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Abstract—Annotated aerial view images are often missing from
fine-grained vehicle type classification datasets. This lack of data
limits both the accuracy and robustness of models when applied
to top-down views, which are essential for applications such
as autonomous drones and aerial surveillance. Models trained
only on street-level images often fail to generalize to aerial
perspectives, requiring more time and multiple observations to
recognize vehicles accurately. In contrast, models trained with
both street-level and aerial views can perform more reliably
and with faster inference in drone-based systems. However,
collecting real aerial data at scale can be costly and logistically
challenging. In this paper, we propose AVA (Automated Aerial
View Augmentation), a framework for aerial data augmentation
via 3D asset generation and contextual scene synthesis. Since
standalone 3D vehicle models from 2D images are not directly
usable for detection, we embed them in realistic backgrounds
to enable learning of both object features and scene context.
AVA first constructs 3D vehicle models from street-view images.
To ensure data quality, we introduce a realism checker that
discards incomplete or distorted assets. We then apply geometric
transformations to generate aerial 2D views. The 2D views
pass through a text-to-video generator that adds background
context, mimicking typical drone imagery. We evaluate our data
augmentation approach by fine-tuning several object detection
backbones. Notably, the pretrained YOLOv11 model, when fine-
tuned with AVA augmented data, achieves a significant mAP@0.5
improvement from 0.06 to 0.51 in classifying previously unseen
vehicles from aerial perspectives.

Index Terms—annotation, aerial views, augmentation, 3D,
vehicle-detection, Synthetic-dataset

I. INTRODUCTION

Advancements in autonomous drones and aerial surveillance
have enabled wide-scale monitoring for applications such as
traffic management, disaster response, and urban planning. Vi-
sion models are increasingly used in such systems for vehicle
detection and type identification. However, most models are
trained on datasets composed of street-level images, which
limits their effectiveness to familiar ground-based perspectives.
When applied to aerial views where object appearance, scale,
and surroundings vary significantly, their performance often
degrades in fine-grained classification tasks. A key barrier to
improving aerial model performance is the lack of high-quality
annotated datasets, particularly those with fine-grained vehicle
labels [1]. Collecting aerial data using drones or satellites can
be logistically complex, and affected by environmental factors
such as lighting and weather [2], [3]. In some regions, local
regulations also restrict such data acquisition. In addition, cap-
turing and annotating a diverse set of views across locations,
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altitudes, and vehicle types remains a labor-intensive process,
which limits the development of reliable vision models for
aerial imagery [4], [5].

The VisDrone [6] and VAID [7] datasets are widely used
for aerial vehicle detection but remain limited in terms of
vehicle type variety. Both datasets contain only a small number
of predefined classes, such as car, van, and truck, without
distinguishing between finer categories like sedan, SUV, or
sports car. As a result, models trained on them struggle to
recognize vehicle types that do not appear in the training set.
This creates a scalability challenge for vehicle classification in
drone-based systems where new or uncommon vehicles may
appear frequently. To overcome this limitation, we propose
an alternative workflow to conventional aerial data collection
by generating synthetic aerial views from 2D street-level
images. Instead of relying on drone or satellite imagery, our
approach leverages recent advances in 3D reconstruction [8],
[9], generative models [10], vision-language models [11], and
3D modeling tools [12]-[14] to create realistic 3D vehicle
assets. Aerial views are projected from 3D assets with visually
coherent backgrounds to simulate real-world imagery. To
ensure quality, a realism checker filters out incomplete or
deformed reconstructions. By augmenting standard datasets
with synthetic aerial views derived from annotated street-
level images, we aim to improve object detection robustness
for fine-grained vehicle classification in top-down views. We
present the following key contributions:

« We propose AVA, a framework that synthesizes aerial
views from 2D street-level images to overcome the
scarcity of annotated aerial datasets for fine-grained ve-
hicle classification.

o AVA constructs realistic 3D vehicle assets and renders
them from top-down perspectives, embedding them into
coherent backgrounds to simulate drone-captured scenes.
These synthetic aerial views expand the visual diversity
of training data.

o To address the lack of benchmark aerial view ground-
truth test data, we introduce a dataset creation method that
uses open-source 3D vehicle models to generate ground
truth aerial images. This enables a direct evaluation of
AVA ’s effectiveness by measuring model generalization
on verified aerial views.

