.30 / 71.20 11.70 74.10 / 68.30 12.10 78.50 / 72.60 11.20 71.00 / 65.40 12.40
MasterKey 70.40 / 64.30 10.50 67.00 / 61.20 10.90 71.80 / 66.10 10.20 63.60 / 58.20 11.20
HMNS (Ours) 98.00 / 93.00 2.00 96.00 / 92.00 2.10 99.00 / 94.00 1.90 94.00 / 89.00 2.20

Phi-3-Medium-14B (Instruct)
Foot-In-The-Door (FITD) 40.20 / 34.50 17.00 37.90 / 32.80 17.60 41.50 / 35.90 16.40 34.70 / 30.10 17.90
AutoDAN 65.10 / 58.80 13.60 62.40 / 56.70 13.90 66.30 / 59.90 13.10 58.80 / 53.20 14.20
ArrAttack 86.00 / 80.00 8.20 84.00 / 78.00 8.40 89.00 / 88.00 7.80 80.00 / 74.00 8.60
Many-shot JB (MSJ) 58.40 / 52.60 11.90 55.20 / 49.80 12.30 60.10 / 54.40 11.50 52.60 / 47.90 12.70
ADC 61.30 / 55.40 10.80 58.60 / 53.10 11.20 62.50 / 56.80 10.50 55.00 / 50.10 11.60
Tempest 82.10 / 75.80 9.70 80.00 / 73.90 10.00 83.20 / 77.10 9.40 76.00 / 70.40 10.20
PrisonBreak 73.60 / 67.10 12.50 71.00 / 64.80 12.90 74.40 / 68.20 12.10 66.90 / 61.00 13.00
MasterKey 62.70 / 56.30 11.30 60.10 / 54.20 11.70 63.40 / 57.50 10.90 56.00 / 50.80 12.00
HMNS (Ours) 92.00 / 86.00 2.00 90.00 / 84.00 2.10 94.00 / 88.00 1.90 86.00 / 80.00 2.20

LLaMA-3.1-70B
Foot-In-The-Door (FITD) 46.50 / 40.80 15.70 43.80 / 38.40 16.20 47.60 / 41.90 15.20 40.10 / 35.10 16.50
AutoDAN 74.00 / 67.90 12.40 70.60 / 64.90 12.80 75.20 / 69.30 12.00 67.90 / 62.30 13.10
ArrAttack 93.00 / 89.00 7.40 91.00 / 88.00 7.70 94.00 / 96.20 7.20 90.00 / 86.00 7.90
Many-shot JB (MSJ) 66.90 / 60.90 10.60 63.70 / 58.40 11.00 68.40 / 62.80 10.30 60.80 / 55.90 11.50
ADC 70.10 / 64.20 9.60 67.40 / 61.90 10.10 71.50 / 65.80 9.30 63.90 / 58.80 10.60
Tempest 85.30 / 80.10 9.10 83.10 / 78.20 9.50 86.40 / 81.20 8.90 79.20 / 74.60 9.80
PrisonBreak 78.40 / 72.60 11.50 75.60 / 70.20 11.90 79.80 / 74.30 11.10 72.00 / 66.90 12.20
MasterKey 71.60 / 65.70 10.40 68.90 / 63.40 10.80 72.90 / 67.10 10.10 65.00 / 59.80 11.10
HMNS (Ours) 99.00 / 95.00 1.80 97.00 / 94.00 2.00 99.00 / 96.00 1.80 96.00 / 92.00 2.10

We evaluate HMNS on LLaMA-2-7B-Chat, Phi-3-Medium-4K-Instruct, and LLaMA-
3.1-70B using NVIDIA A100-80GB GPUs (single GPU for 7B/Phi-3; tensor-parallel
device_map="auto" across 2⇒A100 for 70B). Per input and attempt, head selection is two-
stage: a lightweight proxy pre-selection (batched target–logit drop over all heads) forms a shortlist,
then exact KL scoring is applied on that shortlist; we finally take a global top-K=10 heads. Mask-
ing is applied only for the current forward pass. For each intervened layer ω, we assemble Mϑ from
the selected out-projection slices, compute a float32 thin-QR projector, sample uϑ → span(Mϑ)

