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Abstract—Many real-world computer vision tasks require
learning to associate multiple properties of different modalities
with the same image. Multi-task learning enables a single model
to learn these properties simultaneously by leveraging shared
knowledge across related tasks to enhance generalization with
single-modal data. On the other hand, contrastive learning
effectively captures robust multi-modal features by aligning
similar representations and distinguishing dissimilar ones.
However, state-of-the-art methods struggle with combining these
two learning approaches due to the difficulty in optimizing both
shared and task-specific objectives. In this paper, we introduce
a Multi-Task Contrastive Learning (MTCL) framework that
partitions the embedding space to support both classification
and regression tasks within a multi-task paradigm. By batching
samples with tasks and structuring the embedding space to
accommodate diverse task-specific requirements, our method
retains the advantages of contrastive learning while addressing
the unique challenges of multi-task learning. We evaluate our
approach on three benchmark multi-task datasets—Zappos50K,
CUB200, and MEDIC. We also introduce a multi-task Vehicles
dataset that includes orientation. On the benchmark datasets,
our model shows 24.5%, 17.2%, and 30.0% increase in overall
classification accuracy compared to the SOTA methods.

Index Terms—Multi-task learning, Contrastive learning,
Multi-objective learning, embedding space partitioning.

1. INTRODUCTION

In computer vision, Multi-task learning (MTL) is
particularly important for assigning multiple attributes or
properties to images or objects within an image, enabling
models to handle complex tasks more effectively. MTL is
an optimization framework that has gained prominence in
machine learning by improving model generalization through
the simultaneous training of multiple related tasks [1]. By
sharing a common embedding space across tasks, MTL
exploits task commonalities and benefits from inductive
transfer, where learning one task enhances performance
on others. This approach has demonstrated significant
performance improvements over single-task learning across
various domains, including computer vision, natural language
processing, and speech recognition [2], [3].

Common embedding spaces integrate multi-modal data
(e.g., text, images, audio) by projecting them into a shared
latent space, enabling tasks like cross-modal retrieval and
fusion [4], [5]. Contrastive learning enhances this process by
aligning similar data points and distinguishing dissimilar ones
through methods like SimCLR and CLIP, effectively learning
structured, cross-modal representations without requiring
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explicit supervision [6], [7]. These techniques have advanced
tasks requiring robust alignment and representation learning
across diverse modalities.

Despite the individual successes of MTL and contrastive
learning, integrating MTL with contrastive learning presents
challenges, as MTL predicts multiple independent tasks
while contrastive learning aligns and separates representations.
Standard contrastive frameworks struggle when a single
sample exhibits multiple task-relevant properties, complicating
joint optimization. Methods like Multi-Task Contrastive
Learning (MTCon) [8], Conditional Similarity Networks
(CSN) [9], and Similarity Condition Embedding Networks
(SCE-Net) [10] attempt to bridge this gap using task-specific
embeddings or gated composite spaces. However, MTCon is
computationally intensive for large-scale tasks, while CSN and
SCE-Net may fail to generalize to complex datasets. These
challenges underscore the need for more efficient frameworks
to unify multi-task and contrastive learning effectively.

In this paper, we propose Multi-Task Contrastive Learning
(MTCL) framework for that can learn multiple tasks with
a multi-modal dataset while making the model light on
computational resources. Our approach introduces task-wise
trainable partitioned embedding space that facilitates the
contrastive learning method in a multi-task objective,
improving both generalization and task performance across
multi-modal data. This method also ensures the axes in
the embedding space are independent within the tasks and
can be independently assessed for separate task-specific
queries. We further explore multi-objective tasks to show
that our method performs equally well with regression
tasks. Our results demonstrate that this approach significantly
enhances performance on multiple tasks compared to
state-of-the-art multi-task contrastive learning techniques. Our
main contributions are outlined as follows:

1) We conduct a comprehensive case study comparing the
performance of single-task and contrastive multi-task
hypothesis models. The study reveals that contrastive
learning, when applied without any architectural
modifications, fails to surpass the performance of
single-task baselines.