The paper is organized as follows: Section II presents
a motivating case study; Section III reviews related work;
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Fig. 1. From top-left YOLOVI11 correctly detects the white SUV in street views but misclassifies its aerial view as a non-vehicle (cell phone) and similarly
misidentifies the VAN as a bus. YOLO-World performs slightly better detecting the SUV but fails on the VAN top view. YOLO-SV (YOLOvV11 fine-tuned on
street views) still struggles with the aerial view of VAN. However, the model, YOLO-AVA fine-tuned with AVA’s augmented synthetic aerial views correctly
detects both the SUV and VAN from the aerial perspective, demonstrating that synthetic aerial views improves YOLOv11’s generalization.

Section IV outlines our methodology; Section V reports ex-
periments; Section VI discusses limitations; and Section VII
concludes with future directions.

II. CASE STUDY: FINE-GRAINED VEHICLE
CLASSIFICATION FROM AERIAL VIEWS

Most vehicle classification models are trained on datasets
composed primarily of side or street-view (SV) images, which
are commonly available. While this enables models to perform
well on familiar perspectives, their accuracy drops significantly
when applied to aerial views. This performance gap becomes
especially evident in fine-grained classification tasks that re-
quire distinguishing between visually similar vehicle types,
such as SUVs, vans, and sedans. To assess this limitation,
we conducted a case study using YOLOvll and YOLO-
World [11] which are pretrained on MS COCO [15] and
ImageNet [16]. Despite including a general “car” class, COCO
lacks fine-grained distinctions, and ImageNet is not optimized
for object detection. As shown in Fig. 1, both models perform
reliably on street views but fail on aerial images misclassifying
an SUV as a “cell phone” and a van as a “remote”. YOLO-
World offers slight improvement for SUVs but still fails to
generalize.

To explore whether limited exposure to our dataset could
help, we fine-tuned YOLOv11 using a small set of synthetic
street-view images, resulting in YOLO-SV. While YOLO-SV
improves performance on street-view images, it continues to
struggle with aerial inputs, highlighting that viewpoint diver-
sity is essential for generalization. We then fine-tuned YOLO-
SV with synthetic aerial views generated by AVA to create
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YOLO-AVA. This model significantly improves performance
on aerial views as shown in Fig. 1.

III. RELATED WORKS

Vehicle type classification has traditionally relied on large-
scale datasets such as ImageNet [16] and MS COCO [15].
These datasets include general vehicle classes like car, truck,
bus, motorcycle, and bicycle, but the images are mostly
captured from street-level views. They lack aerial perspectives,
which limits their use in drone-based surveillance or top-
down monitoring applications. Large vision-language models
(VLMs) [17] also suffer from limited angular coverage, which
reduces their ability to identify vehicles from unfamiliar view-
points. Some aerial vehicle detection datasets [18]-[20] do
exist, but they are often small in size and mostly collected
from stationary video feeds, such as traffic cameras or parked
drones. As a result, they lack environmental diversity and
sufficient coverage for fine-grained vehicle analysis.

Data augmentation using generative models has become
an effective way to handle data scarcity. Methods such as
GANs [21], Neural Radiance Fields [22], and Diffusion
Models [23] have been used to synthesize object views in
various conditions. Rendering tools like Blender [24] enable
controlled simulation using 3D assets. CARLA [25] took this
approach further by building an entire urban simulator for
autonomous driving research. However, to the best of the au-
thors knowledge, synthetic aerial view generation specifically
for fine-grained vehicle classification remains underexplored.
Our work addresses this gap by generating synthetic street
and aerial views using modeling tool Blender and generation
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Fig. 2. Overview of the aerial view augmentation process using AVA. The method takes images from street view datasets and leverages Blender and 3D
asset generation to synthesize corresponding aerial views. Consistent backgrounds are applied to the images, and a realism checker verifies that the augmented

aerial view images contain the correct vehicle within the frame.

tool TRELLIS [26], allowing models to learn from realistic
drone-view perspectives. Besides, few works directly tackle
vehicle classification from aerial views. Wang et al. [27]
explored drone-based classification using RGB and LiDAR,
while Chen et al. [28] studied satellite-based vehicle detection.
Both identified major challenges, such as lack of labeled aerial
data, altitude variance, and scale inconsistencies. AVA aims to
tackle these challenges by generating synthetic aerial views
leveraging 3D rendering tools and generative Al models.