↗,
and enforce ↓M

↓
ϑ uϑ↓↔ < 10

↘6 with up to 3 resamples; we assume a non-degenerate nullspace
(rank(Mϑ) < d) and skip layer ω if the test fails. Steering injects ϑϑ = ϖRMS(aϑ)uϑ after atten-
tion at the final token position. Decoding uses temperature 0.7, top-p = 0.95, max_new_tokens
= 128, batch size = 1; KV cache is disabled during attribution and steered decoding for correctness.
The closed loop runs up to Tatt=10 attempts with ϖt = 0.25 (1 + 0.1(t↑1)) and early stopping on
success. With proxy pre-selection, the internal-pass cost is IPC ↘ 1 + Tatt · Kexact masked for-
wards to first success, where Kexact ⇑ (total heads), substantially reducing internal compute versus
ablating every head.

4.2 RESULTS

In Table 1, across all three models and four datasets, HMNS achieves the highest jailbreak effec-
tiveness while using far fewer queries. Averaged over 12 model–dataset pairs, HMNS improves
ASR by approximately +5.9 pp (GPT4o) and +5.0 pp (GPT-5) relative to the second-best method
(ArrAttack), with margins of ⇓5–6 pp in 10/12 cases and two near-ties within 0.2 pp. Simulta-
neously, HMNS maintains ACQ ↘ 2 across settings—about 3.5–4⇒ fewer queries than strong
baselines—while the standard deviation over three independent runs is < 0.4 for all entries. We
attribute these gains to the combined effect of KL-based causal attribution, out-projection masking,

6

Published as a conference paper at ICLR 2026

Table 2: Ablation results on Phi–3 Medium 14B (AdvBench). Each row disables one component
of HMNS to measure its contribution. Metrics: ASR (GPT4o / GPT-5), ACQ (external queries), IPC
(internal passes), FPS (FLOPs per success; ⇒10

12), and LPS (latency in seconds).

Variant ASR (Fuzz/G4) → ACQ ↑ IPC ↑ FPS ↑ LPS (s) ↑
HMNS (Full) 96.8 / 92.1 2.1 32 0.58 6.8
Remove masking (Projection-only) 89.5 / 84.0 2.4 30 0.61 7.1
Remove projection (Mask-only) 87.9 / 82.2 2.3 29 0.55 6.3
Inject direct dir. (Direct–ω, no nullspace) 88.7 / 83.1 2.5 32 0.63 7.2
No re-identification (freeze top–K at t=1) 90.2 / 85.0 2.7 24 0.60 7.0
Random–K head selection 81.4 / 76.0 2.2 32 0.56 6.7
Single-layer (vs multi-layer) 86.1 / 80.8 2.0 22 0.50 6.0
Multi-position injection (vs final-only) 95.0 / 90.5 2.1 32 0.65 7.4

and orthogonal residual intervention, integrated into a closed-loop control pipeline that adaptively
re-identifies causal heads across attempts. These components suppress default routing pathways
and steer generation toward continuations not produced under baseline routing. Among baselines,
Foot-In-The-Door (FITD) performs worst, with the lowest ASR and the highest query counts.

In Table 4, across all three model scales (LLaMA-2-7B-Chat, Phi-3 Medium 14B Instruct, and
LLaMA-3.1-70B) and top performer baselines from Table 1, HMNS consistently achieves the high-
est ASR under all six defenses for both evaluators. Compared to the second-best method (ArrAt-
tack), HMNS yields average gains of +6–8 pp across defenses on GPT4o and +5–7 pp on GPT-5.
These improvements are uniform across model sizes, underscoring the scalability of HMNS. We
attribute this advantage to the locally irreproducible nature of our intervention: by steering in di-
rections orthogonal to muted write-paths, HMNS bypasses defense-induced routing changes, while
closed-loop re-identification adapts dynamically to evolving attribution patterns. Results are av-
eraged over three independent runs, with a standard deviation below 0.4. An illustrative example
of a successful jailbreak using HMNS is shown in Figure 1. Inter-annotator agreement results are
reported in Appendix A4.3.