We propose an approach that explicitly partitions the
embedding space for each task and leverages contrastive
learning across task-specific labels. This method enables
the model to effectively learn shared representations
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Fig. 1.

Multi-Task Contrastive Learning (MTCL)

Overview of the multi-task contrastive learning (MTCL) using task-wise training and partitioned embedding space study. The MTCL framework

consists of three parts: batch preparation with task text labels, partitioning of the embedding space, and task agnostic extension of the current framework.

while maintaining task-specific embedding spaces.
Additionally, our proposed framework supports
multi-objective training, allowing it to perform equally
well on regression tasks as on classification tasks.
This approach significantly reduces task complexity
in real-world scenarios by enabling the training of
multi-task contrastive models across datasets with
mixed task types.

We evaluated our proposed MTCL framework using
three benchmark datasets: Zappos50K, CUB200, and
MEDIC, along with a custom multi-task vehicle dataset.
Our model consistently outperformed state-of-the-art
methods, achieving an average accuracy improvement
of 30.8% and a lower MAE on the regression task
compared to the single-task baseline.

The remaining structure of the paper is outlined as follows:
Section II reviews background and related works, Section III
provides a motivating case study, and Section IV details our
methodology. The findings from our experiments are presented
in Section V, and the paper concludes with a discussion of
potential future research in Section VL.

3)

4)

II. BACKGROUND

a) Problem Definition: A conventional approach to learn
a multi-task dataset with a Multi-Task Learning (MTL)
framework requires the model to train with different task
target values for each input sample. Let D = (z;,¥;),_, be
a multimodal dataset, where x; represents an input and y;
is the corresponding target for a specific task. The dataset is
associated with NV distinct tasks, denoted T%,15,...,Ix. Then
the objective function for the MTL model can be defined by a
weighted sum of individual task losses over the entire dataset
D. If the MTL model is denoted as fyrr(0rrr), wWhere
Onrr is the model parameters, the objective function is as
follows,
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However, existing MTL frameworks face significant

challenges when applied to complex scenarios involving
multimodal inputs (e.g., image, text, etc.) and diverse learning
objectives (classification and regression) within a single model.
As depicted in Figure 1, a multimodal multi-objective dataset
D can contain multiple inputs (images and text labels)
and heterogeneous task types (classification and regression).
According to the illustration tasks 77 and 73 are classification
tasks (71(C), T3(C)), while task T5 is a regression task
(T»(R)). Effectively handling such complexity within a
unified, resource-constrained architecture remains an open
problem.

This work aims to develop a novel multi-task learning
framework that efficiently integrates diverse learning
objectives within a single model, thereby substantially
reducing overall parameter count and computational footprint,
without compromising task-specific performance.

b) Contrastive Learning: Contrastive learning is a
self-supervised learning framework that learns meaningful
representations by contrasting positive pairs of data samples
against negative ones. The primary goal is to map similar data
points closer in the latent space while pushing dissimilar data
points apart [11], [12].

A popular contrastive learning objective is the InfoNCE loss

exp(simeos (2, 25))

[12], which can be formulated as:
5 (2)
Zgil exp(simeos(2i, 2k)) )

Here, z; and z; represent the embedding vectors of a
positive pair, and sim..s denotes the cosine similarity function.

»CInfoNCE(Zi7 Zj) = —log <
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Fig. 2. The overall case study process and architectures for (a) Single-Task Baseline model (b) Multi-Task Aggregated Labels (MT-AL), and (c) Multi-Task
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length of a partition, respectively.

1.00 A

t

ST

MT-AL MT-TM MT-TO

Fig. 3. Mean cosine distance of concepts/properties in the embedding space
with the spread for Single-Task (ST) baseline, MT-AL, MT-TM, and MT-TO
hypotheses models. Smaller distance with a shorter spread indicates better
model performance.

The denominator sums over the similarities of z; with both
positive and negative samples, effectively penalizing the model
for assigning high similarity to negative pairs.