IV. AUTOMATED AERIAL VIEW AUGMENTATION

We present a scalable method for vehicle type detection
dataset augmentation by synthesizing aerial views from street
view images. We also introduce a mechanism for generating
ground truth test dataset using open 3D assets to verify the
generalization of models trained on the augmented datasets.
The ground truths are essential since existing datasets, such as
the Kaggle vehicle [29], lack annotated aerial views. The com-
plete aerial view augmentation method is illustrated in Fig. 2.
It starts by taking SV images as input to generate 3D assets
through a realism-validated pipeline. The method incorporates
domain storyboard generation using a LLM to define scenarios
and integrates camera pose variations for aerial rendering.
The output dataset comes in MS COCO format, consists of
high-quality, consistent aerial view images validated through
quality checks to ensure realism and correctness, enabling
robust augmentation for fine-grained vehicle type classification
tasks. A functional overview of AVA as follows.

a) 3D Asset Generation: The first stage of the AVA
pipeline involves generating 3D vehicle assets from 2D street-
view images. We use TRELLIS [26], an open-source 3D
reconstruction tool available via the Hugging Face API, to
convert single side-view images into textured 3D models.
TRELLIS is chosen for its efficiency, simplicity, and ability
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to produce models in under one second, making it well-suited
for large-scale data augmentation. The resulting 3D assets are
exported in GLB format, which is compatible with common
3D processing tools such as Blender.

3D Pre-construction. For reliable reconstruction, input im-
ages should contain well-centered vehicles viewed from a
horizontal side perspective. TRELLIS performs best when the
object is in focus and not clipped at the image boundaries.
While TRELLIS can automatically detect the main object in
the image, we find that careful curation of input images im-
proves reconstruction quality. Incorrect positioning or oblique
angles often result in incomplete or distorted models, which
cannot be used for generating realistic aerial views.

Realism Check. To filter out low-quality or structurally flawed
assets, we introduce a two-step realism verification process.
First, the GLB file is imported into Blender, and a synthetic
street-view render of the model is generated using a fixed
camera positioned at side view. The original input image is
background-subtracted using a vision-language model [11],
and both the original and rendered images are compared using
the Structural Similarity Index Measure (SSIM). Given the
grayscale versions of the original image / and the rendered
image Iy for a rotation angle 6, the SSIM score is computed
as:

(2urpg, +c1)(20;5, + c2)

(ui + 43 +cr)of +02 +ca)’

SSIM(I, Iy) =

where p and o represent the mean and standard deviation
of pixel intensities, and cj,co are constants for numerical
stability. We evaluate the asset across N = 100 evenly spaced
rotations along the Z-axis:

SSIMppax = max SSIM(T, Iy).
0€[0,2m)



If SSIMy,ax < 7, where 7 is a predefined similarity threshold
(e.g., 0.85), the asset is rejected. This filtering step ensures
that the generated 3D asset closely resembles the input image
in structure and texture before proceeding to aerial rendering.

Algorithm 1 Multi-View Image Generation for a 3D Model

Require: 3D object model O, camera C, number of views N,
radius range [rumin, "max), height variation Ah, horizontal
variation Ad

Ensure: A set of N images capturing O from different
perspectives

1: Initialize scene with 3D object O and camera C
2: Compute the center of the object co
3: Calculate the initial distance d¢ o between C and co
4: Set the orbit radius r = Clamp(d¢ o, min, "max)
5: fori=0to N —1do
6: Compute the base angle 6, = %
7: Add random angle offset 66 ~ U(—0.1m,0.17)
8: Add random radius offset or ~ U(—Ad, Ad)
9: Add random height offset 0z ~ U(—Ah, Ah)
10: Compute the camera position:
x; = co.x + (r + or) - cos(6; + 60)
yi = co.y + (r+ r) - sin(6; + 56)
2z =C.z+ 6z
11: Position camera C at (z;, y;, 2;)
12: Orient C to point towards co
13: Update scene
14: Render image Z; from camera C
15: Save Z; with filename indicating view number ¢