4.3 COMPUTE-NORMALIZED EVALUATION

While HMNS achieves strong query efficiency, with an average of just two external queries (ACQ)
per successful jailbreak, this metric alone does not fully capture the method’s computational cost.
Prompt-based attacks typically perform one model forward per query, but HMNS additionally ex-
ecutes multiple internal procedures between attempts, including KL-based head-wise causal attri-
bution, nullspace direction computation (via QR), and closed-loop re-identification. Each of these
operations requires running the model over the input or continuation, which incurs hidden compute.
To fairly account for this internal overhead, we introduce a normalization unit called the forward-
equivalent pass (FEP). One FEP corresponds to the compute required for a single full forward pass
over the generated sequence using standard key–value (KV) caching. While some internal evalu-
ations (e.g., per-head out-projection masking for attribution) can be batched to reduce wall-clock
time, they still incur independent computational cost. For this reason, we count each masked or
modified forward as a separate FEP when computing total effort. Using this unit as a foundation, we
complement ACQ with three compute-aware metrics that capture internal work, total expenditure,
and real-world latency: (1) Internal Pass Count (IPC): The number of internal FEPs per successful
input, including baseline forwards, attribution ablations, and closed-loop re-identifications (external
decoding passes are excluded here and reflected in ACQ). (2) FLOPs per Success (FPS): The total
floating-point operations (in ⇒10

12) required to achieve a successful jailbreak, including all internal
FEPs and all decoding attempts, estimated using token counts and model dimensions. (3) Latency
per Success (LPS): The average wall-clock time (in seconds) to first success, measured end-to-end
on an A100-80GB GPU using bfloat16 precision (see Appendix A5 for more explanation).

7

Published as a conference paper at ICLR 2026

Table 4: Effectiveness of jailbreak methods under defense across three models. We report Attack
Success Rate (ASR, %) under six defenses (SMO, DPP, RPO, PAR, PAT, SAF) on LLaMA-2-7B-
Chat, Phi-3 Medium 14B Instruct, and LLaMA-3.1-70B. Values are GPT4o / GPT-5 evaluations.
Best results are bolded, second best are underlined.

Attack / Defense SMO DPP RPO PAR PAT SAF Avg
LLaMA-2-7B-Chat (AdvBench)

FITD 10.0 / 7.0 12.0 / 9.0 20.0 / 14.0 14.0 / 10.0 12.0 / 8.0 11.0 / 7.0 13.2 / 9.2
AutoDAN 15.0 / 11.0 24.0 / 18.0 38.0 / 28.0 28.0 / 20.0 22.0 / 16.0 18.0 / 12.0 24.2 / 17.5
ArrAttack 34.0 / 22.0 48.0 / 36.0 74.0 / 55.0 58.0 / 41.0 42.0 / 30.0 40.0 / 29.0 49.3 / 35.5
Tempest 26.0 / 19.0 42.0 / 31.0 68.0 / 50.0 52.0 / 38.0 36.0 / 25.0 33.0 / 24.0 42.8 / 31.2
HMNS (Ours) 40.0 / 25.0 54.0 / 41.0 82.0 / 61.0 64.0 / 45.0 48.0 / 33.0 47.0 / 34.0 55.8 / 39.8