Contrastive learning has been extensively employed in
VLMs [6], [13], [14], large language models (LLMs)
[15], [16], and other multi-modal architectures [17]-[20].
In particular, models like CLIP [6] and ALIGN [21]
leverage contrastive learning to align text and image
representations, enabling strong performance on multi-modal
tasks such as image-text retrieval. In LLMs, contrastive
learning has been adapted to align semantic embeddings across
different modalities, facilitating multi-modal understanding
and improving contextual reasoning [22]-[24].

c) Contrastive Multi-Task Learning: The MTCon [8]
framework integrates multi-task and contrastive learning by
introducing a Multi-Task Contrastive Loss that leverages
multiple similarity metrics to learn robust embeddings. It
employs task uncertainty weighting to enhance generalization
across in-domain and out-of-domain tasks. The Conditional
Similarity Network (CSN) [9] focuses on learning embeddings
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across multiple semantic subspaces by using masks to
disentangle features for distinct notions of similarity,
outperforming specialized networks while maintaining
interpretability. Finally, SCE-Net [10] builds on CSN by
learning similarity conditions and their contributions as latent
variables without explicit supervision. It dynamically assigns
similarity masks to capture multiple notions of similarity in
a unified embedding space, achieving superior generalization
and performance across various datasets. While these studies
effectively employ contrastive learning for multi-task settings,
a notable limitation is their focus on unimodal (image-only)
data, primarily learning image-image similarities. Crucially,
they do not inherently support the integration of multimodal
inputs (e.g., image-text pairs) nor do they directly address
diverse task objectives encompassing both classification and
regression, which are critical for many real-world applications.

III. CASE STUDY

In the previous section, we investigated how multi-task
learning works in general terms. In this section, we present a
case study to analyze the principles of contrastive learning in a
multi-task setting through a series of step-by-step experiments.
These baseline and hypothesis experiments integrate multiple
tasks into a single model, with model architectures illustrated
in Figures 2(a), (b), and (c), and corresponding results shown
in Figure 3. The evaluation metric used throughout this study
is the cosine distance between image and text embeddings,
where lower distances indicate stronger semantic alignment
and thus better model representation capabilities.

To establish an upper performance bound, we first conduct
Single-Task (ST) training (Figure 2(a)), where each task is
assigned to a separate model that independently maps images
to their respective labels using a contrastive learning objective.



The single-task model achieves a low mean cosine distance
(mean: 0.07, standard deviation (SD): 0.15), indicating strong
alignment between image and text embeddings. This result
confirms that learning task-specific features independently can
produce highly specialized and effective representations, albeit
at the cost of increased model count and compute.

Our initial multi-task approach, the Multi-Task Aggregated
Labels (MT-AL) Model, processes all task labels as a
concatenated input separated by delimiters, thus encoding
multiple task semantics jointly into a single textual
representation. To preserve task-specific granularity during
training, we apply separate contrastive loss functions to
different segments of the embedding vector. Specifically,
the final embedding is partitioned into N non-overlapping
segments, each of length n, where N denotes the number of
tasks and n the length allocated per task segment. This strategy
ensures that each task still supervises a distinct region of
the shared representation space. However, the MT-AL model
exhibits relatively high embedding distances (mean: 0.69, SD:
0.36), suggesting poor alignment between image and text
representations.

To improve performance, we introduce the Multi-Task
Time-Multiplexed (MT-TM) Model, which batches image
samples with their corresponding textual labels and feeds
the labels into the text encoder in a temporally partitioned
or sequential manner. In this configuration, each image-label
sample corresponds to a single task, allowing the model to
associate task-specific supervision with its own forward pass.
However, similar to the MT-AL setup, the model performs
optimization in a joint fashion—aggregating losses from all
tasks and updating the shared encoder weights in a single
backward pass. This design enables task-specific inference
while retaining a common representation space across tasks. It
results in a slightly decreased cosine distance in the embedding
space (mean: 0.39, SD: 0.31), indicating improved but still
suboptimal task alignment.