16: end for

17: return Set of rendered images {Zo,Z1,...,Zn_1}

b) Multi-View Generation: After passing the realism
check, the 3D vehicle models generated by TRELLIS are
used to synthesize diverse aerial views at scale. This step
addresses the lack of annotated aerial data in existing vehicle
classification datasets. 3D models are imported into Blender,
and multiple views are rendered using the bpy Python module,
which provides programmatic access to Blender’s 3D render-
ing engine. The multi-view generation follows a systematic
process outlined in Algorithm 1. The scene is initialized with
the 3D object and a camera. The object’s center is calculated
to determine the orbit radius, which sets the average distance
between the camera and the object. The camera is placed
at varying azimuth angles and altitudes around the object to
simulate top-down drone views.

To introduce variation and realism, we add small random
offsets to the camera’s azimuth (66), orbit radius (dr), and
height (6z). The angle offset J6 is sampled uniformly from
[—0.17,0.17], which allows realistic angular deviation while
maintaining the aerial character of the view. Larger variations
would result in views that are too oblique and closer to ground-
level perspectives, which is not the objective. The radius and
height offsets §r and &z are drawn from uniform ranges
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defined by parameters Ad and Ah, respectively. In our ex-
periments, we set Ad and Al based on the object’s bounding
box size to maintain a consistent object scale across views,
while introducing enough variation to prevent overfitting to a
single camera setup.

The camera is always oriented to point toward the center of
the object, ensuring that the vehicle remains centered in each
view. This process yields N aerial images per object, with
each image representing a slightly different aerial perspective.
At this stage, the rendered images contain only the 3D model
on a transparent background. Background synthesis is handled
in the subsequent step to ensure contextual realism. We
utilize text-to-video generation tool SORA [10] for generating
realistic background keeping the vehicle as the subject. How-
ever, SORA prompt must be composed with certain domain
knowledge and avoid words to make the video useful.

c) Story Generation: To guide the background gener-
ation process, we first construct textual prompts using an
automated storyboard generator. Each prompt is based on the
known vehicle class (e.g., SUV, VAN) and includes both a
specified terrain and constraints to reduce background clutter.
The prompts follow a structured format:

Put the {vehicle class} on a {terrain} road with {constraints}.

For example, we generate prompts such as “Put the SUV
on an asphalt road with no other vehicles, not moving,” or
“Put the van on a dirt road with no pedestrians and no traffic.”
Another example would be, “Put the sports car in a parking lot
with no shadows, not moving.” To ensure prompt consistency
and effectiveness, we apply several simple rules. Prompts
are written using unambiguous language and explicitly define
the scene type, such as “asphalt road” or ‘“urban street.”
Constraints like “no other vehicles” or “not moving” are
used to maintain subject isolation and visual clarity. These
structured prompts are class-specific and are used as direct
inputs to the video generation model.

d) Background Rendering with SORA: Once the prompts
are created, we use a high-quality text-to-video model such
as SORA to generate short drone-like scenes with realistic
background contexts. SORA is chosen for its strong visual
fidelity and consistency, though other open-source video gen-
eration tools can also be used. The previously rendered object-
only aerial view is used as a visual anchor, and the prompt is
used to guide the scene generation around it. Each prompt is
rendered into a 5-10 second video. These clips typically yield
300-500 usable frames. The video is saved in GIF format
and split into individual image frames. Only single-object
scenes are retained, as our framework targets isolated vehicle
classification tasks.

e) Aerial View Annotation: The validated image frames
are annotated using YOLO-World [11]. YOLO-World is ef-
fective at localizing general vehicle classes such as “car,” but
not fine-grained subtypes. Since we already know the precise
class name from the input prompt (e.g., SUV, van), we query
YOLO-World to detect and localize the “car” in the image. The
resulting bounding box is used, and the label is replaced with



AR
YOLO-World: Assign True
#e |—> Detects Generic —> Class Label —>

‘car' instead of 'car'

Unlabeled Images Labeled Dataset per
per Class Class

Fig. 3. Class-specific annotation pipeline using YOLO-World to relabel
generic detections with true vehicle classes.

the known fine-grained class name. This process is illustrated
in Fig. 3. Each image and its corresponding annotation are
then saved in MS COCO format, producing a clean, labeled
dataset for training and evaluation.