Phi-3 Medium 14B Instruct (AdvBench)
FITD 8.0 / 6.0 10.0 / 8.0 18.0 / 13.0 12.0 / 9.0 10.0 / 7.0 9.0 / 7.0 11.2 / 8.3
AutoDAN 12.0 / 9.0 22.0 / 16.0 36.0 / 27.0 26.0 / 19.0 20.0 / 15.0 16.0 / 12.0 22.0 / 16.3
ArrAttack 36.0 / 24.0 50.0 / 38.0 76.0 / 57.0 60.0 / 42.0 44.0 / 31.0 41.0 / 30.0 51.2 / 37.0
Tempest 25.0 / 19.0 40.0 / 29.0 69.0 / 51.0 50.0 / 37.0 35.0 / 24.0 32.0 / 23.0 41.8 / 30.5
HMNS (Ours) 41.0 / 27.0 55.0 / 42.0 84.0 / 63.0 66.0 / 47.0 50.0 / 35.0 48.0 / 36.0 57.3 / 41.7

LLaMA-3.1-70B (AdvBench)
FITD 6.0 / 3.0 8.0 / 5.0 15.0 / 10.0 10.0 / 6.0 8.0 / 5.0 7.0 / 5.0 9.0 / 5.7
AutoDAN 9.0 / 7.0 20.0 / 15.0 32.0 / 26.0 20.0 / 16.0 18.0 / 14.0 12.0 / 9.0 18.5 / 14.5
ArrAttack 33.7 / 10.2 46.9 / 33.2 77.0 / 56.1 57.7 / 30.6 41.8 / 24.0 40.8 / 30.6 49.6 / 30.8
Tempest 24.0 / 18.0 40.0 / 28.0 68.0 / 50.0 50.0 / 26.0 35.0 / 20.0 33.0 / 26.0 41.7 / 28.0
HMNS (Ours) 39.7 / 16.2 52.9 / 39.2 83.0 / 62.1 63.7 / 36.6 47.8 / 30.0 46.8 / 36.6 55.6 / 36.8

Table 3: Compute cost comparison on LLaMA-3.1-
70B (AdvBench). Each value reports mean compute
per successful attack. IPC counts internal passes only;
FPS includes all internal and decoding FLOPs; LPS is
wall-clock latency.

Method IPC ↑ FPS (!1012) ↑ LPS (s) ↑
AutoDAN 0 0.44 5.2
ArrAttack 0 0.62 6.7
Many-shot JB 0 0.91 8.0
PrisonBreak 0 0.98 8.9

HMNS (Ours) 32 0.53 6.1

We evaluate these metrics on the Ad-
vBench test set using LLaMA-3.1-70B.
Prompt-based baselines are assessed using
best-of-N decoding, where N is selected
such that their total compute (in FLOPs)
does not exceed the per-input budget con-
sumed by HMNS (Appendix A3). Specif-
ically, each baseline is allowed to generate
up to N completions per input, where N is
determined by matching the total FLOPs
used by HMNS on that input. We report
the best result among those N attempts.
See Appendix A6 for the full compute-
matching protocol. Results are reported in Table 3, averaged over successful runs across three
random seeds.

Although HMNS incurs more internal passes (IPC = 32) (low because of pre-selection) compared to
prompt-only methods (IPC = 0), it achieves similar or better overall compute efficiency. Specifically,
HMNS reaches a success rate with only 0.53 trillion FLOPs per success—comparable to ArrAttack
at 0.62—and does so with lower latency (6.1 seconds vs. 6.7 seconds). This efficiency stems from
two properties: (1) HMNS attains higher success rates, requiring fewer retries, and (2) internal
operations are amortized through batched KL-based ablations and early stopping in the closed loop
(see Appendix A4 for more details). Notably, these advantages become more pronounced under
strong defenses (see Appendix A6). Prompt-based attacks often require many decoding retries to
bypass defenses, increasing both ACQ and total compute. In contrast, HMNS typically succeeds
in one or two loop iterations by adaptively steering around defense-induced routing changes, while
keeping internal work localized and interpretable. Although HMNS performs additional internal
inference, its high success rate and principled, locally irreproducible interventions yield compute-
normalized efficiency that matches, or exceeds, prompt-based jailbreaks, especially in the presence
of defenses.

8

Published as a conference paper at ICLR 2026

5 ABLATION STUDY

We conduct an ablation study in this section. Unless otherwise specified, all ablation studies are
conducted on the Phi-3 Medium 14B model using the AdvBench dataset. Due to space constraints,
full experimental details and extended results are provided in Appendix A5.