We further refine this approach with the Multi-Task
Time-Multiplexed Task-wise Optimization (MT-TO) model,
which uses the same input structure and architecture as
MT-TM but modifies the optimization strategy. In MT-TO,
the model computes and applies gradients independently
for each task by separating the optimization process on
a per-task basis, rather than aggregating all losses before
backpropagation. This task-isolated optimization allows the
encoder to better respect task boundaries and avoid conflicting
gradient signals that could arise from heterogeneous task
objectives. As a result, MT-TO achieves substantially better
alignment performance, with a mean cosine distance of 0.33
and a standard deviation of 0.25, approaching the single-task
baseline. These findings highlight the importance of both
temporal task separation and independent optimization for
effective multi-task contrastive learning, a direction we further
elaborate upon in the following section with our proposed
partitioned embedding space framework.
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IV. METHODOLOGY

In this section, we detail our proposed multi-task contrastive
learning framework, developed from insights gained by the
models described in the case study section. The proposed
model is specifically designed to achieve enhanced parameter
and computational efficiency in multimodal, multi-objective
settings. We introduce an embedding space partitioning
technique that strategically allocates embedding dimensions
for each task label while tasks are time-multiplexed to a
single label encoder. The subsequent subsections will first
elaborate on the model architecture, which accommodates
both multimodal inputs and the proposed partitioning scheme,
followed by a thorough exposition of the Multi-Task
Contrastive Learning (MTCL) loss function tailored for joint
classification and regression objectives.

A. Model Architecture

The proposed multitask contrastive model follows the
standard CLIP architecture and is comprised of two separate
encoders—an image encoder and a text encoder. The image
encoder processes the visual component of a multitask sample,
while the text encoder encodes task-specific textual labels.
These encoders are jointly optimized to align representations
of paired inputs in a shared latent space.

The image encoder used in this framework is a ResNet101
model, which follows the visual encoder design from the
original CLIP implementation. This encoder processes the
input image and outputs a latent vector representation, which is
then used for similarity comparison against task embeddings.
Conversely, the text encoder is a modified version of the
CLIP text transformer, designed to support multiple tasks
simultaneously. To achieve this, we modify the embedding
vector size of the text encoder to be 1/Nth of the image
embedding vector, where NV is the number of tasks in the given
dataset. Then, for training/evaluation purposes, the image
embedding vector is partitioned into N equal parts. These
parts of the image embedding vector and the individual text
embedding vectors are considered the task-specific embedding
vectors. The resulting multimodal architecture is trained using
our proposed Multi-objective Multi-Task Contrastive Learning
(MTCL) loss, which enables simultaneous optimization over
heterogeneous task objectives.

B. Multi-Objective MTCL Loss

Our proposed MTCL loss function is designed to support
simultaneous learning of both classification and regression
tasks within a single unified contrastive framework. This
enables the model to handle multitask datasets that consist
of mixed objectives—e.g., combining classification and
regression. Based on the nature of the task and the dataset
annotations, the loss function dynamically configures the
optimization objective for each task partition. The following
subsections describe the loss formulations for classification
and regression settings.



TABLE 1
TASK COMPLEXITY OF THE FOUR GIVEN DATASETS. C' AND N SYMBOLS DENOTE CLASSIFICATION AND NUMERIC DATA, RESPECTIVELY.
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Fig. 4. Multi-task partitioned embedding space for learning classification
tasks using contrastive loss.

a) Classification: To train the image and text encoders
for classification tasks, we adopt a contrastive learning
approach using the InfoNCE loss. In this setup, the text
encoder generates embedding vectors for each class, which are
then shortened or padded such that the dimensionality of the
image and text embeddings match. Let N denote the number
of tasks; then the image embedding vector is partitioned
into N task-specific segments. Each partition corresponds
to the embedding subspace allocated for a particular task,
enabling contrastive alignment to occur independently across
task-specific regions of the latent space. The classification
training process is illustrated in Figure 4.

