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Abstract—Post-training quantization (PTQ) without access to
real data is enabling efficient model optimization and deployment
in scenarios where privacy or proprietary constraints restrict
the use of original datasets. Traditional data free quantization
methods rely on Batch Normalization (BN) statistics from the
trained full-precision model to generate a calibration dataset
for quantization. However, this reliance on BN statistics limits
their applicability to deep neural networks (DNNs) without
BN layers. In this paper, we propose a calibration dataset
generation algorithm that is agnostic to BN statistics, leveraging
just the backpropagation to create synthetic images for PTQ.
We also demonstrate that it is not necessary to include an
image for every target category in the calibration dataset to get
the representative activation ranges for quantization. Extensive
experiments with both large and lightweight models on large-
scale image classification tasks demonstrate that our method
consistently improves quantization performance across various
DNN architectures, especially in low-bit settings. Notably, in 4-
bit quantization, we achieve an improvement of 3.31% in top-1
accuracy for the ResNet18 model and 3.82% for the InceptionV3
model compared to the state-of-the-art (SOTA) DSG method.
Importantly, we use very few synthetic images for quantization
compared to other methods.

Index Terms—deep neural networks, batch normalization,
quantization aware training, post-training quantization.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
success in applications such as image classification [1], ob-
ject detection [2], robotics [3], and autonomous driving [4].
However, deploying these networks on resource-constrained
devices remains a considerable challenge due to their sub-
stantial memory requirements and intensive computational
demands [5]. Quantization, which converts the floating-point
values of weights and/or activations to integers, is a favored
method to address these challenges by significantly reducing
model size and improving computation [6].

Quantization methods are generally categorized into
Quantization-Aware Training (QAT) and Post-Training Quan-
tization (PTQ). While QAT can achieve higher accuracy by
incorporating quantization into the training process, it is com-
putationally intensive and time-consuming [7]. PTQ applies
quantization to a pre-trained model, but one of its main
challenges is determining the activation ranges, which often
requires a small calibration dataset [8]. When real data is

unavailable due to privacy or proprietary constraints, data-
free techniques are used. Existing generative approaches create
calibration data by aligning its distribution with the Batch
Normalization (BN) statistics of the full-precision model [9],
[10]. However, this reliance on BN statistics limits their
applicability to neural networks without BN layers.

In our work, we demonstrate that it is not necessary to
depend on BN statistics to generate an effective calibration
dataset. Additionally, we show that contrary to common
practice [11], optimal performance can be achieved without
including an image from each target class; a small number of
images can suffice. The main contributions of this paper are:

• We propose a method to generate synthetic data using the
full-precision model agnostic to BN statistics, making our
approach applicable to any model architecture.

• we experimentally demonstrate that selecting only a few
target classes is sufficient to create an effective calibration
dataset, which in turn reduces PTQ time.

• Through extensive PTQ comparisons, we show that
our method significantly outperforms existing generative
quantization methods, especially in low-bit settings where
we improve top-1 accuracy by over 3.31% for ResNet18
and 3.58% for InceptionV3 models compared to the
SOTA DSG method.

II. RELATED WORK

In this section, we categorize existing research into two
main methodologies: QAT and PTQ.

A. Quantization Aware Training

QAT integrates quantization into the training phase, al-
lowing models to adapt to quantization noise and resulting
in higher accuracy, though it demands more computational
resources and can be challenging to implement [7]. This
approach involves low-precision computations during the for-
ward pass while maintaining standard backpropagation [6].
Several QAT techniques have been explored, such as Bina-
rized Neural Networks (BNNs) which constrain weights and
activations to +1 or -1 [12], DoReFa-Net which uses low bit-
width weights, activations, and gradients [13], and XNOR-Net
which enables efficient binary CNNs [14]. Other work has
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shown that lightweight networks often require QAT to reach
baseline accuracy [15], though sometimes fine-tuning for just
one epoch suffices [16]. Methods like PACT further improve
accuracy by dynamically adjusting clipping values to minimize
quantization error [17].

B. Post-Training Quantization

PTQ reduces the memory and computational requirements
of a fully trained model using a small calibration dataset.
Determining activation ranges is a key part of this process.
Some methods address this by analytically finding activation
clipping ranges [8], while others focus on optimizing the
quantized values. Techniques like Outlier Channel Splitting
(OCS) handle outliers in weights and activations [18], BRECQ
optimizes weight quantization in a block-wise manner [19],
and AdaRound uses an adaptive rounding technique [20].
AdaQuant grants more freedom by independently optimizing
each layer’s weights using the calibration set [21].