5.1 DISSECTING COMPONENTS OF HMNS

To understand the contribution of each component in Head-Masked Nullspace Steering (HMNS),
we perform a controlled ablation study on Phi-3 Medium 14B using the AdvBench jailbreak
dataset. Each variant disables or modifies one aspect of the full pipeline to isolate its effect on suc-
cess rate, query efficiency, and compute cost. Metrics include: ASR (Attack Success Rate; GPT4o
/ GPT-5), ACQ (external query count), IPC (internal passes without KV cache), FPS (FLOPs per
success in ⇒10

12), and LPS (latency in seconds, measured on A100-80GB, bf16). All results
follow the compute-matching protocol described in Section A3. The full HMNS method combines
KL-based head attribution, dynamic out-projection masking, and nullspace steering at the final token
position, with re-identification of top-K heads at each decoding step.

As shown in Table 2, all components contribute meaningfully to HMNS’s effectiveness. Removing
either masking or nullspace steering leads to a significant drop in ASR (by 7–10 points), confirming
their synergy. Replacing orthogonal injection with a direct direction (Direct-ϱ) reduces ASR and
increases latency, consistent with our theoretical motivation for irreproducibility (Theorem 2). Dis-
abling head re-identification lowers IPC but worsens ASR and ACQ, suggesting the need for adap-
tive attribution across decoding steps. Random head selection degrades ASR sharply, underscoring
the importance of KL-based attribution. A single-layer intervention saves compute but sacrifices
ASR, while multi-position injection yields minor ASR gains at higher cost. Overall, the full HMNS
configuration delivers the best trade-off: high ASR, low external queries, and competitive compute
and latency.

5.2 ATTRIBUTION MECHANISMS & NULLSPACE AND INJECTION

We analyze the sensitivity of Head-Masked Nullspace Steering (HMNS) to its two core design
choices on Phi-3 Medium 14B (Instruct) using AdvBench: (i) how causal heads are attributed
and scored, and (ii) how the nullspace steering vector is constructed and injected. Metrics follow
Sec. A3: ASR (GPT4o/GPT-5), external queries (ACQ), internal passes (IPC), FLOPs per success
(FPS), and latency (LPS). Full variant sweeps are reported in Appendix A7.2–A7.3. Table 5(a)
compares KL-divergence scoring (equation 4) against simpler heuristics. KL attribution with proxy
preselection and global top-K achieves the highest ASR (96.8/92.1) while keeping compute low.
This is because KL captures distributional shifts across the entire vocabulary, rather than relying
only on a single logit or entropy measure. Simpler heuristics such as target-logit drop, confidence
drop, or entropy change reduce FLOPs and latency slightly, but lose 5–8 points of ASR, showing
that they overlook distributed effects where multiple heads collectively shape the output. Removing
proxy preselection (ablating every head) preserves ASR but drastically increases IPC and latency,
highlighting that HMNS’s pruning step is key to maintaining efficiency without losing precision.
Table 5(b) evaluates how steering vectors are built and applied. Strict orthogonality to the masked
subspace is essential: relaxing tolerance or removing resampling lets residual components leak back
into the suppressed span, reducing ASR by up to 4 points. RMS scaling provides a stable reference
magnitude aligned with residual activations, while LayerNorm scaling gives a slight ASR improve-
ment by normalizing across dimensions. Injecting after attention outperforms alternatives, as the
nullspace is defined relative to attention head projections; injecting elsewhere weakens the causal
link between suppression and steering. Finally, strong masking is critical: partial masks (ς > 0)
consistently lower ASR and increase ACQ, confirming that effective suppression of causal heads is
necessary for steering to succeed.