The contrastive loss is computed per task between the
corresponding image embedding partition and the text label
embedding. The following equations represent the process:

Zrj = [ziln A3)

Zr = [Zi]m “4)

Z1; = [Zi]m/Nw(G=1)+1:m/Nxj %)
l; = Lintonce(Z15, Z15) (6)

Here, Z1,; is the label embedding vector for task j, Z7 is the
full image embedding, and Z7; denotes the j-th partition of the
image embedding, corresponding to task j. The dimensions n
and m represent the size of the label and image embeddings,
respectively. N is the number of tasks, and j € {1,2,..., N}
is the task index.

b) Regression: In the case of regression, the goal is not
to align embeddings in a contrastive sense, but rather to predict
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Fig. 5. Multi-task partitioned embedding space for learning classification
tasks using L1 loss.
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regression architecture within the broader multitask model.
The following equations define the regression-specific loss
computation:

Z[ = [Zz]m (7)
Z1j = [Zilm/N« (1) +1:m/Nxj ®)
vr = Lineary, 1(Z1;) ©®

l; = Lyi(vr,vr) (10)

Here, Z;r and Zr; denote the full and task-specific
image embeddings, respectively, as before. The function
Lineary, 1(-) is a linear transformation layer mapping the
embedding to a scalar prediction. vy is the predicted regression
output, and vy is the corresponding ground truth target for task
j. The index j again identifies the task, and N denotes the total
number of tasks.

This formulation enables the proposed model to handle
multiple tasks of mixed types in a unified, end-to-end trainable
framework by isolating task interactions at the embedding and
loss computation levels.

V. RESULTS AND DISCUSSION

In this section, we present the evaluation of the proposed
multi-task contrastive learning framework described in Section
V.

A. Datasets

All the experiments on the proposed method are performed
with the Zappos50k [25], [26], CUB200 [27], MEDIC [28],
and an in-house Vehicles dataset.

The Zappos5S0k is a large shoe catalog database containing
about 50,000 images. This dataset contains three tasks
(’Category’, ’Closure’, and ’Gender’), each containing 4,
18, and 4 classes, respectively. The CUB200 dataset
contains about 12,000 images of birds with their metadata
properties. The tasks are ’Shape’, ’Size’, and ’Primary
Color’, containing 14, 5, and 15 classes, respectively. The
MEDIC dataset is a humanitarian response image classification
dataset containing four different tasks ("Damage Severity’,
’Informative’, ’Humanitarian’, and ’Disaster Type’). The
number of classes in these tasks is 3, 2, 4, and 7, respectively.
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Fig. 6. Image input samples from the benchmark (Zappos50K, CUB200, and MEDIC) and in-house (Vehicles) datasets.

TABLE II
MAX ACCURACY Acc AND WIDTH OF THE EMBEDDING SPACE W IN A RUN. T} TO T4 REFER TO THE TASKS IN A DATASET. THE TASKS FOR THE
CORRESPONDING DATASETS ARE - CUB200:{SHAPE, SIZE, PRIMARY COLOR}, ZAPPOS50K:{CATEGORY, CLOSURE, GENDER }, MEDIC:{DAMAGE
SEVERITY, INFORMATIVE, HUMANITARIAN, DISASTER TYPE}, VEHICLES:{ VEHICLE, AZIMUTH, COLOR, BACKGROUND}.

Dataset T T T3 Ty
Acc (%) w Acc (%) w Acc (%) w Acc (%) w
CUB200 55.2 512 64.0 32 58.8 128 - -
Zappos50k 90.6 64 80.0 128 73.6 64 - -
MEDIC 69.3 64 85.3 16 79.3 16 59.3 512
Vehicles 100.0 512 75.7 256 99.9 512 100.0 512
In our in-house Vehicles dataset we tried to estimate the car TABLE III
type, the car’s angular rotation corresponding to the camera TASK-WISE PERFORMANCE ON ZAPPOSS50K
(azimuth), the color of the car, and the type of background. | Category Closure Gender ~ Overall
The three tasks - v.ehlclf: type, vehicle color, an.d vehicle ST Baseline 9.6 75.3 66.6 772
background are classification tasks. And the task azimuth can MT-AL Test 58.4 34.9 42.5 45.3
be considered both a classification or a regression task. To E/ISTI;]TO Test gg-g %-? gg-g gz-g
cgn.mder the azimuth as a class1ﬁ.cat10n problem, we h.awe SCE.-Net 86.2 753 713 6
divided Euler angle 0 to 360 with a 5-degree step size. MTCon 62.8 42.8 54.5 53.4
Resulting in 8, 8, 4, and 72 classes for the corresponding MTCL 87.4 2.7 73.5 77.9
tasks. Table I shows the complexity of each task for all the
datasets used in this study. Figure 6 shows some image input TABLE IV
samples of the datasets used in this study. The task class labels TASK-WISE PERFORMANCE ON CUB200
and values for all the datasets are given in the supplementary | Shape  Size  Primary Color  Overall
document. -
ST Baseline 49.2 52.8 60.4 54.1
: MT-AL Test 26.8 54.8 32.8 38.1
B. Environment Setup MT-TO Test 52.0 51.6 43.2 48.9
This complete system is implemented using the PyTorch CSN 45.1 482 25.2 39.5
deep learning framework [29]. All experiments are conducted iﬁ%g:t ig'i’ ié'g gi'g gg'g
on a high-performance computing setup equipped with four MTCL 476 648 55.2 55.9