More recent data-free PTQ methods generate synthetic data
using BN statistics from the trained full-precision model [10],
[22]. However, it has been shown that data generated this way
can suffer from homogenization, which DSG addresses by
relaxing distribution alignment and enhancing samples layer-
wise [23]. While methods like IntraQ [24] and LRQ [25]
further increase performance, they still rely on BN statistics
and require fine-tuning.

III. MOTIVATION

BN is often used during neural network training to stabilize
and speed up convergence by normalizing layer activations.
However, for PTQ, generating synthetic data requires creating
inputs that cover a wide range of activations within the net-
work. This is more effectively achieved through optimization
techniques like backpropagation, which refine synthetic inputs
using the model’s gradients without relying on BN statistics.
Prior work, such as [23], has shown that images generated
solely from BN statistics lack the diversity of real-world data.
To address this, we use diverse loss functions during synthetic
data generation.

Traditionally, generating datasets for quantization involves
selecting at least one image from each target class to cover
the activation space [11]. However, this approach can be com-
putationally expensive for large datasets with many classes.
Inspired by [26], who demonstrate that weight and activation
distributions follow a bell curve (with rare large values),
we explore whether a smaller subset of classes can still
provide an effective activation range for quantization. Our
hypothesis, discussed in subsection V-D1, is that focusing
on fewer classes might simplify the calibration process while
maintaining quantization accuracy.

IV. METHOD

In this section, we introduce a framework for generating
synthetic images aimed at improving PTQ of image classifica-
tion models. Our approach involves designing a comprehensive
loss function that guides the optimization of synthetic images.

Algorithm 1 Generate Calibration Dataset

Require: Pre-trained model F , total number of classes N ,
number of target classes M

Require: Learning rate α, total iterations T , loss weights λtv,
λl2 , threshold ϵ

Ensure: Set of synthetic images X
1: Randomly select M unique target classes from N
2: Initialize an empty set X
3: for each target class c in M do
4: Initialize synthetic image x ∼ N (0, 1)
5: Set target label y ← c
6: for t = 1 to T do
7: Calculate loss L using (4)
8: Update synthetic image using (5)
9: if F (x) = y and L < ϵ then

10: break
11: end if
12: end for
13: Append x to X
14: end for
15: return X

The primary goal is to produce synthetic images that not
only lead to accurate classification by the pre-trained model
but also possess properties to get representative activation
statistics essential for effective quantization. To achieve these
objectives, we integrate three key components into our loss
function: the classification loss, total variation loss, and L2
regularization loss. Below, we detail each component and its
contribution to the synthetic data generation process.

A. Classification Loss

The classification loss measures the discrepancy between
the synthetic data’s predicted labels and the target labels.
This loss ensures that the synthetic images generated are
informative for the classification task at hand.

Lclassification = CE (F (x), y) (1)

B. Total Variation Loss

The total variation (TV) acts as a regularization term that
promotes spatial smoothness in the synthetic images. By
penalizing rapid intensity changes between neighboring pixels,
the TV loss reduces noise and artifacts in the generated data.

Ltv =
∑
i,j

[
(xi+1,j − xi,j)

2
+ (xi,j+1 − xi,j)

2
]

(2)

C. L2 Regularization Loss

The L2 regularization loss penalizes the overall magnitude
of the pixel values in the synthetic images. This loss prevents
the generation of images with excessively high pixel intensi-
ties, which could adversely affect the stability and performance
of the quantized model.
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Ll2 =
∑
i,j

x2
i,j (3)

D. Total Loss

The total loss combines all the above loss terms, weighted
by their respective hyperparameters.

L = Lclassification + λtv ∗ Ltv + λl2 ∗ Ll2 (4)

E. Data Generation

Algorithm 1 generates synthetic images by randomly select-
ing M unique target classes from N total classes. For each
target class c, a synthetic image x is initialized with values
drawn from N (0, 1), and the target label is set to y ← c.
Inspired by the iterative optimization methods, the algorithm
iteratively refines x for T iterations as shown in (5), perturbing
x in the opposite direction of the gradient to minimize the loss.
If the model’s prediction for x matches y and the loss falls
below a threshold ϵ, the loop breaks early. This process repeats
for each of the M target classes, accumulating the generated
images in X , which is then returned as the output.

x = x− α∇xL(F (x), y) (5)

V. EXPERIMENTS

In this section, we perform an in-depth assessment of the
performance of our approach on image classification tasks
using a series of comprehensive experiments.