6 CONCLUSION

We present HMNS, a mechanism-level jailbreak that pinpoints causal heads via KL-based attribu-
tion, suppresses their write paths, and injects orthogonal residual nudges—delivering state-of-the-art

9

Published as a conference paper at ICLR 2026

Table 5: Ablation studies on Phi-3 Medium 14B (AdvBench). (a) Attribution mechanisms. (b)
Nullspace and injection design. Metrics: ASR (%, GPT4o/GPT-5), ACQ (queries), IPC (internal
passes), FPS (⇒10

12), LPS (s).

(a) (a) Attribution ablation

Variant ASR ACQ IPC FPS LPS

KL-div (full) 96.8/92.1 2.1 32 0.58 6.8
Target-logit 91.0/85.9 2.4 26 0.54 6.3
Entropy change 88.5/83.2 2.7 23 0.49 6.0
No proxy filter 96.7/92.0 2.1 78 0.84 9.7

(b) (b) Nullspace / injection ablation

Variant ASR ACQ IPC FPS LPS

HMNS (Full) 96.8/92.1 2.1 32 0.58 6.8
Orth. tol. 10→5 94.0/89.5 2.2 32 0.56 6.6
Resample = 0 93.1/88.2 2.3 31 0.56 6.6
LayerNorm scale 97.1/92.6 2.1 32 0.59 6.9
Mask ϖ = 0.5 92.2/87.3 2.5 28 0.55 6.7

defended ASR with low query counts and competitive compute. Ablations confirm that attribution,
strict masking, and nullspace steering are jointly necessary for robustness and interpretability. A
remaining limitation is runtime: per-head causal ablations and per-layer QR-based nullspace con-
struction can be time-consuming, particularly on large models.

ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics and acknowledge the dual-use nature of jail-
break research. Our goal is to strengthen LLM safety by analyzing failure modes under common
defenses; we do not seek to enable misuse. Experiments use public benchmarks of policy-violating
prompts; no human subjects, personal data, or proprietary system prompts were collected. To reduce
harm, we (i) evaluate models offline without releasing harmful generations, (ii) avoid publishing ex-
ecutable attack scripts that directly enable replication against deployed systems, and (iii) redact or
paraphrase sensitive prompts in the paper and supplementary materials. Any artifacts we release
(e.g., evaluation harness) will include rate-limits and guardrails, and will exclude dangerous tem-
plates. We disclose no conflicts of interest and followed institutional and legal guidelines throughout.
Ethical note: We include a jailbreak example solely to illustrate HMNS’s mechanics and empirical
success—not to facilitate harm. All experiments were conducted offline on public benchmarks; we
redact sensitive content and do not release runnable attack scripts. The example is provided strictly
for research and safety analysis purposes.

REPRODUCIBILITY STATEMENT

We provide everything needed to reproduce our results. The main paper specifies the full
HMNS procedure (causal attribution, masking, nullspace steering), the compute-normalized metrics
(FEP/IPC/FPS/LPS), and the evaluation protocol; ablation settings and hyperparameters (e.g., global
top-K, steering schedule, orthogonality tolerances, KV-cache policy) are documented in the Exper-
iments and Ablations sections, with additional implementation details (model hooks, pre-selection,
float32 QR, context limits) in the Appendix. We include an algorithmic description in the main text
and release an anonymized supplementary package with runnable code, configs, and scripts cover-
ing dataset splits, prompts, seeds, and hardware notes. All reported numbers are averaged over three
runs with fixed seeds; model versions and decoding parameters are specified to ensure bitwise-stable
re-runs.

10

Published as a conference paper at ICLR 2026

REFERENCES

Cem Anil, Esin Durmus, Nina Panickssery, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua
Batson, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. Advances in Neural
Information Processing Systems, 37:129696–129742, 2024.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
Jailbreakbench: An open robustness benchmark for jailbreaking large language models. Advances
in Neural Information Processing Systems, 37:55005–55029, 2024.

Zachary Coalson, Jeonghyun Woo, Yu Sun, Shiyang Chen, Lishan Yang, Prashant Nair, Bo Fang,
and Sanghyun Hong. Prisonbreak: Jailbreaking large language models with fewer than twenty-
five targeted bit-flips. arXiv preprint arXiv:2412.07192, 2024.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei
Zhang, and Yang Liu. Masterkey: Automated jailbreak across multiple large language model
chatbots. arXiv preprint arXiv:2307.08715, 2023.