NVIDIA A40 GPUs, each offering 48GB of VRAM, allowing
for efficient parallel training and large batch sizes suitable for
multitask contrastive objectives.

The proposed method is evaluated quantitatively
and  benchmarked  against several  state-of-the-art
out-of-distribution (OOD) detection models. These models
include Conditional Similarity Networks (CSN) [9],
SCE-Net [10], and Multi-task Contrastive Learning
(MTCon) [8]. All three models represent recent advances
in OOD detection under multitask settings and employ
contrastive  learning techniques to align  modality
representations across tasks. The inclusion of these baselines
enables a comprehensive evaluation of our method’s
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performance and its ability to generalize across heterogeneous
tasks.

C. Multi-task contrastive learning

Tables III, IV, V, and VI present the performance evaluation
results for the Zappos50k, CUB200, MEDIC, and Vehicles
datasets, respectively. Across all datasets, the proposed method
consistently outperformed state-of-the-art approaches. The
single-task baseline represents the upper performance bound
for models trained on individual tasks in isolation. Notably,



TABLE V
TASK-WISE PERFORMANCE ON MEDIC

Damage Disaster

: Informative ~ Humanitarian Overall
Severity Type
ST Baseline 72.7 80.0 77.3 62.0 73.0
MT-AL Test 60.7 70.0 62.7 45.3 59.7
MT-TO Test 76.7 84.7 80.7 66.7 77.2
CSN 75.1 76.3 70.5 70.0 73.0
SCE-Net 77.3 77.5 72.1 71.1 74.5
MTCon 43.3 68.0 52.7 36.0 50.0
MTCL 81.3 89.3 84.0 65.3 80.0
TABLE VI
TASK-WISE PERFORMANCE ON MULTI-TASK VEHICLES DATASET
‘ Vehicle  Azimuth  Color  Background  Overall
ST Baseline 100.0 44.1 100.0 100.0 86.0
MT-AL Test 48.2 4.4 83.6 89.2 56.4
MT-TO Test 97.6 37.0 99.2 100.0 83.5
MTCon 20.4 3.2 33.3 90.1 36.8
MTCL 99.2 58.7 98.4 100.0 89.1

the proposed method achieved performance close to the
single-task baseline.

In some instances, we can see results better than
the single-task baselines. Specifically, improvements over
the single-task baseline were observed in the following
cases: Azimuth for Vehicles; Gender for Zappos50k; Shape
and Size for CUB200; and Damage Severity, Informative,
Humanitarian, and Disaster Type for MEDIC. These results
suggest that learning multiple tasks simultaneously enables
the model to leverage inter-task dependencies, resulting
in enhanced performance compared to models trained on
individual tasks.

D. Multi-Objective MTCL

To test the multi-objective support of our proposed
framework, the model is modified to include an additional
linear layer designed to handle regression tasks. This layer
operates on the specific partition of the embedding vector
associated with the regression objective and projects it to a
single scalar output. This output is then compared with the
target values using an appropriate regression loss function.