V. EXPERIMENTS

In this section, we present experiments that demonstrate
the effectiveness of aerial view augmentation using AVA and
evaluate its impact on vehicle classification performance. All
experiments were conducted on a system equipped with an
NVIDIA RTX A4000 GPU (16 GB VRAM), using CUDA
12.8 and PyTorch as the primary deep learning framework.
We begin by outlining the motivation for using 3D models in
dataset and test benchmark creation, followed by a detailed
evaluation of how AVA enhances fine-grained vehicle classifi-
cation through synthetic aerial view augmentation. The project
repository is available at AVA.

A. Experiment Setup

In our experiments, we aim to validate the effectiveness
of 3D generation methods as tools for data augmentation
in fine-grained vehicle classification from aerial views. We
argue that reconstructed 3D assets enable scalable synthetic
data generation from arbitrary viewpoints, making them highly
suitable for data augmentation. However, a major challenge
is the lack of benchmark datasets with fine-grained aerial
annotations, making direct evaluation difficult.

To address this, we adopt an alternative dataset creation
strategy. Rather than collecting real-world aerial and street-
view images, we use publicly available 3D vehicle models to
generate both street-view and aerial-view images in Blender.
This allows us to obtain ground truth aerial views by directly
rendering them from the 3D assets, thereby offering a reliable
test set for evaluating how well models fine-tuned with syn-
thetic aerial views generalize. The overall dataset generation
pipeline is illustrated in Fig. 4. A maximum SSIM score is
computed across 100 Z-axis rotations, and assets with no
configuration exceeding a threshold of 0.85 are discarded.
This threshold is empirically selected to balance realism and
diversity, ensuring that only structurally accurate models are
used for synthetic aerial rendering.

We curate six vehicle classes: bus, sedan, sport, SUV, truck,
and van, with multiple 3D instances per class 6 models each
for bus, sedan, and sport; 8 for SUV; 5 for truck; and 7 for van.
Using the multi-view generation strategy from Algorithm 1,
we render both top-down (aerial) and side (street) views of
each 3D model in Blender. Realistic backgrounds are added
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Open 3D
Models

Dataset

Fig. 4. Dataset creation for the experiments. The input is the open 3D assets
of different vehicles and the output is the data for fine-tuning and validation
and ground truths.

using SORA via structured prompts, and annotations are
generated automatically through the process shown in Fig. 3.

The rendered street-view images represent typical data
found in traditional vehicle classification datasets. These im-
ages serve two roles: they act as a baseline training set, and
they are also used as inputs to AVA to generate synthetic aerial
views for augmentation. This dual use allows us to compare
models trained with and without aerial view augmentation.
In contrast, the aerial views used for evaluation are rendered
separately from a disjoint set of 3D vehicle models that are not
used in training. This separation is critical as it allows us to
construct a controlled ground truth benchmark for fine-grained
aerial vehicle classification, where models must generalize
to both street views and aerial viewpoints. These ground
truth aerial views form the core of our evaluation and are
key to validating the real-world utility of synthetic aerial
augmentation using 3D reconstruction tools.

We evaluate several YOLO variants to assess detection
performance. Each model is tested in two phases: first, on the
street-view dataset to measure baseline performance, and then
on the ground truth aerial-view dataset to assess generalization
to unseen aerial perspectives. The goal is to demonstrate
that synthetic aerial view augmentation via AVA significantly
improves model robustness and fine-grained classification per-
formance in aerial perspectives.

a) Dataset Description: Table I summarizes the datasets
used in our study. The data is carefully partitioned to ensure
that models are never exposed to the ground truth aerial-view
instances during training.