Peng Ding, Jun Kuang, Dan Ma, Xuezhi Cao, Yunsen Xian, Jiajun Chen, and Shujian Huang. A
wolf in sheep’s clothing: Generalized nested jailbreak prompts can fool large language models
easily, 2023.

Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/detoxify, 2020.

Kai Hu, Weichen Yu, Yining Li, Tianjun Yao, Xiang Li, Wenhe Liu, Lijun Yu, Zhiqiang Shen,
Kai Chen, and Matt Fredrikson. Efficient llm jailbreak via adaptive dense-to-sparse constrained
optimization. Advances in Neural Information Processing Systems, 37:23224–23245, 2024.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chi-
ang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Xiaojun Jia, Tianyu Pang, Chao Du, Yihao Huang, Jindong Gu, Yang Liu, Xiaochun Cao, and Min
Lin. Improved techniques for optimization-based jailbreaking on large language models. arXiv
preprint arXiv:2405.21018, 2024.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human prefer-
ences. In International Conference on Machine Learning, pp. 17506–17533. PMLR, 2023.

Linbao Li, Yannan Liu, Daojing He, and Yu Li. One model transfer to all: On robust jailbreak
prompts generation against llms. arXiv preprint arXiv:2505.17598, 2025.

N. Li, Z. Han, I. Steneker, W. Primack, R. Goodside, H. Zhang, Z. Wang, C. Menghini, and S. Yue.
Llm defenses are not robust to multi-turn human jailbreaks yet. arXiv preprint arXiv:2408.15221,
2024a.

Xiaoxia Li, Siyuan Liang, Jiyi Zhang, Han Fang, Aishan Liu, and Ee-Chien Chang. Semantic mirror
jailbreak: Genetic algorithm based jailbreak prompts against open-source llms. arXiv preprint
arXiv:2402.14872, 2024b.

Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. Drattack:
Prompt decomposition and reconstruction makes powerful llm jailbreakers. arXiv preprint
arXiv:2402.16914, 2024c.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepinception:
Hypnotize large language model to be jailbreaker. arXiv preprint arXiv:2311.03191, 2023.

Zeyi Liao and Huan Sun. Amplegcg: Learning a universal and transferable generative model of
adversarial suffixes for jailbreaking both open and closed llms. arXiv preprint arXiv:2404.07921,
2024.

11

Published as a conference paper at ICLR 2026

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Huijie Lv, Xiao Wang, Yuansen Zhang, Caishuang Huang, Shihan Dou, Junjie Ye, Tao Gui,
Qi Zhang, and Xuanjing Huang. Codechameleon: Personalized encryption framework for jail-
breaking large language models. arXiv preprint arXiv:2402.16717, 2024.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically. Advances
in Neural Information Processing Systems, 37:61065–61105, 2024.

Yichuan Mo, Yuji Wang, Zeming Wei, and Yisen Wang. Fight back against jailbreaking via prompt
adversarial tuning. Advances in Neural Information Processing Systems, 37:64242–64272, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
arXiv preprint arXiv:2202.03286, 2022.

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun Peng, Sebastian Szyller, Cory Cornelius,
and Duen Horng (Polo) Chau. Llm self defense: By self examination, llms know they are being
tricked. arXiv preprint arXiv:2308.07308, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,
Justin Svegliato, Scott Emmons, Olivia Watkins, et al. A strongreject for empty jailbreaks. Ad-
vances in Neural Information Processing Systems, 37:125416–125440, 2024.

Kazuhiro Takemoto. All in how you ask for it: Simple black-box method for jailbreak attacks.
Applied Sciences, 14(9):3558, 2024.