For our experiments, we employ the L1loss (Mean Absolute
Error, MAE) as the regression loss function due to its
robustness and interpretability. The model is evaluated on
the USD dataset within the proposed multi-task contrastive
learning (MTCL) framework, where the azimuth angle
prediction task is framed as a regression problem. By
treating azimuth as a continuous target rather than a discrete
classification problem, we reduce the output complexity from
a 72-neuron classification layer (one per azimuth bin) to a
single scalar output, simplifying the learning objective while
preserving fidelity. This reduction in dimensionality not only
lowers computational overhead but also improves numerical
stability and convergence behavior.

The regression-based formulation leads to improved
performance in terms of prediction accuracy. Specifically, the
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TABLE VII
MIXED TASK TYPE EXPERIMENT FOR THE LOSS AGNOSTICITY ON
VEHICLES DATASET. R AND C' INDICATES REGRESSION AND
CLASSIFICATION TASKS, RESPECTIVELY. THE VALUE OF C IS THE HIGHER
THE BETTER, FOR R THE LOWER THE BETTER.

Vehicle  Azimuth  Color  Background
Task Type C (%) RMAE) C (%) C (%)
Single-Task Baseline 100.0 20.6 100.0 100.0
MTCL 100.0 18.8 99.7 100.0

MAE achieved for the regression version of the azimuth
task is 18.8 (lower is better), compared to the classification
baseline which achieves only 58.7% accuracy—barely above
the midpoint baseline of 50.0%. These results validate
the effectiveness of the proposed loss-agnostic framework
in handling continuous-valued targets more efficiently
than traditional classification-based approaches. The results
also demonstrate that the MTCL framework supports a
seamless blend of different objective types within a single
encoder-decoder architecture, thereby improving flexibility
and task precision.

As detailed in Table VII, the regression-based azimuth task
in our multi-task framework not only surpasses its single-task
baseline but also demonstrates that joint learning with
contrastive objectives and shared representations significantly
enhances precision for low-complexity continuous prediction
tasks, ultimately leading to higher accuracy with reduced
training complexity across mixed task types.

E. Effect of embedding width

Since all tasks in a multi-task learning framework share
a common embedding space, the embedding width directly
impacts model performance. Table II reports the maximum
accuracy for each dataset and the corresponding embedding
width yielding optimal performance. A detailed task-wise
analysis is provided in the supplementary document.

From Table II, tasks such as Shape and Primary Color in
CUB200, Closure in Zappos50K, Disaster Type in MEDIC,
and all tasks in the Vehicles dataset require a larger embedding
width for optimal performance. In contrast, tasks like Size in
CUB200, Category and Gender in Zappos50K, and Damage
Severity, Informative, and Humanitarian classification in
MEDIC perform better with a smaller embedding width. This
trend may correlate with dataset complexity, as shown in
Table I, where higher task complexity often necessitates a
larger embedding space.

However, as illustrated in the Accuracy-Embedding Width
plots in the supplementary document, most tasks exhibit a peak
in performance at a specific width, followed by a decline and
gradual recovery. Notably, the Size task in CUB200 shows
a continuous performance drop with increasing embedding
width, possibly due to the need for additional training epochs
to optimize the larger parameter space effectively.



VI. CONCLUSION

In this paper, we introduced Multi-Task Contrastive
Learning (MTCL) framework that effectively integrates
multi-task learning and contrastive learning to balance
shared and task-specific objectives. MTCL’s partitioned
embedding space facilitates independent task supervision
while maintaining a unified representation, leading to
stable training and effective feature disentanglement. This
approach yielded significant performance gains across diverse
benchmarks: 24.5% on Zappos50K, 17.2% on CUB200,
and 30.0% on MEDIC in classification accuracy over
state-of-the-art methods. These performance gains underscore
the ability of MTCL to generalize across diverse task domains,
from fine-grained product recognition to medical condition
classification. Furthermore, MTCL effectively supports a
multi-objective training mechanism, including classification
and regression, demonstrating superior precision and reduced
model complexity on an in-house 3D multi-task dataset. These
results validate MTCL’s efficacy in addressing multi-task
learning trade-offs and highlight its potential for practical
applications such as healthcare, autonomous driving, and
e-commerce, where classification and regression tasks often
coexist. Future work will explore extending MTCL to
larger-scale datasets and more complex multi-task scenarios,
further refining its adaptability and scalability.
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