A. Implementation Details

We implemented our approach in PyTorch [27] for its
strong automatic differentiation features. Experiments ran on
an NVIDIA A100 GPU using pre-trained models from Py-
TorchCV.1 We generated calibration dataset with Algorithm 1
and applied the independent calibration process from [10].
All layers underwent quantization with per-layer activation
clipping. We used Stochastic Gradient Descent (SGD) with
a momentum of 0.999 as the optimizer. Hyperparameters
were tuned empirically: the number of target labels M was
optimized per model and bit setting (up to 35), iterations T
ranged from 100 to 300, learning rate α ranged from 0.1 to
0.3, and the threshold ϵ was set to 0.001.

B. Evaluation

To demonstrate the effectiveness of our approach, we
evaluate it on various network architectures with different
bit settings. Our experiments include VGG16bn [28],
ResNet18/20/50, SqueezeNext, InceptionV3, ShuffleNet,
AlexNet, and MobileNetV2/V3. We assess these models
using various bit-width configurations, such as W4A4 (4-bit
weights and 4-bit activations), W6A6, and W8A8. We use
validation datasets from ImageNet [29] and CIFAR10 [30]
to evaluate our approach, measuring the effectiveness by
assessing the top-1 accuracy of the quantized models.

1PyTorchCV: https://pypi.org/project/pytorchcv/

TABLE I: SqueezeNext, InceptionV3, ShuffleNet, and
AlexNet on ImageNet

Model Method W-bit A-bit Top-1

SqueezeNext

Baseline 32 32 69.38%
Real Data 6 6 66.51%
ZeroQ 6 6 39.83%
DSG 6 6 66.23%
Ours 6 6 67.55%
Real Data 8 8 69.23%
ZeroQ 8 8 68.01%
DSG 8 8 69.27%
Ours 8 8 69.31%

InceptionV3

Baseline 32 32 78.80%
Real Data 4 4 73.50%
ZeroQ 4 4 12.00%
DSG 4 4 57.17%
Ours 4 4 60.99%
Real Data 6 6 78.59%
ZeroQ 6 6 75.14%
DSG 6 6 78.12%
Ours 6 6 78.41%
Real Data 8 8 78.79%
ZeroQ 8 8 78.70%
DSG 8 8 78.81%
Ours 8 8 78.84%

ShuffleNet

Baseline 32 32 65.07%
Real Data 6 6 56.25%
ZeroQ 6 6 39.92%
DSG 6 6 60.71%
Ours 6 6 62.17%
Real Data 8 8 64.52%
ZeroQ 8 8 64.46%
DSG 8 8 64.87%
Ours 8 8 64.94%

AlexNet

Baseline 32 32 59.04%
Ours 4 4 45.97%
Ours 6 6 57.22%
Ours 8 8 57.47%

C. Comparison with SOTA Methods

To evaluate the benefits of our proposed PTQ scheme, we
compare our method with other data-free PTQ approaches,
such as DSG [23], ZeroQ [10], DFQ [31], ACIQ [26],
MSE [32], KL [33], and OCS [18], on CIFAR10 and ImageNet
datasets. Notably, DSG and ZeroQ are representative genera-
tive data-free PTQ methods that reconstruct synthetic data and
calibrate the quantized network. We assess these methods un-
der various bit-width configurations, with the results presented
in table IV for the CIFAR10 dataset and table I, II, and III
for the ImageNet dataset. For MobilNetV2/V3 on ImageNet
dataset we compare our method with SelectQ [11] which uses
training data for quantization.