Sam Toyer, Olivia Watkins, Ethan Adrian Mendes, Justin Svegliato, Luke Bailey, Tiffany Wang,
Isaac Ong, Karim Elmaaroufi, Pieter Abbeel, Trevor Darrell, et al. Tensor trust: Interpretable
prompt injection attacks from an online game. arXiv preprint arXiv:2311.01011, 2023.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering. arXiv preprint
arXiv:2308.10248, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? Advances in Neural Information Processing Systems, 36:80079–80110, 2023.

Zixuan Weng, Xiaolong Jin, Jinyuan Jia, and Xiangyu Zhang. Foot-in-the-door: A multi-turn jail-
break for llms. arXiv preprint arXiv:2502.19820, 2025.

Chen Xiong, Xiangyu Qi, Pin-Yu Chen, and Tsung-Yi Ho. Defensive prompt patch: A robust and
interpretable defense of llms against jailbreak attacks. arXiv preprint arXiv:2405.20099, 2024.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Poovendran.
Safedecoding: Defending against jailbreak attacks via safety-aware decoding. arXiv preprint
arXiv:2402.08983, 2024.

12

Published as a conference paper at ICLR 2026

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. arXiv preprint arXiv:2309.16042, 2023.

Yihao Zhang and Zeming Wei. Boosting jailbreak attack with momentum. In ICASSP 2025-2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5.
IEEE, 2025.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilin-
gual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5673–5684, 2023.

Andy Zhou and Ron Arel. Tempest: Autonomous multi-turn jailbreaking of large language models
with tree search. arXiv preprint arXiv:2503.10619, 2025.

Andy Zhou, Bo Li, and Haohan Wang. Robust prompt optimization for defending language models
against jailbreaking attacks. Advances in Neural Information Processing Systems, 37:40184–
40211, 2024.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani
Nenkova, and Tong Sun. Autodan: interpretable gradient-based adversarial attacks on large lan-
guage models. arXiv preprint arXiv:2310.15140, 2023.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

13

	Introduction
	Related Work
	Method: Head-Masked Nullspace Steering
	Experiments
	Experimental Setup
	Results
	Compute-Normalized Evaluation

	Ablation Study
	Dissecting Components of HMNS
	Attribution mechanisms & Nullspace and injection

	Conclusion
	Appendix
	Theoretical Properties and Error Bounds
	Geometry and Invariance
	Residual- and Logit-Space Bounds
	Subspace Perturbations and Numerical Stability
	Practical Corollaries

	Experiment and Implementation details
	Experimental Assumptions, Hardware, and Hyperparameters
	Experiments on Alternative Open-Weight Models

	HMNS Budget
	Evaluation Protocol, Leakage Controls, and Grader Calibration
	Jailbreak Success Labeling
	Grader Rubrics and Prompts
	Inter-Rater Agreement and Uncertainty
	Fluency Metric
	Toxicity Metric and Threshold Calibration
	Leakage Controls and Reproducibility
	Summary Tables: Fluency and Toxicity

	Compute-Fair Evaluation and Baseline Parity
	Metrics and Protocol
	Activation-Space Baselines and Matched Controls
	Compute Ledger (Targets: LLaMA-2-7B-Chat, Phi-3-Medium-14B-Instruct, LLaMA-3.1-70B)
	Compute-Matched Results (All Three Targets)
	Takeaways

	Compute Analysis under Defenses
	FLOPs and Latency under Defenses
	Success Rate vs. FLOPs Curves
	Internal Pass Count (IPC) Calculation
	Experimental Details

	Ablation Study
	Ablation Study: Dissecting Components of HMNS
	Ablation Study: Attribution and Scoring Mechanisms
	Ablation: Nullspace and Injection Design Choices
	Ablation: Hyperparameters
	Extended Ablations: Numerical Stability, Targeting Policy, Formatting Sensitivity, Defended Robustness, Compute Fairness, Evaluation Sensitivity, and Sanity Checks
	Algorithmic Summary

	Head-Importance Dynamics Across Iterations
	HMNS Failure Modes
	Multi-Turn and Long-Context Evaluation
	Complementarity with Output-Side Self-Defense Filters