TABLE I
OVERVIEW OF CURATED DATASETS USED IN OUR EXPERIMENTS ACROSS
SIX VEHICLE CLASSES.

Dataset Description Images

AVA_Aug Synthetic aerial views generated by 3057
AVA

GT_AV Ground truth aerial views similar 1016
to the top views in Fig. 1 rendered
from unique 3D vehicle instances.

SV Street views of vehicles used for 5054

aerial view augmentation. Simu-
lates traditional vehicle classifica-
tion datasets.




Ground Truth Aerial Views (GT_AV): Rendered directly
from unique 3D vehicle models not used in training. This
dataset serves as a validation benchmark to evaluate model
generalization in fine-grained aerial classification.

Street Views (SV): Rendered from 3D vehicle assets using
street perspectives. This dataset simulates commonly available
street-view datasets and also serves as input to the AVA
augmentation process.

Augmented Aerial Views (AVA_Aug): Generated by applying
AVA to the SV dataset. This forms the main synthetic training
set with aerial-view content.

It is important to note that there is no overlap between the
vehicle models used for GT_AV and those used for training
data generation. This ensures that any performance on GT_AV
reflects true generalization to unseen vehicles and perspectives.

b) Classification Model Variants: For fine-grained ve-
hicle type classification, we adopt the YOLOvI1 architec-
ture due to its strong balance between inference speed and
detection accuracy. Its lightweight design makes it ideal for
real-time aerial surveillance applications such as drone-based
monitoring. Although there are newer variants of YOLO,
YOLOv11 provides a mature open source foundation with
broad compatibility, which simplifies integration with our
synthetic data generation pipeline. We develop and evaluate
four model variants, all based on the YOLOv11 backbone:

e YOLOv11: The unmodified baseline model was pre-
trained on general-purpose datasets such as MS COCO. It
serves as a zero-shot/baseline reference with no exposure
to our synthetic data.

¢« YOLOV-SV: Fine-tuned on synthetic street-view(SV)
images to adapt to our domain. This model serves as
the primary side view baseline.

¢ YOLOV-TR: Fine-tuned solely on synthetic aerial views
generated by AVA (AVA_Aug), capturing the top-down
viewpoint but without any side-view exposure.

e YOLO-AVA: Fine-tuned on a combined dataset of SV
and AVA_Aug to improve robustness across both per-
spectives.
¢) Training Procedure and Evaluation: Training is con-

ducted in two stages. In the first stage, each model (except
the zero-shot YOLOvI11 baseline) is fine-tuned for 50 epochs
using only the SV dataset to build competence in standard
street-view detection. As summarized in Table II, the second
column outlines the training data used for each model variant.
To prevent overfitting, only the detection heads are updated
while backbone layers are frozen. Standard augmentations
such random flipping, scaling, and rotation are applied to
promote generalization. Early stopping is used to halt training
if validation performance stagnates. In the second stage, ad-
ditional fine-tuning is performed using a combination of SV
and AVA_Aug datasets for 50 more epochs. This stage focuses
on learning cross-view representations, especially for aerial
views.

Each model is evaluated on both street-view validation
set SV(val) and GT_AV datasets after each stage. The dual-
evaluation strategy quantifies how well the model generalizes
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from side-view data to aerial perspectives particularly when
using synthetic views generated using AVA .

B. Vehicle Classification Results

We evaluate all models on the GT_AV dataset. This setup
tests the model’s ability to generalize to unseen instances and
top-down views which a challenging scenario for fine-grained
classification. The results are summarized in Table II. The
baseline YOLOv11 model, which was not fine-tuned with our
synthetic datasets, achieves only 0.05 mAP@0.5:0.95 and 0.06
mAP@0.5 on GT_AV. This confirms its limited capability to
handle aerial views, as it was trained solely on general-purpose
datasets with limited angular diversity.