On the CIFAR10 dataset, we evaluate our method with
ResNet20 and VGG16bn, as shown in table IV. Our method
consistently outperforms other methods across all bit-widths.
Specifically, for ResNet20, our method improved accuracy
by approximately 1.8% over DSG in the 4-bit setting. For
the ImageNet dataset, we conducted experiments on Mo-
bileNetV2, MobileNetV3, ResNet18/50, SqueezeNext, Incep-
tionV3, ShuffleNet, and AlexNet models. Our method consis-
tently outperforms other quantization methods across different
bit-widths. Notably, for MobileNetV3, our method achieved a
significant improvement of 22.65% over SelectQ in the 4-bit
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TABLE II: ResNet18/50 on ImageNet

Model Method W-bit A-bit Top-1

ResNet18

Baseline 32 32 71.47%
Real Data 4 4 65.22%
DFQ 4 4 0.10%
ACIQ 4 4 7.19%
MSE 4 4 15.08%
KL 4 4 16.27%
ZeroQ 4 4 26.04%
DSG 4 4 39.90%
Ours 4 4 43.21%
Real Data 6 6 71.18%
ACIQ 6 6 61.15%
KL 6 6 61.34%
MSE 6 6 66.96%
DFQ 6 6 67.30%
ZeroQ 6 6 69.74%
DSG 6 6 70.46%
Ours 6 6 70.59%
Real Data 8 8 71.48%
ACIQ 8 8 68.78%
DFQ 8 8 69.70%
KL 8 8 70.69%
MSE 8 8 71.01%
ZeroQ 8 8 71.43%
DSG 8 8 71.49%
Ours 8 8 71.47%

ResNet50

Baseline 32 32 77.72%
Real Data 4 4 68.13%
ACIQ 4 4 61.15%
ZeroQ 4 4 8.20%
DFQ 4 4 10.32%
DSG 4 4 56.12%
Ours 4 4 58.31%
Real Data 6 6 76.84%
ZeroQ 6 6 75.56%
DSG 6 6 76.90%
Ours 6 6 76.73%
Real Data 8 8 77.70%
ZeroQ 8 8 77.67%
DSG 8 8 77.72%
Ours 8 8 77.69%

setting, reaching 23.01%. In the case of ResNet18, our method
achieved the highest accuracy in the 4-bit setting, with a 3.31%
improvement over DSG, reaching 43.21%. For ResNet50, our
method improved accuracy by 2.19% over DSG in the 4-bit
setting, achieving 58.31%. InceptionV3 showed a significant
improvement with our method, achieving 60.99% in the 4-
bit setting, which is 3.82% higher than DSG, while slightly
improving accuracies in 6 and 8-bit settings. In table I we
also demonstrate the quantization results of AlexNet [1] model
using our method which is not shown by other methods due
to the unavailability of BN layer in AlexNet.

Furthermore similar to methods such as ZeroQ and DSG we
require a small number of synthetic images to achieve effective
PTQ. Empirically, we have determined the effective calibration
dataset size for each model and bit setting. For example, we
use 25 images for ResNet18 in a 4-bit setting and 35 images
for ResNet50 in a 4-bit setting. Importantly, we never exceed
35 images for effective quantization across all models and bit
settings. This substantial reduction in calibration dataset size
does not compromise quantization performance, making our
method highly efficient for various classification models.

Overall, our quantization method demonstrated superior per-

TABLE III: MobileNetV2/V3 on ImageNet

Model Method W-bit A-bit Top-1

MobileNetV2

Baseline 32 32 72.97%
SelectQ 4 4 10.88%
Ours 4 4 12.31%
SelectQ 6 6 70.25%
Ours 6 6 70.11%
SelectQ 8 8 72.84%
Ours 8 8 72.83%

MobileNetV3

Baseline 32 32 75.34%
SelectQ 4 4 0.36%
Ours 4 4 23.01%
SelectQ 6 6 60.04%
Ours 6 6 72.85%
SelectQ 8 8 75.04%
Ours 8 8 75.06%

formance across various models and bit-widths with fewer im-
ages, particularly in the 4-bit setting. It consistently achieved
high accuracy, making it suitable for resource-constrained
environments without significant loss in performance.

D. Ablation Study

In this section, we perform ablation studies to examine the
impact of various hyperparameters, quantizing all layers of
ResNet18 to 4 bits and evaluating top-1 accuracy on ImageNet.

TABLE IV: ResNet20 and VGG16bn on CIFAR-10

Model Method W-bit A-bit Top-1

ResNet20

Baseline 32 32 94.08%
Real Data 4 4 87.38%
ZeroQ 4 4 85.39%
DSG 4 4 87.79%
Ours 4 4 89.59%
Real Data 6 6 93.80%
ZeroQ 6 6 93.33%
DSG 6 6 93.55%
Ours 6 6 93.63%
Real Data 8 8 93.95%
ZeroQ 8 8 93.94%
DSG 8 8 93.97%
Ours 8 8 94.00%

VGG16bn

Baseline 32 32 93.86%
Real Data 4 4 92.50%
ZeroQ 4 4 91.79%
DSG 4 4 92.89%
Ours 4 4 93.17%
Real Data 6 6 93.48%
ZeroQ 6 6 93.45%
DSG 6 6 93.68%
Ours 6 6 93.85%
Real Data 8 8 93.59%
ZeroQ 8 8 93.53%
DSG 8 8 93.61%
Ours 8 8 93.79%

1) Impact of Calibration Dataset Size on Quantization: We
conducted two experiments to evaluate the necessity of having
a large calibration dataset in model quantization.