Fine-tuning with side-view images using YOLOV-SV im-
proves performance substantially. On GT_AV, it achieves 0.28
mAP@0.5:0.95 and 0.33 mAP@0.5. However, the recall of
0.35 suggests it still misses many true positives, indicating
that side views alone are insufficient for learning top-down
representations. The best-performing model, YOLO-AVA, is
fine-tuned on both SV and AVA_Aug data. It achieves 0.43
mAP@0.5:0.95 and 0.51 mAP@0.5 on GT_AV, with a bal-
anced precision and recall (0.47 and 0.51). This highlights
the importance of aerial augmentation for generalization, espe-
cially in the absence of real aerial datasets. YOLO-TR, trained
only on AVA_Aug, performs comparably to YOLO-AVA in
terms of mAP@0.5:0.95 (0.44) but slightly underperforms in
mAP@0.5. This suggests that while aerial augmentation is
crucial, combining it with side-view data strengthens model
robustness.

As seen in the table, multiple models reach 0.99 mAP on
the SV(val) set. This is expected, as SV(val) images share
the same rendering pipeline and visual characteristics as the
training SV set. No images or 3D assets from GT_AV are used
in training, eliminating the possibility of data leakage.

Vehicle Type Detection Analysis. Table III presents the
model performance metrics for different vehicle classes. The
results indicate varying levels of detection accuracy across
categories. The model achieves high performance on the sport
class, with a precision of 1.000 and an mAP@0.5 of 0.841.
Similarly, the SUV and truck classes show strong detection
capabilities, with mAP@0.5 values of 0.709 and 0.648, respec-
tively. Conversely, the model struggles with certain vehicle
types, particularly vans and sedans. The van class exhibits
the lowest performance, with a precision of 0.046 and an
mAP@0.5 of 0.053, highlighting challenges in detecting and
classifying this category accurately. The sedan class also
demonstrates relatively poor detection.

Our findings suggest that while the model performs well
for distinct and well-represented vehicle categories, its ac-
curacy declines for classes with higher visual ambiguity or
fewer training instances. Future improvements could focus on
refining detection for underperforming vehicle types through
additional augmentation or class-specific fine-tuning.

Fig. 5 shows the effect of adding synthetic aerial view data
on mAP@0.5 for YOLOv11, YOLO-TR, and YOLO-AVA.



TABLE II
DETECTION PERFORMANCE OF YOLOV 11 VARIANTS ON STREET-VIEW AND AERIAL-VIEW DATASETS. EACH MODEL IS EVALUATED ON BOTH SV(VAL)
AND GT_AV. HIGH MAP@0.5 VALUES ON SV(VAL) RESULT FROM MATCHING RENDERING PIPELINES. GT_AV REFLECTS GENERALIZATION TO UNSEEN
AERIAL VIEWS.

Model Name Train Set Val Set mAP@0.5:0.95 mAP@0.5 mAP@0.75 Precision Recall
YOLOvI11 - SV(val) 0.21 0.21 0.0 0.13 0.26
YOLOV-SV SV SV(val) 0.99 0.99 0.99 0.99 0.99
YOLO-AVA SV+AVA_Aug SV(val) 0.99 0.99 0.99 0.98 0.99
YOLO-AVA SV+AVA_Aug  SV(val) +AVA_Aug(val) 0.98 0.98 0.98 0.98 0.98
YOLOvI1 - GT_AV 0.05 0.06 0.04 0.21 0.10
YOLOV-SV SV GT_AV 0.28 0.33 0.24 0.42 0.35
YOLO-AVA SV+AVA_Aug GT_AV 0.43 0.51 0.48 0.47 0.51
YOLO-TR AVA_Aug GT_AV 0.44 0.47 0.47 0.47 0.51
TABLE III VI. DISCUSSION & FUTURE DIRECTIONS

PER-CLASS DETECTION PERFORMANCE ON GT_AV

Vehicle Class  Precision Recall F1 Score mAP@0.5
Bus 0.530 0.636 0.457 0.230
Truck 0.508 0.715 0.723 0.648
Sedan 0.143 0.225 0.150 0.149
Suv 0.621 0.790 0.710 0.709
Van 0.046 0.087 0.055 0.053
Sport 1.000 0.624 0.991 0.841
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Fig. 5. Impact of aerial view augmentation on mAP@0.5 for YOLOV-SV,

YOLO-TR, and YOLO-AVA.