In the first experiment, we tested unique dataset sizes rang-
ing from 10 to 1000 images and measured the top-1 accuracy
of the quantized model using our synthetic dataset generation
method, as reported in Fig. 3. Contrary to the common belief
that larger calibration datasets lead to better quantized model
performance, we found that the best results were achieved with
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Fig. 1: Minimum (left) and maximum (right) activation values for ResNet18.
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Fig. 2: Effect of hyperparameters on the top-1 accuracy of the 4-bit ResNet18 model on ImageNet.

a smaller dataset size. For ResNet18, the highest accuracy
of 43.21% was obtained with just 25 images. Interestingly,
increasing the dataset size beyond this point resulted in a
decline in accuracy; for example, accuracy dropped to 41.83%
with 1000 images. This suggests that using a smaller dataset
can be more effective for PTQ, and that an optimal dataset size
exists beyond which additional images may introduce noise or
redundancy, negatively impacting performance.

In the second experiment, we plotted the minimum and
maximum activation ranges for each convolution layer in
ResNet18 using datasets created with 25 and 1000 images,
respectively. The results, shown in Fig. 1, indicate that the acti-
vation ranges for 25 images closely match those obtained with
1000 images. This observation demonstrates that even with
significantly fewer images, the activation ranges remain stable
and representative of the model’s behavior. Consequently, it is
not necessary to have at least one image from each class to
create a representative dataset for PTQ.

Overall, our findings demonstrate that a smaller, more
manageable dataset can be effectively used for calibration,
simplifying the process and reducing the need for extensive
calibration datasets.

2) Influence of Random Target Class Selection: In ex-
ploring the impact of random target class selection on our
synthetic data generation process, we found that the top-1
accuracy of the quantized ResNet18 model on ImageNet varied
significantly depending on the specific target classes selected.
To achieve similar performance levels across different random
selections, we needed to tune hyperparameters α, λtv, λl2 , and
T . This necessity arises because different classes may present
varying levels of complexity or feature distinct characteristics

that influence the effectiveness of the synthetic data in captur-
ing the necessary activation statistics for quantization.

3) Analyzing Hyperparameters: We investigate the impact
of the hyperparameters: learning rate α, loss weights λtv, λl2 ,
and the number of iterations T . In our experiments, we fix
three hyperparameters at their baseline values while tuning
the fourth to assess its individual effect on the synthetic data
generation and the performance of the quantized model. The
results, illustrating how each hyperparameter influences the
top-1 accuracy on ImageNet, are presented in Fig 2. From the
figure, we can see that for ResNet18, the optimal values of
the parameters are α = 0.2, λtv = 0.001, λl2 = 0.0001, and
T = 100. We did not observe any impact from different values
of threshold ϵ. The same accuracy is obtained for values of ϵ
in the range [0.00001, 0.01].
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Fig. 3: ResNet18 quantized model performance with different
calibration set sizes.

VI. CONCLUSIONS

In this paper, we introduced a post-training data-free quan-
tization method that generates synthetic data using the trained
full-precision model independent of BN statistics, making our
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approach versatile and applicable to any model architecture.
Our experimental results demonstrate that it is not neces-
sary to include images from each target category; selecting
only a few target classes is sufficient to create an effective
calibration dataset. Our method consistently outperforms ex-
isting generative data-free quantization methods, as demon-
strated across architectures like ResNet18/50, SqueezeNext,
InceptionV3, ShuffleNet, and MobileNetV2/V3. Notably, our
approach shows significant improvements in 4-bit precision
settings, increasing the top-1 accuracy on the ResNet18 model
by over 3.31% compared to the SOTA DSG method. These
findings underscore the effectiveness and generalizability of
our approach, highlighting its potential to achieve high ac-
curacy with lower bit-widths and fewer calibration images,
making it a promising solution for efficient model deployment
in resource-constrained environments.
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