The baseline YOLOv11 model remains at 0.39 mAP@0.50,
highlighting its limited capability for aerial perspectives.
YOLO-TR, fine-tuned only with aerial augmentations, im-
proves steadily with more data, reaching 0.47 mAP@0.50.
YOLO-AVA, trained with both side-view and aerial augmen-
tations, achieves the highest mAP@0.5 of 0.51, demonstrating
superior generalization across perspectives. This highlights the
importance of combining diverse augmentations to enhance
performance for drone-based vehicle classification tasks.
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While 3D modeling introduces challenges for vehicle clas-
sification data augmentation such as inconsistent texture map-
ping, scale mismatches, and occasional geometry defects, it
remains a scalable and flexible approach for synthetic dataset
generation. Our pipeline AVA includes automated realism
checking and structured scene synthesis, significantly im-
proves detection accuracy and generalization for aerial vehicle
views. However, further refinement is needed to enhance
realism and diversity, particularly under varied environmental
conditions.

One of the key limitations of the current system is the
absence of explicit modeling for occlusions, lighting varia-
tion, and dynamic scene complexity. These are common in
real-world aerial footage and affect model robustness. Our
synthetic pipeline currently assumes clean, well-lit, isolated
views. Future work will incorporate domain randomization
and physics-based rendering to simulate occlusions, lighting
changes, and multi-vehicle scenarios, enabling models trained
on synthetic data to better handle in-the-wild aerial imagery.

Another area for improvement lies in annotation quality.
Although YOLO-World provides a practical zero-shot method
to generate bounding boxes for general vehicle types, it is
limited to coarse labels. In our framework, these annotations
are replaced with known fine-grained labels derived from gen-
eration prompts. While this process is effective, the reliability
of YOLO-World’s bounding boxes under aerial perspectives
varies depending on background clutter and object deforma-
tion. Additional post-processing, such as loU-based filtering
and validation using ensemble models, will be considered in
future iterations to further improve annotation fidelity.

The current framework evaluates the benefit of synthetic
aerial augmentation specifically on YOLOv11. We intention-
ally limited the scope to isolate the effects of data aug-
mentation. However, we acknowledge that a full comparative
analysis with state-of-the-art object detection models (e.g.,
YOLOvV8, DINO-DETR, RTMDet) is needed to establish
broader effectiveness. This benchmarking will be pursued once
the synthetic dataset is scaled and released for open evaluation.



As our experiments rely on open-source 3D repositories like
RigModels and BlenderKit, biases in the source datasets such
as overrepresentation of certain vehicle types may propagate
into the training data. We plan to mitigate this by curating a
more diverse and balanced 3D asset library in future work.
While our results show promising gains in classification accu-
racy, precision, and recall across unseen aerial perspectives,
true generalization in real-world aerial settings remains an
open challenge. Expanding the dataset to include uncontrolled
variables, urban density, and complex vehicle arrangements
will be necessary to close this gap and move closer to
deployment-ready models.

VII. CONCLUSION

This work explores the use of 3D generation as a scalable
method for creating synthetic training data for fine-grained
vehicle classification from aerial perspectives, with a focus on
drone-based applications. We proposed AVA, a pipeline that
synthesizes aerial perspectives from street-level images using
3D asset generation, Blender-based rendering, and high-quality
background synthesis. We show that fine-tuning YOLOvVI11
with AVA -augmented data significantly improves generaliza-
tion to unseen aerial perspectives. Although our experiments
focus on aerial view augmentation, the broader implication
is that 3D reconstruction can be leveraged to improve detec-
tion and classification performance across a wide range of
viewpoints and scenarios. A comprehensive library of fine-
grained 3D assets would allow researchers to generate diverse,
high-fidelity datasets for complex detection tasks without the
overhead of real-world data collection. For future work, inte-
grating the Model Context Protocol (MCP) with sensor fusion
on UAVs could enable rendering engines such as Blender to
operate online, supporting real-time data augmentation and
adaptive model training under dynamic conditions including
lighting variations, occlusions, and evolving terrains.
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